
'\

)

PART V

External Storage and File Processing

17
EXTERNAL
STORAGE

OBJECTIVe
To explain the design and uses of magnetic tape and
disk storage devices.

A file, or data set, is a collection of related data records. Most data processing
applications involve data files of such volume that they require large external
magnetic tape and disk storage devices. Tape and disk provide mass external
storage, extremely fast input/output, reusability, and records of almost any length.

This chapter introduces the various file organization methods and describes
the architecture for magnetic tape and disk drives. The next three chapters cover
the processing of files.

RLE ORGANIZATION METHODS

In any system, a set of related records is arranged into a file and organized according
to the way in which programs are intended to process them. Once you create a
file under a particular organization method, all programs that subsequently process

441

442 External Storage Chap. 17

the file must do so according to the requirements of the method. Let's take a
brief look at the most common organization methods.

Sequential File Organization

Under sequential organization, records are stored one after another. They may
be in ascending sequence (the usual) or descending sequence by a particular key
or keys (control word), such as customer number or employee number within
department, or, contrary to what the name sequential organization implies, records
need not be in any particular sequence.

Transaction records may be accumulated into a file in random sequence.
You can either use the file in its unsorted form for random updating of a master
file or sort it into a specified order for sequential updating.

You can store a sequentially organized file on any type of device and for any
type of file, such as master, transaction, and archival.

Indexed Sequential File Organization

Indexed sequential organization for master files lets you access records in ascending
sequence and also supports indexes that enable you to access any record randomly
by key, such as customer number.

Direct File Organization

Direct file organization facilitates direct access of any record in a master file. The
main advantage is that this method provides fast accessing of records and is thus
particularly useful for ouIine systems.

Virtual Storage Access Method

Virtual storage access method (VSAM) supports three organization types. Entry
sequenced is equivalent to sequential organization, key-sequenced is equivalent to
indexed, and relative-record is equivalent to direct.

Disk storage devices, but not tape, support indexed sequential, VSAM, and
direct organization. Chapters 18, 19, and 20 cover sequential, VSAM, and indexed
sequential, respectively.

ACCESS METHODS

An access method is the means bywhich the system performs input/output requests.
The methods depend on the file organization and the type of accessing required.
DOS supports four methods and OS supports seven.

)

·_--\

Processing of External Storage Devices

File Organization Method DOS OS
Seguential SAM QSAM or BSAM
Virtual VSAM VSAM
Indexed ISAM QISAM or BISAM
Direct DAM BDAM
Partitioned - BPAM

PROCESSING OF EXTERNAL STORAGE DEVICES

443

. ",,\

)

)

Major similarities between tape and disk are that records may be of virtually any
length, of fixed or variable length, and clustered together into one or more records
per block.

There are, however, two major differences in processing tape and disk. First,
each time you read or write, the tape drive starts, transfers the data, and then
stops, whereas a disk drive rotates continuously. Second, whenever you update
(add, change, or delete) records on tape, you rewrite the entire changed file on
another reel, whereas you can update disk records directly, in place.

Identification of External Devices

Both disk and tape have unique ways of identifying their contents to help in locating
files and in protecting them from accidental erasure.

Tape file identification. At the beginning of the tape reel is a volume
label, which is a record that identifies the reel being used. Immediately preceding
each file on the tape is a header label, which describes the file that follows. This
record contains the name of the file (for example, INVENTORY FILE) and the
date the file was created. Following the header label are the records that comprise
the data file.

The last record following the file is a trailer label, which is similar to the
header label but also contains the number of blocks written on the reel. The
operating system automatically handles the header and trailer labels.

Disk file identification. To keep track of all the files it contains, a disk
device uses a special'directory (volume table of contents, VTOC) at the beginning
of its storage area. The directory includes the names of the files, their locations
on disk, and their present status.

Packed and Binary Data

Tape and disk records can contain numeric fields defined as zoned, binary, or
packed. Packed format involves two digits per byte plus a half-byte for the sign,

444 External Storage Chap. 17

such as

PAYMENT DS PL4

In this case, the field length is 4 bytes, stored as dd I dd I dd I ds, where d is a
digit and s is the sign.

If the field is defined as binary, watch out for erroneous alignment of the
field when you read it into main storage. The following binary fields are both 4
bytes long:

Aligned on a fulIword boundary:
Not aligned on a boundary:

PAYMENTI DS F
PAYMENTI DS FLA

The assembler automatically aligns PAYMENTI on a fullword boundary, whereas
the assembler defines PAYMENTI at its proper (unaligned) location.

Unblocked and Blocked Records

Disk and tape devices recognize blocks of data, which consist of one or more
records. A blank space, known as an interblock gap (IBG), separates one block
from another. The length of an IBG on tape is 0.3 to 0.6 inches depending on
the device, and the length of an IBG on disk varies by device and by track location.
The IBG has two purposes: (I) to define the start and end of each block of data
and (2) to provide space for the tape when the drive stops and restarts for eaCh",")
read or write of a block.

Records that are stored one to a block are called unblocked. As shown in ' "
Fig. 17-1(a), following each block is an IBG.

To reduce the amount of tape and disk storage and to speed up input/output,
you may specify a blocking factor, such as three records per block, as shown in

Fixed unblocked

~~. Rec-l I Rec-2 I Rec·3 I Rec-4 ~~~
One record = one block

(0)

Fixed blocked

IIl~ Rec-l I Rec-2 I Rec-~ Rec-4 : "Rec-S

Three records = one block

(b)

Figure 17-1 (a) Unblocked records. (b) Blocked records.

Processing of External Storage Devices 445

Fig. I7-I(b). In this format, the system writes an entire block of three records
from main storage onto the device. Subsequently, when the system reads the file,
it reads the entire block of three records from the device into storage. All programs
that subsequently read the file must specify the same record length and block length.

Blocking records makes better use of disk and tape storage but requires a
larger buffer area in main storage to hold the block.

Input Buffers

The action of an input operation depends on whether records are unblocked or
blocked. If unblocked, the operation transfers one record (block) at a time from
the device into the input/output buffer in your program.

The following example of blocked records assumes three records per block.
Initially, the input operation transfers the first block from the device into the buffer
(110 area) in your program and delivers the first record to your program's workarea:

buffer: IRec-Il Rec-zi Rec-31
\

workarea: IRec-II

For the second input executed, the operation does not have to access the device.
Instead, it simply delivers the second record from the buffer to your program's
workarea:')

buffer:

workarea:

!Rec-IIRec-zIRec-31
/

!Rec-zi

And for the third input executed, the operation delivers the third record from the
buffer to your program's workarea:

buffer: IRec-II Rec-zi Rec-31---workarea: IRec-3!

While the program processes the third record in the workarea, the system can read
ahead and transfer the second block from the device into the buffer in your program.
For the fourth input executed, the operation delivers the first record from the
buffer to your program's workarea:

buffer:

workarea:

!Rec-4IRec-SIRec-61

"IRec-4I

446

Output Buffers

External Storage Chap. 17

The action of an output operation depends on whether records are unblocked or
blocked. Ifunblocked, the output operation transfers one record (block) at a time
from your workarea to the buffer in your program and then to the output device.

The following example of blocked records assumes three records per block.
The first output operation writes the record in the workarea to the first record
location in the output buffer:

workarea:

buffer:

!Rec-ll

/' ,...-----,

~····....D
No actual physical writing to the output device occurs at this time. The second
output operation writes the record in the workarea to the second record location
in the buffer:

workarea:

buffer:

IRec-ZI

"IRec-lIRec-ZI !
)

Similarly, the third output operation writes the record in the workarea to the third
record location in the buffer. Now that the buffer is full, the system can physically
write the contents of the buffer, the block of three records, to the external device.

The CLOSE operation automatically writes the last block of data, which may
validly contain fewer records than the blocking factor specifies.

FIXed-Length and Variable-Length Records

Records and blocks may be fixed in length, where each has the same length through
out the entire file, or variable in length, where the length of each record and the
blocking factor are not predetermined. There are five formats:

1. Fixed, unblocked: one record of fixed length per block
2. Fixed, blocked: more than one fixed-length record per block
3. Variable, unblocked: one variable-length record per block
4. Variable, blocked: more than one variable-length record per block
5. Undefined: contents of no defined format (Not all systems support this for

mat.)

)

Magnetic Tape Storage

MAGNETIC TAPE STORAGE

447

)

The magnetic tape used in a computer system is similar to the tape used by con
ventional audiotape recorders; both use a similar coating of metallic oxide on
flexible plastic, and both can be recorded and erased. Its large capacity and its
reusability make tape an economical storage medium.

Data records on tape are usually, but not necessarily, stored sequentially,
and a program that processes the records stints with the first record and reads or
writes each record consecutively.

The main users of tape are installations such as department stores and utilities
that require large files that they process sequentially. Many installations use disk
for most general processing and use tape for backing up the contents of the disk
master files at the end of each workday. Consequently, if it is necessary to rerun
a job because of errors or damage, backup tapes are always available.

Characteristics of Tape

The most common width of a reel of magnetic tape is 1/2 inch, and its length ranges
from 200 feet to the common 2,400 feet, with lengths as long as 3,600 feet. A
tape drive records data as magnetic bits on the oxide side of the tape.

Storage format. Data is stored on tape according to tracks. The tape in
Fig. 17-2 shows nine horizontal tracks, each of which represents a particular bit
position. Each vertical set of 9 bits constitutes a byte, of which 8 bits are for data
and 1 bit is for parity.

4 000 .
6 000 .
o 1 1 1 .
1 0 1 0 .
2 1 1 0 .
P 1 0 1 (parity track)
3 0 0 1 .
7 000 .
5 000 .

I I I
bytes

FIgUre 17-2 Data on tape.

As you can see, the tracks for each of the bits are not in the expected sequence.
The tracks for bits 4 and 5, the least used, are in the outer area where the tape is

448 External Storage Chap. 17
/

more easily damaged. The first byte, on the left, would appear in main storage
as follows:

Bit value:
Bit number:

101 0 000 0 1
01234567P

Storage density. Tape density is measured by the number of stored char
acters, or bytes, per inch (bpi), such as 800, 1,600, or 6,250 bpi. Therefore, a
2,400-foot reel with a recording density of 1,600 bpi could contain 46 million bytes,
which is equal to over a half-million 8O-byte records.

Double-density tape stores data on 18 tracks, representing 2 bytes for each
set of 18 vertical bits.

Tape speed. Tape read/write speeds vary from 36 to 200 or more inches
per second. Thus a tape drive that reads 1,600 bpi records at 200 inches per second
would be capable of reading 320,000 bytes per second. Other high-speed cartridge
drives transfer data at up to 3 million bytes per second.

Tape markers. A reflective strip, called a load point marker, located about
15 feet from the beginning of a tape reel, indicates where the system may begin
reading and writing data. Another reflective strip, an end-of-tape marker, located
about 14 feet from the end of the reel, warns the system that the end of the reel
is near and that the system should finish writing data. Both the load point marker
and the end-of-tape marker are on the side of the tape opposite the recording
oxide.

Tape File Organization

A file or data set on magnetic tape is typically stored in sequence by control field
or key, such as inventory'number. For compatibility with disks, a reel of tape is
know as a volume. The simplest case is a one-volume file, in which one file is
entirely and exclusively stored on one reel (volume).

An extremely large file, known as a multivolume file, requires more than one
reel. Many small files may be stored on a multifile volume, one after the other,
although you may have to rewrite the entire reel just to update one of the files.

Unblocked and Blocked Tape Records

As an example of the effect of blocking records on tape, consider a file of 1,000
records each 800 bytes long. Tape density is 1,600 bytes per inch, and each IBG
is 0.6 inches. How much space does the file require given (a) unblocked records
and (b) a blocking factor of 5? Calculate the size of a record of 800 bytes as 800
.,. 1,600 = 0.5 inches.

')

,/

Magnetic Tape Storage

(a) Unblocked records

One block = one record = 800 bytes
Length of one block = 800 bytes/1,600 bpi = OS'
Length of one mG = 0.6

Space required for one block 1.1"
Space required for file = 1,000 blocks x 1.1" = 1,100"

(b) Blocked records

One block = five records = 4;000 bytes
Length of one block = 4,000 bytes/1,600 bpi = 205"
Length of one mG = 0.6

Space required for one block 3.1"
Space required for file = 200 blocks x 3.1" = 620"

449

)

As can be seen, the blocked records require considerably less space because
there are fewer mGs.

Standard Labels

Under the various operating systems, tape reels require unique identification. Each
reel, and each file on a reel, usually contains descriptive standard labels supported
by the operating systems (1) to uuiquely identify the reel and the file for each
program that processes it and (2) to provide compatibility with other mM systems
and (to some degree) with systems of other manufacturers.

Installations typically use standard labels. Nonstandard labels and unlabeled
tapes are permitted but are not covered in this text. The two types of standard
labels are volume and file labels. Figure 17-3 illustrates standard labels for one
file on a volume, a multivolume file, and a multifile volume. In the figure, striped
lines indicate mGs, and TM (for tape mark) is a special marker that the system
writes to indicate the end of a file or the end of the reel.

Volume Labels

The volume label is the first record after the load point marker and describes the
volume (reel). The first 3 bytes contain the identification VOL. Although some
systems support more than one volume label, this text describes only the common
situation of one label.

On receipt of a new tape reel, an operator uses an mM utility program to
write a volume label with a serial number and a temporary header file label. When

450 External Storage Chap. 17

1. A one~volume file

End-of-file I.bel(s)

ElEI IBLK M M

•.

file End"f-volume label(s}

=mIl---_

BLK,

Header

VOlu~e II.beIIS)

I.be;

VOL

Load
point

:EI3fHIJ
-._- .. -

I 1 2 3 4

I I •

VOL 10:

Volume·2

LAST T OF T T
BlK M M

End-of-file I.bells)

m. A multi-file volume

VOLtaiO BLK
1

y

First file
y

Second file

)

FJgUre 17-3 Magnetic tape standard labels.

subsequently processing the reel, the system expects the volume label to be the
first record. It checks the tape serial number against the number supplied by the
job control command, TLBL under DOS or DD under as.

The following describes each field in the SO-byte standard volume label:

POsmONS

01-03

04

05-10

NAME

Label identifier

Volume label number

Volume serial
number

DESCRIPTION

Contains VOL to identify the
label.
Some systems permit more than
one volume label; this field
contains .their numeric
sequence..
The permanent unique number
assigned when the reel is

Magnetic Tape Storage 451

POsmONS

11

12-41
42-51

52-80

File Labels

NAME

Volume security code

Unused
Owner's identification

Unused

DESCRIPTION

received. (The number also
becomes tbe file serial number
in the header label.)
A special security code,
supported by OS.
Reserved.
May be used under OS to
identify tbe owner's name and
address.
Reserved.

I
/

A tape volume contains a file of data, part of a file, or more tban one file. Each
file has a unique identification to ensure, for example, tbat tbe system is processing
tbe correct file and tbat tbe tape being used to write on is validly obsolete. Two
file labels for each file, a header label and a trailer label, provide tbis identification.

Header label. A header label precedes each file. If tbe file requires more
tban one reel, each reel contains a header label, numbered from 001. If a reel
contains more tban one file, a header label precedes each file.

The header label contains HDR in the first 3 bytes; tbe file identification
(such as CUSTOMER RECORDS), tbe date tbe file may be deleted, and so forth.
The system expects a header label to follow tbe volume label immediately and
checks tbe file identification, date, and otber details against information supplied
by job control.

OS supports two header labels, HDRI and HDR2, witb tbe second label,
also 80 bytes, immediately following tbe first. Its contents include tbe record
format (fixed, variable, Or undefined), block lengtb, record lengtb, and density of
writing on tbe tape.

Trailer label. A trailer label is tbe last record of every file. (OS supports
two trailer labels.) The first 3 bytes contain EOV if tbe file requires more tban
one reel and tbe trailer label is tbe end of a reel but not end of tbe file. The first
3 bytes contain EOF if tbe trailer label is tbe end of tbe file.

The tral1er iabel is otberwise identical to tbe header label except for a block
count field. The system counts tbe blocks as it writes tbem and stores the total
in tbe trailer label. Subsequently, when reading tbe reel, tbe system counts the
blocks and checks its count against tbe number stored in tbe trailer label.

The following describes each field in the standard file label for both header
and trailer labels.

452 External Storage Chap. 17

POsmONS

01-03

04

05-21

22-27

28-31

32-35

36-39

40-41

42-47

NAME

Label identifier

File label number

File identifier

File serial number

Volume sequence number

File sequence number

Generation number

Version number of generation

Creation date

DESCRIPTION

Contains HDR if a
header label, EOF if the
end of a file, or EOV if
the end of a volume.
Specifies the sequence
of file labels for systems
that support more than
one. OS supports two
labels each for HDR,
EOF, and EOV.
A unique name that
describes the file.
The same identification
as the volume serial
number for the first or
only volume of the file.
The sequence of volume
numbers for
mnltivolume files. The
first volume for a file
contains 0001, the
second 0002, and so on.
The sequence of file
numbers for mnltifile
volumes. The first file
in a volume contains
0001, the second 0002,
and so on.
Each time the system
rewrites a file, it
increments the
generation number by 1
to identify the edition of
the file.
Specifies the version of
the generation of the
file.
The year and day when
the file was written.
The format is byyddd,
where b means blank.

)

IOCS for Magnetic Tape 453

POsmoN.S

48-53

54

55-60

61-73

74-80

NAME

Expiration date

File security code

Block count

System code

Unused

DESCRIPTION.

The year and day when
the file may be
overwritten. The
format is byyddd, where
b means blank.
A special security code
used by as.
Used in trailer labels for
the number of blocks
since the previous
header label.
An identification for the
operating system.
Reserved.

)

)

IOCS FOR MAGNETIC TAPE

The system (laCS for DOS and data management for OS) performs the following
functions for input and for output.

Reading a Tape File

The processing for reading a tape file is as follows:

1. Processing the Volume Label. On OPEN, laCS reads the volume label and
compares its serial number to that on the TLBL or DD job control entry.

2. Processing the Header Label. laCS next reads the header label and checks
that the file identification agrees with that on the job control entry to ensure
that it is reading the correct file. For a multivolume file, the volume sequence
numbers are normally in consecutive, ascending. sequence.

3. Reading Records. The GET macro reads records, specifying either a work
area or 10REG. If the tape records are unblocked, each GET reads one
record (a block) from tape into storage. If records are blocked, laCS per
forms the required· deblocking.

4. End-of-Volume. If laCS encounters the end-of-volume label before the end
of-file (meaning that the file continues on another reel), laCS checks that
the block count is correct. It rewinds the reel, opens a reel on an alternate
tape drive, checks the labels, and resumes reading this new reel.

5. End-of-File. Each GET operation causes laCS to transfer a record to the
workarea. Once every record has been transferred and processed and you

454 External Storage Chap. 17

attempt to perfonn another GET, 10CS recognizes an end-of-file condition.
It then checks the block count, (usually) rewinds the reel, and transfers control
to your end-of-file address designated in the D1FMT or DCB macro. You
should now CLOSE the tape file. To attempt further reading of a rewound
tape file, you must perfonn another OPEN.

Writing a Tape File

The processing for writing a tape file is as follows:

1. Processing the Volume Label. On OPEN, 10CS checks the volume label
(VOL) and compares its serial number to the serial number (if any) on the
job control entry.

2. Processing the Header Label. 10CS next checks the header label for the
expiration date. If this date has passed, 10CS backspaces the tape and writes
a new header (HDR) over the old one, based on data in job control. If this
is a multivolume file, 10CS records the volume sequence number for the
volume. It then writes a tape mark.

3. Writing Records. If the tape records are unblocked, each PUT writes one
record (a block) from tape into storage. If records are blocked, 10CS per
fonns the required blocking.

4. End-oJ-Volume. If10CS detects the end-of-tape marker near the end of the
reel, it writes an EOV trailer label, which includes a count of all blocks written,
followed by a tape mark. Since the reflective marker is on the opposite side
of the tape, data may be recorded through its area. If an alternate tape drive
is assigned, 10CS opens the alternate volume, processes its labels, and re
sumes writing this new reel.

5. End-oj-File. When a program closes the tape file, 10CS writes the last block
of data, if any. The last block may contain fewer records than the blocking
factor specifies. IOCS then writes a tape mark and an EOF trailer label with
a block count. Finally, IOCS writes two tape marks and deactivates the file
from further processing.

DISK STORAGE

A direct access storage device (DASD), which includes magnetic disk storage and
the less common drum storage, is a device that can access any record on a file
directly. Diskettes, a common and familiar storage medium on micro- and mini
computers, store data in a similar manner. This section describes the details of
the larger magnetic disk devices used in data processing installations.

Each disk storage device contains a number of thin circular plates (or disks)

)

')
Disk Storage

Tracks

FJgUre 17-4 Disk surface and
tracks.

455

)

stacked one on top of the other. Both sides of each plate (except the outer top
and bottom on some devices) have a coat of ferrous oxide material to permit
recording. As Fig. 17-4 shows, each disk contains circular tracks for storing data
records as magnetized bits. Each track contains the same number of bits (and
bytes) because the bits are spaced more closely together on the innermost tracks.

The disks are constantly rotating on a vertical shaft. As Fig. 17-5 shows, the
disk device has a set of access arms that move read/write heads from track to track.
The heads read data blocks from a disk track into main storage and write data
blocks from main storage onto a disk track. Because the disks spin continually,
the system has t6 wait for a required data block to reach the read/write heads.

Disk storage devices permit processing of records both sequentially and ran
domly (directly). As a result, programs can read unsorted records from a trans
action file and use them to randomly update matching master records on disk.
Disk storage therefore facilitates online processing where users can at any time
make inquiries into a file and can enter transactions for updating as they occur.

Disks

Comb-type access assembly

Access arms

Readfwrite heads

)

'- Track.

Figure 17·5 Disk read/write mechanism.

Cylinder

456

Disk Fo.rmat

External Storage Chap. 17

)

The amount of data that a disk device can store varies considerably by model,
ranging from small disks with a few million bytes to large disks with more than
one billion bytes. Some disk models use fixed-length sectors on each track to store
one or more records; the system addresses a record by disk number, track number,
and sector number. On other disk models, tracks are not sectored, and records
may be of almost any length; the system addresses records by disk surface number
and track number.

Like magnetic tape, disk storage contains gaps between one block of data
and the next, but the size of the gap is greater on the outermost tracks and,smaller
on innenilost tracks. You may also store records on disk as unblocked or blocked.
However, because of the fixed capacity ofa disk track, the optimum blocking factor
depends on the record length and track capacity. Special formulas are available
for calculating optimum blocking factors for different disk devices.

As a simplified example, consider a file containing 1,0000byte records and a
disk track with a capacity of 10,000 bytes. If the blocking factor is 5, one block
is 5,000 bytes and you can store two blocks (ten records) on a track. If the blocking
factor is 6, one block is 6,000 bytes and a track has space ·for ouly one block (six
records).

The storage of data on disk begins with the top outermost track (track 0) and
continues consecutively down, surface by surface, through to the bottom outermost
track. Storage of data then continues with the next inner set of tracks (track 1),
starting with the top track through to the bottom track. The set of vertical tracks
is known as a cylinder. As a result, for sequential processing the system reduces
access motion of the read/write heads: It reads and writes blocks, for example, on
track 5 of every surface (cylinder 5) before moving the arm to cylinder 6.

DISK ARCHITECTURE

The two main types of IBM disk devices are count-key-data (CKD) architecture
and fixed-block architecture (FBA).

CKD Architecture

In this design, records and blocks may be of almost any length, subject to limitations
of the disk device. A count (C) area contains the block size and an optional key
(K) area contains the key of the last record in the block, both of which precede
the actual data (D) area; hence CKD.

If a disk contains 20 surfaces, the outer set of tracks (all track 0) is called
cylinder 0, the next inner vertical set of tracks is cylinder 1, the next is cylinder 2,
and so forth. If the device contains 200 sets of tracks, there are 200 cylinders
numbered 0 through 199, each with 20 tracks.

)

)

)
Disk Architecture 457

Examples of disk devices using CKD architeetute include IBM models 3330,
.3340, 3350, and 3380.

The basic format for a track on a CKD device is

Index
Point

(a)

Home
Address

(b)

Track Descriptor
Record (RO)

(c)

Data Data
Record (Rl) Record (R2)

(d)

(a) Index Point. The index point tells the read/write device that this point is the
physical beginning of the track.

(b) Home Address. The home address tells the system the address of the track
(the cylinder, head, or surface number) and whether the track is primary,
alternate, or defective.

(c) Track Descriptor Record (RO). This record stores information about the
track and consists of two separate fields: a count area and a data area. The
count area contains 0 for record number and 8 for data length and is otherwise
similar to the count area described next for data record under item (d). The
data area contains 8 bytes of information used by the system. The track
descriptor record is not normally accessed by user programs.

(d) Data Record Formats (Rl through Rn). The users' data records, or tech
nically, blocks, consist of the following:

)
Address
Marker

Count
Area

Key
Area

(optional)

Data
Area

\
)

The I/O control unit stores the 2-byte address marker before each block
of data, which it uses subsequently to locate the beginning of data.

The count area includes the following:

• An identifier field that provides the cylinder and head number (like that in
the home address) and the sequential block number (0-255) in binary, rep
resenting RO through R255. (The track descriptor record, RO, contains 0
for record number.)

• The key length (to be explained shortly).
• The data length, a binary value 0 through 65,535 that specifies the number

of bytes in the data area field (the length of your data block). For end-of
file, the system generates a last dummy record containing a length of 0 in
this field. When the system reads the file, the zero length indicates that
there are no more records.

• The optional key area contains the key, or control field, for the records in
the file, such as part number or customer number. The system uses the key
area to locate records randomly. If the key area is omitted, the file is said

458 External Storage Chap. 17

)

CAPACITY SPEED

Device Ave. seek Ave. lOt'!
Bytes per Tracks per Numbel'of Total time delay Data rate

track cylinder eyliDdezs bytes <IDS) <IDS) 1m/sec.

3340-1 8368 12 348 35,000,000 }253340-2 8368 12 696 70,000,000 10.1 885
3344 8368 12 4X696 280,000,000

3330-1 13030 1~ 404 100,000,000
} 30 8.4 806

3330-11 13030 1~ 808 200,000,000
3350 1806~ 30 555 317,500,000 25 8.4 1200

3375 35616 12 2X~59 819,738,000 1~ 10.1 1859
3380 47476 15 2X885 1,260,500,000 16 8.3 3000

Figure 17-6 Capacity table for CKD devices.

to be formatted without keys and is stored as count-data format. The key
length in the count area contains O. If the file is formatted with keys, it is
stored as count-data format. The key length in the count area contains the
length of the key area.

• The data area contains the users' data blocks, in any format, such as unblocked
or blocked and fixed or variable length. The system stores as many blocks
on a track as possible, usually complete and intact on a track. A record over
flow feature permits the overlapping of a record from one track to the next.

Figure 17-6 provides the capacities and speeds of a number of IBM CKD
devices.

Under normal circumstances, you won't be concerned with the home address,
the track descriptor record, or the address marker, count area, and key area
portions of the data record field. You simply provide appropriate entries in your
file definition macros and job control commands.

Fixed-Block Architecture

In this design, the recording tracks contain eqUal-length blocks of 512 bytes, al
though your records and blocks need not fit a sector exactly.

Figure 17-7 provides the details for two disk models using fixed-block archi
tecture, the 3310 and 3370.

Device Bytes per Blocks per Number of Tracks per Total
Block Track Cylinders Cylinder Bytes

3310 512 32 358 11 64,520,192
3370 512 62 2 x 750 12 571 ,392,000

FIgure 17-7 Capacity table for FBA devices.

)

Disk Capacity 459

DISK CAPACITY

Blocks per track = h d C KL DLoverea + + +
In the formula, C is a constant overhead value for keyed records, KL means key
length, and DL is data (block) length. These values vary by disk device, as shown
in Fig. 17-8.

Knowing the length of records and the blocking factor, you can calculate the number
of records on a track and on a cylinder. Knowing the number of records, you can
also calculate the number of cylinders for the entire file. Based on the values in
Fig. 17-8, the formula for the number of blocks of data per track is

track capacity

0)

Device Maximum One Data Block Key Overhead Track
Capacity Capacity
(bytes)

3330 13,030 135 + C + KL + DL C = 0 when KL = 0 ,13,165
C = 56 when KL = 0

3340 8,368 167 + C + KL + DL C = o when KL = 0 8,535
C = 75 when KL = 0

3350 19,069 . 185 + C + KL + DL C = o when KL = 0 19,254
C = 82 when KL = 0 ..

Figure 17-8 Track capacily table.

The following two examples illustrate.

Example 1. Device is a 3350, records are 242 bytes, five records per block
(block size = 1,210), and formatted without keys:

_ 19,254 _ 19,254 _ 1
Blocks per track - 185 + (5 x 242) - 1,395 - 3.8

Records per track = blocks per track x blocking factor

=5x13=65

Example 2. Same as Example 1, but formatted with keys (key length is
12):

19,254 19,254
Blocks per track = 185 + 82 + 12 + 1,210 = 1,489 = 12.93

Records per track = 5 x 12= 60

Note that a disk stores a full block, not a fraction of one. Therefore, even
if you calculate 13.8 or 12.9 blocks per track, the disk stores only 13 or 12 blocks,
respectively.

)

460 External Storage Chap. 17

To determine the number ofrecords on a cylinder, refer to Fig. 17-6, which
discloses that a 3350 has 30 tracks per cylinder. Based on Example 1 where the
number of records per track is 65, a cylinder on the 3350 could contain 65 x 30
= 1,950 records.

Using these figures, you can now calculate how much disk storage a file of,
say, 100,000 of these records would require. Based on the figure of 1,950 records
per cylinder, the file would require 100,000 .;.- 1,950 = 51.28 cylinders.

DISK LABELS

Disks, like magnetic tape, also use labels to identify a volume and a file. The
system reserves cylinder 0, track 0 for standard labels, as Fig. 17-9 shows. The
following describes the contents of track 0:

Record 0: The track descriptor, R(O) record.
Records 1 and 2: If the disk is SYSRES, which contains the operating system,
certain devices reserve R(l) and R(2) for the initial program load (IPL)
routine. For all other cases, R(l) and R(2) contain zeros.
Record 3: The VOL11abei. OS supports more than one volume label, from
R(3) through .R(10).
Record 4 through the end of the track: The standard location for the volume
table of contents (VTOC). The VTOC contains the file labels for the files
on the device. Although you may place a VTOC in any cylinder, its standard
location is cylinder 0, track O.

Volume Labels

The standard volume label uniquely identifies a disk volume. A 4-byte key area
immediatelyprecedes the SO-byte volume data area. The volume label is the fourth
record (R3) on cylinder O. The SO bytes are arranged like a tape volume label,
with one exception: Positions 12-21 are the "data file directory," coptaining the
starting address of the VTOC.

Cylinder-Q, Track-G

Track zeros zeros VOLl Formai4 Format-S Format-1 #2 #3 #4 ...
Descrip'r Label Label Label #1

')

Record 0 2 3\ • 4 5 6, 7 8 9 I

Volume label VTOC File labels

Ftgnre 17·9 Disk volume layout.

)
Disk Labels

Ale Labels

461

File labels identify and describe a file, or data set, on a volume. The file label
is 140 bytes long, consisting of a 44-byte key area and a 96-byte file data area.
Each file on a volume requires a file label for identification. In Fig. 17-9, all file
labels for a volume are stored together in the vrOc. There are four types of file
labels:

1. The format 1 label is equivalent to a file label on tape. The format 1 label
differs, however, in that it defines the actual cylinder and track addresses of
each file's beginning and end (its extent). Further, a file may be stored intact
in an extent or in several extents in the same volume. Format 3 is used if a
.file is scattered over more than three extents.

2. The format 2 label is used for indexed sequential files.
3. The format 3 label is stored if a file occupies more than three extents.
4. The format 4 label is the first record in the VTOC and defines the vroc

for the system.

The format 1 file label contains the following information:

POSmON NAME DESCRIPTION

..

)
01-44 File identification Unique identifier consisting of file

ill, optional generation number,
and version number, separated by
periods.

45 Format identifier '1' for format l.
46-51 File serial Volume serial number from the

number volume label.
52-53 Volume sequence Sequence number if the file is

number stored on more than one volume.
54-56 Creation date ydd (binary): y = year (0-99) and

dd = day (1-366).
57-59 Expiration date Same format as creation date.
60 Extent count Number of extents for this file on

number this volume.
61 Bytes used in last Used by OS.

block of directory
62 Unused Reserved.
63-75 System code Name of the operating system.
76-82 Unused Reserved.
83-84 File type Code to identify if SD (sequential),

)
462 External Storage Chap. 17

POSmON NAME DESCRIPTION

DA (direct), or IS (indexed) file
organization.

85 Record format Used by as.
86 Option codes ISAM-indicates if master index is

present and type of overflow area.
87-88 Block length ISAM-length of each block.
89-90 Record length ISAM-length of each record.
91 Key length ISAM-length of key area.
92-93 Key location ISAM-position of key within the

record.
94 Data set SD-indicates if last volUme.

indicators
95-98 Used by as.
99-103 Last record Used by as.

pointer
104-105 Unused Reserved.
106 Extent type
107 Extent sequence

number

~
Descriptors for the first or ---",

108-111 Extent lower only extent for the file.)
limit

112-115 Extent upper
limit

116-125 Descriptors for a second extent.
126-135 Descriptors for a third extent.
136-140 Pointer Address of the next label.

KEY POINTS

• Sequential file organization provides only for sequential processing ofrecords.
Indexed and direct organization provides for both sequential and random
processing of records.

• At the beginning of the tape reel is a volume label, which identifies the reel
being used. Immediately preceding each file on the tape is a header label,
which contains the name of the file and the date the file was created. Fol
lowing the header label are the records that comprise the data file. The last
record is a trailer label, which is similar to the header label but also contains
the number of blocks written on the reel.

')
Chap. 17 Problems 463

)

)

• To keep track of all the files it contains, a disk device uses a special directory
(volume table of contents, VTOC) at the beginning of its storage area. The
directory includes the names of the files, their locations on disk, and their
present status.

• H you define a tape or disk field as packed on an IBM system, the field
contains two digits per byte plus a half-byte for the sign.

• The set of vertical tracks on a disk device is known as a cylinder.
• An interblock gap (IBG) separates each block of data from the next on tape

and disk. The length of an IBG on tape is 0.3 to 0.6 inches depending on
the device, and the length of an IBG on disk varies by device and by track
location. The IBG defines the start and end of each block of data and
provides space for the tape when the drive stops and restarts for each read
or write.

• Blocking of records helps conserve space on storage devices and reduces the
number of input/output operations. The number of records in a block is
known as the blocking factor.

• The system reads an entire block into the computer's storage and transfers
one record at a time to the program.

• All programs that process a file should use the same record length and blocking
factor.

• Records and blocks may be fixed in length, where each has the same length
throughout the entire file, or variable in length, where the length of each
record and the blocking factor are not predetermined.

• The two main types of disk devices are count-key-data (CKD) architecture,
which stores records according to count, key, and data area, and fixed-block
architecture (FBA), which stores data in fixed-length blocks.

PROBLEMS

17-1. Distinguish the differences among sequential, direct, and indexed sequential orga
nization methods.

17-2. Explain each of the following: (a) tape density; (b) tape markers; (c) reG; (d) fixed
length and variable length; (e) blocking factor.

17-3. Give an advantage and a disadvantage of increasing the blocking factor.
17-4. What is the purpose of each of the following: (a) volume label; (b) header label; (c)

trailer label?
17-5. Distinguish between each of the following: (a) EOV and EOF on a trailer label; (b)

a multifile volume and a multivolume file; (c) volume sequence number and file
sequence number.

17-6. What is the advantage of disk storage over magnetic tape?

464 External Storage Chap. 17

17-7. Based on Fig. 17-6, how many bytes can be stored on a cylinder for each device
listed?

17-8. Why does a disk device store data vertically by cylinder rather than by tracks across
a surface?

17-9. Explain the pnrpose of (a) the home address; (b) the track descriptor record; (c) the
key area.

17·10. What is the difference between a CKD disk and an FBA disk?
17-11. What are the pnrpose, location, and contents of the VTOC?
17-12. What is the disk equivalent of the magnetic tape header label; that is, what is its

location and how does it differ?
17-13. Assnme disk device 3350, record length 300 bytes, and six records per block.. Based

on the data 4> Fig. 17-8, calcnlate the number of records that a track can store for
the following: (a) records formatted withont keys; (b) records formatted with keys,
key length = 10.

)

)

)

18
SEQUENTIAL FILE·

ORGANIZATION

OBJI;CTWI;

To cover sequential file organization and its
processing requirements.

In this chapter, you examine sequential file organization for DOS and OS and
learn how to create and read such files. You will also examine the definition and
processing of variable-length records.

The processing of sequential files involves the same imperative macros
used up to now: OPEN, CLOSE, GET, and PUT. IOCS (data management)
handles all the necessary label processing and blocking and deblocking of records.
Other than job control commands, the only major difference is the use of blocked
records.

An installation has to make a (perhaps arbitrary) choice of a blocking factor
when a file is created, and all programs that subsequently process the file define
the same blocking factor. A program may also define one or more I/O buffers;
if records are highly blocked, a second buffer involves more space in main storage
with perhaps little gained in processing speed.

465

466

CREATING A TAPE RLE

Sequential File Organization Chap. 18

The first two examples create a tape file for DOS and OS. The programs accept
input data from the system reader and write four records per block onto tape.

For both programs, OPEN checks the volume label and header label, and
CLOSE writes the last block (even if it contains fewer than four records) and writes
a trailer label.

DOS Program to Create a Tape File

The DOS DTFMT file definition macro defines a magnetic tape file. You define
a DlFMT macro with a unique name for each tape input or output file that the
program processes. The parameters that you code are similar to those for the
DlFCD and DlFPR macros covered earlier.

In Fig. 18-1, the program reads records into RECDlN and transfers required
fields to 11 tape workarea named TAPEWORK. The program then writes this
workarea to a tape output file named FILOTP. Based on the BLKSIZE entry in
the DlFMT, 10CS blocks four records before physically writing the block onto
tape. Thus for every four input records that the program reads, 10CS writes one
block of four records onto tape. .

1
2 PROG1SA
3
4
5

14
20 A10LOOP
21
27

29 •
30 A90EOF
39

PRINT ON,NODATA,NOGEN
START
BALR 3,0
USING ',3
OPEN FILEIN,FILEOTP
GET FILEIN,RECDIN
BAL 9,B10PROC
GET FILEIN,RECDIN
B A10LOOP

END-OF-FILE
CLOSE FILEIN,FILEOTP
EOJ

INITIALIZE BASE REGISTER

ACTIVATE FILES
READ 1ST RECORD

READ NEXT

DE-ACTIVATE FILES
NORMAL END-OF-JOB

)

43 *'**
45 B10PROC
46
47
48
49
50
56

MVC
MVC
MVC
PACK
MVC
PUT
BR

MAIN PROCESS
ACCTTPO,ACCTIN
NAMETPO,NAMEIN
ADDRTPO,ADDRIN
BALN'rPO, BALNIN
DATETPO, DATEIN
FILEOTP,TAPEWORK
9

IN G
MOVE INPUT FIELDS
• TO WORK AREA•
••
WRITE TAPE WORKAREA
RETURN

58 • DEC L A RAT I V E S
60 FILEIN D.TFCD DEVADDR=SYSIPT, INPUT FILE

I0AREA1=IOARIN1,
BLKSIZE=SO,
DEVICE=2540,
EOFADDR=A90EOF,
TYPEFLE=INPUT ,
WORKA=YES

Figure 18-1 Program: writing a tape file under DOS.

+
+
+
+
+
+

)
Creating a Tape File 467

132 IOARTP01 DS
133 IOARTP02 DS

85 IOARIN1
87 RECDIN
88 CODEIN
89 ACCTIN
90 NAMEIN
91 ADDRIN
92 BALNIN
93 DATEIN
95 FILEOTP

DC CLSO'
DS OCL80
DS CL02
DS CL06
DS CL20
DS CL40
DS ZL06'OOOO.00·
DS CL06'DDMMYY'
DTFMT BLKSIZE~360,

DEVADDR=SYS025,
FlLABL=STD,
IOAREA1=IOARTP01,
I0AREA2-IOARTP02,
RECPORM-FIXBLK,
RECSIZE=90,
TYPEFLE=OUTPUT,
WORKA=YES
CL360
CL360

INPUT BUFFER 1
INPUT AREA:
01-02 RECORD CODE
03-08 ACCOUNT NO.
09-28 NAME
29-68 ADDRESS
69-74 BALANCE
75-80 DATE
TAPE FILE

TAPE BUFFER-1
TAPE BUFFER-2

+
+
+
+
+
+
+
+

135 TAPEWORK DS
).36 ACCTTPO DS
137 NlIME'rPO DS
138 ADDRTPO DS
139 BALNTPO DS
140 DATETPO DS
141 DC

OCL90
CL06
CL20
CL40
PL04
CL06
CL1.4 '

TAPE WORK AREA:
01-06 ACCOUNT NO.
07-26 NAME
27-66 ADDRESS
67-70 BALANCE
71-76 DATE
77-90 RESERVED

)

143
144
145
146
147
148
149
150

LTORG·
-C'$$BOPEN
=C' $$BCLOSE'
=A(FILEIN)
=A(RECDIN)
=A(FILEOTP)
_A (TAPEWORK)

END PROG18A

FJgUl"e 18-1 (continued)

)

The following explains the DTFMT entries:

BLKSIZE=360 means that each block to be written from the IOAREA is
360 bytes long, based on four records at 90 bytes each.
DEVADDR= SYS02S denotes the logical address of the tape device that is to
write the file.
FILABL = STD indicates that the tape file contains standard labels, as de
scribed in Chapter 17.
IOAREAl and IOAREA2 are the 'two IOCS buffers, each defined with the
same length (360) as BLKSIZE. If your blocks are especially large, you may
omit definiog a second buffer to reduce program size.
RECFORM=FIXBLK defines output records as fixed-length and blocked.
Records on tape and disk may also be Variable-length or unblocked.
RECSIZE = 90 means that each fixed-length record is 90 bytes in length, the
same as the workarea.

468 Sequential File Organization Chap. 18

TYPEFLE=OUTPUT means that the file is output, that is, for writing only.
Oiber options are INPUT and WORK (for a work file). .
WORKA=YES means that the program is to process output records in a
workarea. In this program, TAPEWORK is the workarea and has the same
length as RECSIZE, 90 bytes. Alternatively, you may code IOREG and
use the macro PUT FILEOTP with no workarea coded in the operand.

The DTFMT file definition macro for tape input requires an entry
EOFADDR=address to indicate the name of the routine where IOCS links on
reaching the end of the tape file.

OS Program to Create a Tape File
...

)

//GO.SYSIN DD * <--- DD for input file
PROG18B START

SAVE (14,12)
BALR 3,0
USING *,3
ST 13,SAVEAREA+4
LA 13,SAVEAREA
OPEN (PILEIN, (INPUT) ,FILEOTP. (OUTPUT»
GET FILEIN,RECDIN READ 1ST RECORD

//GO.TAPEOT DD DSNAME=TRFILE,DISP=(NEW,PASS),UNIT=3420, +
DCB=(BLKSIZE-360,RECFM=FB,DEN=3)

""--- DD for tape
output data set

For OS, you define a DCB macro with a unique name for each tape input or output
file that the program processes. The parameters that you code are similar to those
for the DCB macros covered earlier.

In Fig. 18-2, the program reads records into RECDIN and transfers required
fields to a tape workarea named TAPEWORK. The program then writes this
workarea to a tape output file named FILOTP. Based on the BLKSIZE entry in
job control, the system blocks four records before physically writing the block onto
tape. Thus for every four input records that the program reads, the system writes
one block of four records onto tape.

A10LOOP mc

mc
mc
PACK
mc
PUT
GET
B

MAIN PROCES
ACCTTPO,ACCTIN
NAME'rFO ,NAMEIN
ADDRTPO ,ADDRIN
BALNTPO,BALNIN
DATETPO ,DATEIN
FILEOTP, TAPEWORK
FILEIN,RECDIN
AlOLOOP

SIN G
MOVE INPUT FIELDS TO TAPE
* WORK AREA
*
*
*
WRITE WORK AREA ONTO TAPE
READ NEXT RECORD

* END-OF-FILE
A90EOF CLOSE (FILEIN"FILEOTP)

L 13,SAYEAREA+4
RETURN (14,12)

Figure 18-2 Program: writing a tape file under OS.

)
Creating a Tape File 469

* DECLARATIVES
FILEIN DCB DDNAME=SYSIN, DCB FOR INPUT DATA SET +

DEVD..DA, +
DSORG=FS, +
EODAD=A90EOF, +
MACRF=(GM)

RECDIN DS OCL80 INPUT RECORD AREA:
CODEIN DS CL02 01-02 RECORD CODE
ACeTIN DS CL06 03-08 ACCOUNT NO.
NAMEIN DS CL20 09-28 NAME
ADDRIN DS CL40 29-68 ADDRESS
BALNIN DS ZL06'OOOO.OO· 69-74 BALANCE
DATEIN DS CL06 I DDMMYY ' 75-80 DATE

FILEOTP DCB DDNAME:o:TAPEOT, DCB FOR TAPE DATA SET +
DSORG=PS, +
LRECL-90, . +
MACRF=(PM)

TAPEWORK DS OCL90 TAPE WORK AREA:
ACCTTPO DS CL06 01-06 ACCOUNT NO.
NAMETPO DS CL20 07-26 NAME
ADDRTPO DS CL40 27-66 ADDRESS
BALNTPO DS PL04 67-70 BALANCE (PACKED)
DATETPO DS CL06 71-76 DATE

DC CL1.4 , 0 77-90 RESERVED

SAVEAREA DS 18F REGISTER SAVE AREA
LTORG

) END PROG18B

FJgUre 18-2 (continued)

The DD job commands for the files appear first in the job stream and provide
some entries that could also appear in the DCB. 1bis common practice enables
users to change entries without reassembling programs. The DD entries for the
tape file, TAPEOT, are as follows:

DSNAME=TRFILE provides the data set name.
DISP=(NEW,PASS) means that the file is new (to be created) and is to be
kept temporarily.
UNIT=3420 provides the tape drive model.
BLKSIZE=360 means that each block to be written from-the IOAREA is
360 bytes long, based on four records at 90 bytes each.
RECFM=FB defines output records as fixed-length and blocked. Records
on tape and disk may also be variable-length (V) or unblocked.
DEN= 3 indicates tape density as 1,600 bpi. (DEN =2 would mean 800 bpL)

470 Sequential File Organization

The following explains the DCB entries:

Chap. 18

)

=ACC
=SKP
=ABE

DDNAME=TAPEOT relates to the same name in the the DD job control
command:

IIGO.TAPEOT .••

DSORG= PS defines output as physical sequential.
LRECL=90 provides the logical record length for each record.
MACRF=(PM) defines the type of output operation as put and move from
a workarea. MACRF=(PL) would allow you to use locate mode to process
records directly in the buffers.

The DCB 'file definition macro for tape input requires an entry
EOFADDR=address to indicate the name of the routine where 10CS links on
reaching the end of the tape file.

Also, another DCB entry, EROPT, provides for an action if an input op
eration encounters problems. The options are as follows:

Accept the possibly erroneous block of data.
Skip the data block entirely and resume with the next one.
Abend (abnormal end of program execution), the standard de
fault if you omit the entry.

ACC and SKP can use a SYNAD entry for printing an error message and
continue processing. If the error message routine is named RIOTPERR, the DCB
coding could be

EROPT=SKP,
SYNAD=Rl0TPERR

Since the use of ACC and SKP may cause invalid results, it may be preferable
for important production jobs to use ABE (or allow it to default). See the OS
supervisor manuals for other DCB options.

CREATING A SEQUENTIAL DISK FILE

The next two examples create a disk file for DOS and OS. The programs accept
input data from the system reader and write four records per block onto disk.

For both programs, OPEN checks the disk label, and CLOSE writes the last
data block (even if it contains fewer than four records) and writes a last dummy
block with zero length.

DOS Program to Create a Sequential Disk File

The DOS file definition macro that defines a sequential disk file is DTFSD. The
parameters that you code are similar to those for the DTFMT macro.

.)

Creating a Sequential Disk File 471

The program in Fig. 18-3 reads the tape records from the file created in Fig.
18-1 and transfers required fields to a disk workarea named DISKWORK. The
program then writes this workarea to a disk output file named SDISK. Based on

1
2 PROG18B
3
4
5

14
20 AlOLooP
21
27

PRINT ON ,NODATA,NOGEN
6TART
BALR 3,0
U6ING *,3
OPEN TAPE,6DI6K
GET TAPE,TAPEIN
BAL 9,B10PROC
GET TAPE,TAPEIN
B A10LooP

READ 16T RECORD

READ NEXT RECORD

29 *
30 B10PROC
31
32
33
34
35
41

MVC
MVC
MVC
ZAP
MVC
PUT
BR

MAIN PROCE66
ACCTDKO ,ACCTIN
NAMEDKO ,NAMEIN
ADDRDKO ,ADDRIN
BALNDKO ,BALNIN
DATEDKO,DATEIN
SDISK,DISKWORK
9

IN G
MOVE FIELD6 TO DI6K
* WORK AREA

*
*
*WRITE WORK AREA

43 * END - 0 F - F I L E
44 A90END CLOSE TAPE,6DI6K
53 EOJ

57 * DECLARATIVE6
58 TAPE DTFMT BLK6IZE:360, TAPE FILE +

) DEVADDR=6Y6025, +
EOFADDR~A90END, +
ERROPTzIGNORE , +
FILABL=6TD, +
IOAREA1=IOARTPI1, +
RECFORM:FIXBLK , +
REC6IZE=090, +
TYPEFLE=INPUT , +
WORKA:YE6

96 IOARTPIl D6 CL360 INPUT TAPE BllFFER
98 TAPEIN D6 OCL90 TAPE INPUT AREA:
99 ACCTIN D6 CL6 * ACCOUNT NO.

100 NAMEIN D6 CL20 * NAME
101 ADDRIN D6 CL40 * ADDRE66
102 BALNIN D6 PL4 * BALANCE
103 DATEIN D6 CL6'DD~' * DATE
104 D6 CL14 * UNU6ED
106 6DI6K DTF6D BLKSIZE=368, DISK FILE +

DEVADDR=SYS015, +
DEVICE:3380, +
IOAREAl=IOARDK, +
RECFORM:FIXBLK, +
RECSIZE=90, +
TYPEFLE=OUTPUT, +
VERIFY~YES , +
WORKA=YES

172 IOARDK DS CL368 DISK BllFFER

174 DISKWORK DS OCL90 DISK WORK AREA:
175 ACCTDKO DS CL06 * ACCOUNT NO.

FJgUIe 18-3 Program: writing a sequential disk file under DOS.

)

DS CL20
DS CL40
os PL04·
os CLOG
DC CL14'
LTORG

472

176 NAMEDKO
177 ADDRDKO
178 BALNDKO
179 DATEDKO
180
181
182
183
184
185
186
187
188 END

-C'$$BOPEN
=C'$$BCLOSE'
sA(TAPE)
~A(TAPEIN)

sA(SDISK)
=A(DISKWORK)
PROG18B

Sequential File Organization

* NAME
* ADDRESS
* BALlINCE
* DATE
* RESERVED

Chap. 18

II EXEC LNKEDT
II TLBL TAPE,'CUST BEe TP',O,l00236
II ASSGN SYS015,DISK,VOL~SVSE03.SHR

/ / DLBL SDISK, •CUSTOMER RECORDS SD I ,0,SD
II EXTENT SYS01S,AT:MP70,1,O,3,4

FIgUre 18-3 (continued)

the BLKSIZE entry in the DlFMT and DlFSD, the system both reads and writes
blocks of four records, although the two blocking factors need not be the same.

The following explains the DlFSD entries:

BLKSIZE=368 means that the blocksize for output is 360 bytes (4 x 90) plus
8 bytes for the system to construct a count field. You provide for the extra
8 bytes only for output; for input, the entry would be 360.
DEVICE= 3380 means that the program is to write blocks on a 3380 disk
device.
VERIFY = YES tells the system to reread each output record to check its
validity. If the record when reread is not identical to the record that was
supposed to be written, the system rewrites the record and performs another
reread. If the system eventually cannot perform a valid write, it may advance
to another area on the disk surface. Although this operation involves more
accessing time, it helps ensure the accuracy of the written records.
DEVADDR, IOAREA1, RECFORM, RECSIZE, TYPEFLE, and WORKA
are the same as for previous D1Fs. You omit the FlLABL entry because
disk labels must be standard.

If you omit the entry for DEVADDR, the system uses the SYSnnn address
from the job control entry.

OS Program to Create a Sequential Disk Ale

For OS, you define a DCB macro with a unique name for each disk input or output
file that the program processes. The parameters that you code are similar to those
for the DeB macros covered earlier.

The program in Fig. 18-4 reads the tape records from the file created in Fig.

)

)

"
Creating a Sequential Disk File 473

//GO.TAPEIN DD DSNAME-TRFlLE,DISP-(OLD,PASS),UNIT=3420, +
DeB- (BLKSlZE-360 ,RECFM-FB,DEN-3)

//GO.DISKOT DD DSNAME-&TEMPDSK,DISP-(NEW,PASS) ,UNIT-3380,SPACE-(TRK,lO) , +
DeB-(BLKSlZE-360,RECFM-FB)

PROO18D START 0
SAVE (14,12)
BALR 3,0
USING *,3
ST 13,SAIIEAREA+4
LA 13 , SAVEAREA
OPEN (TAPE, (INPUT) ,SDISK, (OUTPUT»
GET TAPE READ 1ST TAPE RECORD....

AlOLooP MVC
MVC
.MVC
MVC
ZAP
MVC
PUT
GET
B

MAIN PROCESS I
TAPEIN,O(l)
ACCTDKO,ACCTIN
NAMEDKO,NAMEIN
ADDRDKO,ADDRIN
BALNDKO,BALNIN
DATEDKO,DATEIN
SDISK,DISKWORK
TAPE
AlOLooP

NG
MOVE FROM TAPE BUFFER
MOVE TAPE FIELDS TO DISK
:I: WORK AREA......
WRITE WORK AREA ONTO DJ:SK
READ~ TAPE RECORD

*** END - 0 F - F I L E
A90END CLOSE (TAPE..SDISK)

L 13,SAIIEAREA+4
RETURN (14,12)

+
+
+

+
+
+
+

DISK OUTPUT DATA SET

TAPE INPUT AREA:
.. ACCOUNT NO.
.. NAME
:I: ADDRESS
.. BALANCE (PACKED)
:I: DATE
* UNUSED

DDNAME~DISKOT,

DSORG-PS,
LRECL=90,
MACRF-(PM)

DECLARATJ:VES
DeB DDNAME-TAPEIN, TAPE INPUT DATA SET

DSORG.PS,
EODAD=A90END,
LRECL=90,
MACRF~(GL)

OCL90
CL06
CL20
CL40
PL04
CL06 'DDMMYY'
CL14

TAPEIN DS
ACCTIN DS
NAMEIN DS
ADDRIN DS
BALNIN DS
DATEIN DS

DS

SDISK DCB

.,.,.
TAPE'\

DISKWORK DS
ACCTDKO DS
NAMEDKO DS
ADDRDKO DS
BALNDKO DS
DATEDKO DS

DC

SAVEAREA DS
LTORG
END

OCL90
CL06
CL20
CL40
PL04
CL06
CL14'

18F

PROO18D

DISK WORK AREA:
:I: ACCOUNT NO.
.. NAME
:I: ADDRESS
.. BALANCE (PACKED)
* DATE
.. RESERVED FOR EXPANSJ:ON

REGISTER SAVE AREA

FJgUre 18-4 Program: writing a sequential disk file under OS.

474 Sequential Rle Organization Chap. 18

18-2 and transfers required fields to a disk workarea named DISKWORK. The
program then writes this workarea to a disk output file named SDISK. Based on
the BLKSIZE entry in job control, the system both reads and writes blocks of four
records, although the two blocking factors need not be the same.

The DD entries for the disk file, DISKOT, are as follows:

DSNAME=&TEMPDSK provides the data set name.
DISP=(NEW,PASS) means that the file is new and is to be kept temporarily.
UNIT= 3380 provides the disk drive model.
SPACE= (TRK,10) allocates ten tracks for this file.
BLKSIZE= 360 means that each block to be written from the buffer is 360
bytes long, based on four records at 90 bytes each.
RECFM = FB defines output records as fixed-length and blocked. Records
on disk may also be variable-length (V) or unblocked.

The following explains the DCB entries:

DDNAME=DISKOT relates to the same name in the the DD job control
command:

//GO.DISKOT .. ,

DSORG=PS defines output as physical sequential.
LRECL= 90 provides the logical record length for each record.
MACRF=(PM) defines the type of output operation as put and move from
a workarea. MACRF= (PL) would allow you to use locate mode to process
records directly in the buffers.

The DeB file definition macro for disk input requires an entry
EOFADDR=address to indicate the name of the routine where the system links
on reaching the end of the disk file.

VARIABLE-LENGTH RECORDS

Tape and disk files provide for variable-length records, either unblocked or blocked.
The use of variable-length records may significantly reduce the amount of space
required to store a file. However, beware of trivial applications in which variations
in record size are small or the file itself is small, because the system generates
overhead that may defeat any expected savings.

A record may contain one or more variable-length fields or a variable number
of fixed-length fields.

I. Variable-Length Fields. For fields such as customer name and address
that vary considerably in length, a program could store only significant characters

)

)

'\

Variable-Length Record Format 475

and delete trailing blanks. One approach is to follow each variable field with a
special delimiter character such as an asterisk.

The following example illustrates fixed-length name and address of 20 char
acters each, compressed into variable length with an asterisk replacing trailing
blanks:

Fixed length:
Variable length:

Norman Bates Bates Motel .

Norman Bate5~Bates Motel*

\

To find the end of the field, the program may use a TRT instruction to scan
for the delimiter. Another technique stores a count of the field length immediately
preceding each variable-length field. For the preceding record, the count for the
name would be 12 and the count for the address would be 11:

112 I Norman Bates \11 I Bates Motel \

2. Variable Number ofFixed-Length Fields. Records may contain a variable
number of fields. For example, an electric utility company may maintain a large
file of customer records with a fixed portion containing the customer name and
address and optional subrecords for their electric account, natural gas account, and
budget account.

VARIABLE·LENGTH RECORD FORMAT

Immediately preceding each variable-length record on tape or disk is a 4-byte record
control word (RCW) that supplies the length of the record. Immediately preceding
each block is a 4-byte block control word (BCW) that supplies the length of the
block. As a consequence, both records and blocks may be variable length. You
have to supply a maximum block size into which the system is to fit as many records
as possible.

Unblocked Records

Variable-length records that are unblocked contain a BCW and an RCW before
each block. Here are three unblocked records:

I BCW I RCW \ record 1 \ ••• \ BCW I RCW record 2\ ••• I BCW I RCW record 3\

Suppose that three records are to be stored as variable-length unblocked. Their
lengths are 310, 260, and 280 bytes, respectively:

Field:
Length:
Contents:

BCW RCW record BCW RCW record BCW RCW record
4 4 310 4 4 260 4 4 280

318 314 record 1 268 264 record 2 288 284 record 3

476 Sequential File Organization Chap. 18

The RCW contains the length of the record plus its own length of 4. Since the
first record has a length of 310, its RCW contains 314. The BCW contains the
length of the RCW(s) plus its own length of 4. Since the only RCW contains a
length of 314, the BCW contains 318.

Blocked Records

Variable-length records that are blocked contain a BCW before each block and an
RCW before each record. The following shows a block of three records:

I BCW I RCW I record 1 I RCW I record 2 I RCW I record 3

.
Suppose that the same three records with lengths of 310, 260, and 280 bytes

are to be stored as variable-length blocked and are to fit into a maximum block
size of 900 bytes:

Field:
Length:
Contents:

BCW RCW record RCW record RCW record
4 4 310 4 260 4 280

866 314 record 1 264 record 2 284 record 3

The length of the block is the sum of one BCW, the RCWs, and the record lengths:)
Block control word:
Record control words:
Record lengths:

Total length:

4 bytes
12

+850

866 bytes

The system stores as many records as possible in the block up to (in this example)
900 bytes. Thus a block may contain any number of bytes up to 900, and both
blocks and records are variable length. The system automatically handles all
blocking, unblocking, and control of BCWs.

Your BLKSIZE entry tells the system the maximum block length. For ex
ample, if the BLKSIZE entry in the preceding example specified 800, the system
would fit only the first two records in the block, and the third record would begin
the next block.

Programming for Variable-Length Records

Although IOCS performs most of the processing for variable-iength records, you
have to provide the record length. The additional programming steps are con
cerned with the record and block length:

'\

Variable-Length Record Format 4n

'\

Record length. As with fixed-length records, a program may process var
iable-length records in a workarea or in the buffers (I/O areas). You define the
workarea as the length of the largest possible record; including the 4-byte record
control word. When creating each record, calculate and store the record length
in the record control word field. This field must be 4 bytes long, with the contents
in binary format, as

VARRCW DS F

DOS uses ouly the first 2 bytes of this field.

Block length. You define the I/O area as the length of the largest possible
block, including the 4-byte block control word. On output, IOCS stores as many
complete records in the block as will fit. IOCS performs all blocking and calcu
lating of the block length. On input, IOCS deblocks, all records, similar to its
deblocking of fixed-length records.

Sample Program: Reading and Printing Variable-Length
Records

Consider a file of disk records that contains variable-length records, with fields
defined as follows:

01-04
05-09
10-82

Record length
Account number
Variable name and address

/

To indicate the end of a name, it is immediately followed by a delimiter, in this
case a plus sign (hex '4E'). Another delimiter terminates the next field, the
address, and a third terminates the city. Here is a typical case:

JP Programmer+1425 North Basin.Street+Kingstown+

The program in Fig. 18-5 reads and prints these variable-length records. Note
that in the DTFSD, RECFORM = VARBLK specifies variable blocked. The pro
gram reads each input record and uses TRT and a loop to scan each of the three
variable-length fields for the record delimiter. It calculates the length of each field
and uses EX to move each field to the output area. The program also checks for
the absence of a delimiter.

Output would appear as

JP Programmer
1425 Horth Basin Street
Kingstown

478 Sequential File Organization Chap. 18

,
)

1
2 PROG18C
3
4
5

14

21 ***
23 AI0LOOP
24
30

.32 *
34 A90EOF
43

PRINT ON .NODATA.NOGEN
START
BALR 3,0
USING ".3
OPEN FlLEIDK.FILEOPR
GET FlLEIDK.WORKAREA

MAIN PROCESS
BAL 5.BI0SCAN
GET FlLEIDK.WORKAREA
B MOLOOP

END-OF-FILE
CLOSE FILEIDK.FlLEOPR
EOJ

READ 1ST RECORD

IN G
SCAN
READ RECORD

TERMINATE

154 DS
155 IOARDKI1 DS
156 lOARDKI2 DS

47 "
49 BI0SCAN LA
50 LR .
51 Ali
52 SH
53 MIIC
55 B20 TRT
56 BZ
57 LR
58 SR
59 BCTR
60 EX
61 MIll
62 PUT
68 MIIC
69 LA
70 CR
7.1 BL
72"
73 B30 MIll
74 PUT
80 BR

82 MIOMOVE MIIC

84 "
86 SCANTAB DC
87 DC
88 DC

90 FILEIDK DTFSD

IABLE RECORD
ADDR OF INPUT IDENT
ESTABLISH ADDRESS OF

END OF RECORD

MOVE ACCOUNT TO PRINT
SCAN FOR DELIMITER
" NO DELIMITER FOUND
SAVE ADDR OF DELIMITER
CALC. LENGTH OF FIELD
DECREMENT LENGTH BY 1
MOVE VAR LENGTH FIELD

PRINT. SPACE 1
CLEAR PRINT AREA
INCREMENT FOR NEXT FIELD
PAST END OF RECORD?
" NO - SCAN NEXT
* YES - END

158 *
159 DS

PROCESS VAR
6.IDENTIN
7.6
7.RECLEN
7,-BI9'
PRINT+I0(5) .A=IN
0(73.6) .SCANTAB
B30
4.1
1.6
1.0
I.MI0MOVE
CTLCHPR.liSPl
FlLEOPR. PRINT
PRINT.BLAN!<PR
6.1(0.4)
6.7
B20

CTLCHPR.WSP2
FILEOPR,PRINT
5

PRINT+20(0).0(6)

DECLARATIVES
7ax'oo'
X'4E'
177X'OO'

BLKSIZR=300.
DEVlCE=3380.
DEVADDR=SYS025.
EOFADDR=A90EOF.
lOAREA1=IOARDKll.
l0AREA2=IOARDKI2.
RECFORM""VARBLK,
TYPEFLE.,INPOT ,.
WORKA=YES

OR
CL300
CL300

OR

PRINT 3RD LINE
RETURN

MOVE VAR FIELD TO PRINT

TRT TABLE:
" DELIMITER POSITION
* REST OF TABLE

DISK FILE

ALIGN ON EVEN BOUNDARY
BUFFER-l DISK FILE
BUFFER-2 DISK FILE

INPUT AREA:
" ALIGN EVEN BOUNDARY.

+
+
+
+
+
+
+
+

)

Figure 18-5 Program: printing variable-length records.

Chap. 18 Key Points 479

160 WORKAREA DS
161 RECLEN DS
162 DC
163 ACCTIN DS
164 IDENTIN DS

OCL82
H
H I O'
CL05
CL73

* MAX. RECORD + LENGTH
• 2-BYTE RECORD LENGTH
* 2 BYTES UNUSED IN DOS
• ACCOUNT NUMBER
• AREA FOR VAR. NAMEIADDR

-C'$$BOPEN
-C' $$BCLOSE'
-A(FlLEIDK)
=A(WORKAREA)
=A(FILEOPR)
~A(PRINT)

""R19 1

PROGl8C

FJgUre 18-5 (continued)

EQO X'09'
EQO X1 13'

DC C' ,
DS OCLl33
DS XLI
DC CL132 ,
LTORG

166 FILEOPR DTFPR BLKSIZE=133,
CTLCHR-YES,
DEVADDR=SYSLST,
DEVICE=3203,
IOABEAl=IOARPR1,
I6AREA2.,IOARPR2,
WORKA-YES

192 lOARPRI DC CLl33'
193 IOARPR2 DC CL133'

195 WSPI
196 WSP2

198 BLANKPR
199 PRINT
200 CTLCHPR
201
202
203
204
205
206
207
208
209
210 END

PRINTER FILE

BUFFER-I PRINT FILE
BUFFER-2 PRINT FILE

CTL CHAR: PRINT, SPACE I
* PRINT, SPACE 2

PRINT AREA
••

+
+
+
+
+
+

/

The DTFSD omits RECSIZE because IOCS needs to know only the maximum
block length. For OS, the DCB entry for variable blocked format is RECFM = VB.

You could devise some records and trace the logic ofthis program step by
step.

KEY POINTS

• Entries in a program file definition macro should match the job control com
mands.

• The block size for a file must be a multiple of record size, and all programs
that process the file must specify the same record and block size.

• For variable-length files, the workareas and buffers should be aligned on an
even boundary. When creating the file, you calculate and store the record
length, whereas the system calculates the block length. Your designated
maximum block size must equal or exceed the size of any record.

480 Sequential Rle Organization

PROBLEMS

Chap. 18

18-1. For blocked disk or tape records, under what circumstances would it be advisable
to define only one buffer for the file?

18-2. Revise the program in Fig. 18-1 or 18-2 for six records per block and the use of
locate mode.

18-3. Revise the file definition macro entries and I/O areas in Fig. 18-3 or 18-4 for the
following. Input records are 90 bytes long and have six records per block. Output
records have three records per block, to be loaded on a 3350 disk device as SYSOI7.
Assemble and test.

18-4. Revise the job control for Fig. 18-3 for the following: The filenarce is DISKOUT,
the file ID is ACCI'S.RECEIVABLE, retention is 30 days, to be run on SYSOI7,
serial number 123456, using a 3380 on cylinder 15, trackO for 15 tracks.

18-5. Revise the job control for Figure 18-4 for the following. The filenarce is DISKOUT,
the file ID is ACCI'S.RECEIVABLE, retention is 30 'days, to be run on SYS017,
serial number 123456, using a 3380 on cylinder 15, track 0 for 15 tracks.

18-6. Code the file definition macro for DTFMT. The input file narce is TAPFLIN,
record size is fixed-length 500 bytes, the blocking factor is 5, on SYS030, two buffers,
use of a workarea, and standard labels. The end-of-file'address is XI0EOF.

18-7. Code the file definition macro for DCB. The input file narce is TAPFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, use of a workarea, and standard
labels. The end-of-file address is XlOEOF.

18-8. Code the file definition macro for DTFSD. The input file narce is DSKFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, on SYS030, disk device 3380,
two buffers, and use of a workarea. The end-of-file address is XI0EOF.

18-9. Code the file definition macro for DeB. The input file narce is DSKFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, disk device 3380, and use of
a workarea. The end-of-file address is XlOEOF.

18-10. A file contains variable-length records with the following lengths: 326,414,502,384,
293,504. The maximum block length is 1,200 bytes. Arrange the records in blocks
and show RCWs and BCWs.

18-11. Write a prograrc that creates a supplier file on disk from the following input records:

)

01-05
06-25
26-46
47-67
68-74
75-80

Supplier number
Supplier name
Street
Ci ty
Amount payable
Date of last purchase <yyrnmdd>

Store narce, street, and city as variable-length fields, with hex 'FF' as a delimiter
after each field. Store the arcount payable in packed format.

19
VIKTUAL STORAGE
ACCESS METDOD

(VSAM)

O.6JECTIVE

To explain the design of the virtual storage access
method and its processing requirements.

Vrrtual storage access method (VSAM) is a relatively recent file organization method
for users of ffiM OSNS and DOSNS. VSAM facilitates both sequential and
random processing and supplies a number of useful utility programs.

The term file is somewhat ambiguous since it may reference an I/O device or
the records that the device processes. To distinguish a collection of records, ffiM
OS literature uses the term data set.

VSAM provides three types of data sets:

1. Key-sequenced Data Set (KSDS). KSDS maintains records in sequence of
key, such as employee or part number, and is equivalent to indexed sequential
access method.

2. Entry-sequenced Data Set (ESDS). ESDS maintains records in the sequence
in which they were initially entered and is equivalent to sequential organi
zation.

481

~

"Feature Key-Sequenced Entry-Sequenced Relative-Record

Record ~equence By key In !:Sequence in In !5equence cf
which entered reletive record

number
Record length Fixed or Fixed or Fixed only

verieble variable
ACCe!!l9 of By key via index or By RBA By reletive record
records RBA number
Change of eddre •• Can change record Cannot chenge Cennot chenge

RBA record RBA relative record
number

New records Di.tributed free Spece at end of- Empty .iot. in
spece for records date .et deta .et

Recovery of space Reclaims !5pBCe if No deiete but Cen reu!!Ie deleted
record i. deleted cen overwrite 9pace

an old record

Figure 19·1 Features of VSAM organization methods.

\~'

Access Method Services lAMS) 483

')

3. Relative-Record Data Set (RRDS). RRDS maintains records in order of
relative record number and is equivalent to direct file organization.

Botb OSNS and DOSNS handle VSAM tbe sameway and use similar support
programs and macros, altbough OS has a number of extended features.

Thorough coverage of assembler VSAM would require an entire textbook.
However, this chapter supplies enough information to enable you to code programs
tbat create, retrieve, and update a VSAM data set. For complete details, see tbe
ffiM Access Metbods Services manual and tbe ffiM DOSNSE Macros Or OSNS
Supervisor Services manuals.

CONTROL INTERVALS

For all three types of data sets, VSAM stores records in groups (one or more) of
control intervals. You may select tbe control interval size, but ifyou allow VSAM
to do so, it optimizes the size based on tbe record lengtb and the type, of disk
device being used. The maximum size of a control interval is 32,768 bytes.

At tbe end of each control interval is control information tbat describes tbe
data records:

~Control Information[

A control interval contains one or more data records, and a specified number
of control intervals comprise a control area. VSAM addresses a data record by
relative byte address (RBA)-its displacement from tbe start of tbe data set.
Consequently, tbe first record of a data set is at RBA 0, and if records are 500
bytes long, tbe second record is at RBA 500.

The list in Fig. 19-1 compares tbe tbree types of VSAM organizations.

ACCESS METHOD SERVICES lAMS)

Before physically writing (or "loading") records in a VSAM data set, you first
catalog its structure. The IBM utility package, Access Metbod Services (AMS),
enables you to furnish VSAM with such details about tbe data set as its name,
organization type, record lengtb, key location, and password (if any). Since VSAM
subsequently knows tbe physical characteristics of tbe data set, your program need
not supply as much detailed information as would a program accessing an ISAM
file.

The following describes the more important features of AMS. Full details

484 Virtual Storage Access Method (VSAM) Chap. 19

are in the IBM OSNS and DOSNS Access Methods Services manual. You catalog
a VSAM structure using an AMS program named IDCAMS, as follows:

OS:
DOS:

IISTEP EXEC PGM=IDCAMS
II EXEC IDCAMS,SIZE=AUTO

Immediately following the command are various entries that DEFINE the
data set. The first group under CLUSlER provides required and optional entries
that describe all the information that VSAM must maintain for the data set. The
second group, DATA, creates an entry in the catalog for a data component, that
is, the set of all control area and intervals for the storage of records. The third
group, INDEX, creates an entry in the catalog for a KSDS index component for
the handling of the KSDS indexes.

Figure 19-2 provides the most common DEFINE CLUSlER entries. Note
that to indicate continuation, a hyphen (-) follows every entry except the last.

Cluster level

DEFINE CLUSTER
(NAME(data-set-name) -

{CYLINDERS(primary[secondary]) [
BLOCKS(primary[secondary]) I
RECORDS(primary[secondary]) I
TRACKS(primary[secondary])}

[INDEXED [NONINDEXEDI NUMBERED] -
[KEYS(length offset)]
[RECORDSIZE(average maximum)]
[VOLUMES(vol-ser[vo]-ser .•.])]

Data component level

[DATA
([CONTROLINTERVALSIZE(size)]

[NAME(data-name)]
[VOLUMES(vol-ser[vol-ser ...])]
)]

Index component level

[INDEX
([NAME(index-name)]

[VOLUMES(vol-ser[vol-ser ...])]
)]

Figure 19-2 Entries for defining a VSAM data set.

(choose
one)

(choose one)

")

Access Method Services lAMS) 485

Note: SYMBOL MEANING

[1 Optional entry, may be omitted
{ l Select one of the following options
() You must code these parentheses

"or"

FJgUre 19-2 (continued)

• DEFINE CLUSTER (abbreviated DEF CL) provides various parameters all
contained within parentheses.

• NAME is a required parameter that supplies the name of the data set. You
can code the name up to 44 characters with a period after each 8 or fewer
characters, as EMPLOYEE.RECORDS.P030. The name corresponds to
job control, as follows:

OS:
DOS:

IIFILEVS DD DSNAME=EMPLOYEE.RECORDS.P030 ...
II DLBL FILEVS,'EMPLOYEE.RECDRDS,P030',O,VSAM

j

The name FILEVS in this example is whatever name you assign:to the file
definition (ACB) in your program, such as

fIlename ACB DDNAME=FILEVS

• BLOCKS. You may want to load the data set on an FBA device (such as
3310 or 3370) or on a CKD device (such as 3350 or 3380). For FBA devices,
allocate the number of512-byte BLOCKS for the data"Set. For CKD devices,
the entry CYLINDERS (or CYL) or TRACKS allocates space. The entry
RECORDS allocates space for either FBA or CKD. In all cases, indicate
a primary allocation for a generous expected amount of space and an optional
secondary allocation for expansion if required.

• Choose one entry to designate the type of data set: INDEXED designates
key-sequenced, NONINDEXED is entry-sequenced, and NUMBERED is
relative-record.

• KEYS for INDEXED only defines the length (from 1 to 255) and position
of the key. in each record. For example, KEYS (6 0) indicates that the key
is 6 bytes long beginning in position 0 (the first byte).

• RECORDSIZE (or RECSZ) provides the average and maximum lengths in
bytes of data records. Forfixed-Iength records and for RRDS, the two entries
are identical. For example, code (120bI20) for l2o-byte records.

• VOLUMES (or VOL) identifies the volume serial number(s) of the DASD
volume(s) where the data set is to reside. You may specify VOLUMES at

486 Virtual Storage Access Method (VSAMj Chap. 19

)
"

any of the three levels; for example, the DATA and INDEX components
may reside on different volumes.
DEFINE CLUSTER supplies a number of additional specialized options

described in the ffiM AMS manual.

ACCESSING AND PROCESSING

VSAM furnishes two types of accessing, keyed and addressed, and three types of
processing, sequential, direct, and skip sequential. The following chart shows the
legal accessing and processing by type of organization:

Type Keyed Access Addressed Access

KSDS Seql1ential Sequential
Direct Direct
Skip sequent ial

ESDS Sequential
Direct

RRDS Sequential
Direct
Skip sequential

In simple terms, keyed accessing is concerned with the key (for KSDS) and
relative record number (for RRDS). For example, if you read a KSDS sequen
tially, VSAM delivers the records in sequence by key (although they may be in a
different sequence physically).

Addressed accessing is concerned with the RBA. For example, you can access
a record in an ESDS using the RBA by which it was stored. For either type of
accessing method, you can process records sequentially or directly (and by skip
sequential for keyed access). Thus you always use addressed accessing for ESDS
and keyed accessing for RRDS and may process either type sequentially or directly.
KSDS, by contrast, permits both keyed access (the normal) and addressed access,
with both sequential and direct processing.

KEY-5EQUENCED DATA SETS

A key-sequenced data set (KSDS) is considerably more complex than either ESDS
or RRDS but is more useful and versatile. You always create ("load") a KSDS
in ascending sequence by key and may process a KSDS directly by key or sequen
tially. Since KSDS stores and retrieves records according to key, each key in the
data set must be unique.

)

Key-Sequenced Data Sets

Index set:

487

)

Data 1:1 ~ ~ ~ ~ ~ I:26 37 45 77

set

.~

~
jFREEllFREE

~ ~; ~ ;22 32 40 FREE FREE 82 FREE

~ ~
Control area Control area Control area

Figure 19-3 Key-sequenced organization.

'Figure 19-3 provides a simplified view of a key-sequenced data set. The
control intervals that contain the data records are depicted vertically, and for this
example three control intervals comprise a control area. A sequence set contains
an entry for each control interval in a control area. Entries within a sequence set
consist of the highest key for each control interval and the address of the control
interval; the address acts as a pointer to the beginning of the control interval. The
highest keys for the first control area are 22, 32, and 40, respectively. VSAM
stores each high key along with an address pointer in the sequence set for the first
control area.

At a higher level, an index set (various levels depending on the size of the
data set) contains high keys and address pointers for the sequence sets. In Fig.
19-3, the highest key for the first control area is 40. VSAM stores this value in
the index set along with an address pointer for the first sequence.

When a program wants to access a record in the data set directly, VSAM
locates the record first by means of the index set and then the sequence set. For
example, a program requests access to a record with key 63. VSAM first checks
the index set as follows:

RECORD KEY

63
63

INDEX SET

40
82

Record key high, not in first control area.
Record key low, in second control area.

./

VSAM has determined that key 63 is in the second control area. It next examines

488 Virtual Storage Access Method (VSAM) Chap. 19

the sequence set for the second control area to locate the correct control interval.
These are the steps:

RECORD KEY

63

63

SEQUENCE SET

55

65

Record key high, not in first control
interval.
Record key low, in second control
interval.

VSAM has now determined that key 63 is in the second control interval of the
second control area. The address pointer in the sequence set directs VSAM to
the correct control interval. VSAM then reads the keys of the data set and locates
'key 63 as the first record that it delivers to the program.

Free Space

You normally allow a certain amount of free space in a data set for VSAM to
insert new records. When creating a key-sequenced data set, you can tell VSAM
to allocate free space in two ways:

1. Leave space at the end of each control interval.
2. Leave some control intervals vacant.

Ifa program deletes orshortens a record, VSAM reclaims the space by shifting
to the left all following records in the control interval. If the program adds or
lengthens a record, VSAM inserts the record in its correct space and moves to the
right all following records in the control interval. VSAM updates REAs and
indexes accordingly>

A control interval may not contain enough space for an inserted record. In
such a case, VSAM causes a control intervalsplit by removing about half the records
to a vacant control interval in the same control area. Although records are now
no longer physically in key order, for VSAM they are logically in sequence. The
updated sequence set controls the order for subsequent retrieval of records.

If there is no vacant control interval in a control area, VSAM causes a control
area split, using free space outside the control area. Under normal conditions,
such a split seldom occurs. To a large degree, a VSAM data set is self-organizing
and requires reorganization less often than an ISAM file.

ENTRY·SEQUENCED DATA SETS

An entry-sequenced data set (ESDS) acts like sequential file organization but has
the advantages of being under control of VSAM, some use of direct processing,
and password facilities. Basically, the data set is in the sequence in which it is

)

VSAM Macro Instructions 489

)

created, and you normally (but not necessarily) process from the start to the end
of the data set. Sequential processing of an ESDS by RBA is known as addressed
access, which is the method you use to create the data set. You may also process
ESDS records directly by RBA. Since ESDS is not concerned with keys, the data
set may legally contain duplicate records.

Assume an ESDS containing records with keys 001, 003, 004, and 006. The
data set would appear as follows:

I 001 I 003 I 004 I 006 I "
You may want to use ESDS for tables that are to load into programs, for

small files that are always in ascending sequence, and for files extracted from a
KSDS that are to be sorted.

RELATIVE-RECORD DATA SETS

A relative-record data set (RRDS) acts like direct file organization but also has
the advantages of being under control of VSAM and offering keyed access and
password facilities. Basically, records in the data set are located according to thel}
keys. For example, a record with key 001 is in the firSt location, a record with
key 003 is in the third location, and so forth. If there is no record with key 002,
that location is empty, and you can subsequently insert the record.

Assume an RRDS containing records with keys 001, 003, 004, and 006. The
data set would appear as follows:

I 001 I ... I 003 I 004 I ... I 006 I
Since RRDS stores and retrieves records according to key, each key in the

data set must be unique.
You may want to use RRDS where you have asmall to medium-sized file

and keys are reasonably consecutive so that there are not large numbers of spaces.
One example would be a data set with keys that are regions or states, and contents
are product sales or population and demographic data.

You could also store keys after performing a" computation on them. As a
simple example, imagine a data set with keys 101, 103, 104, and 106. Rather than
store them with those keys, you could subtract 100 from the key value and store
the records with keys 001, 003, 004, and 006.

VSAM MACRO INSTRUCTIONS

VSAM uses a number offarniliar macros as well as a few new ones to enable you
to retrieve, add, change, and delete records. In the following list, for macros
marked with an asterisk (*), see the IBM DOSNS or OSNS Supervisor and 110
Macros manual for details.

490 Virtual Storage Access Method (VSAM) Chap. 19

• To relate a program and the data:
ACB (access method control block)
EXLST (exit list)

• To connect and disconnect a program and a data set:
OPEN (open a data set)
CLOSE (close a data set)
TCLOSE* (temporary close)

• To define requests for accessing data:
RPL (request parameter list)

• To request access to a file:
GET (get a record)
PUT (write or rewrite a record)
POINT* (position VSAM at a record)
ERASE (erase a record previously retrieved with a GET)
ENDREQ* (end request)

• To manipulate the information that relates a program to the data:
GENCB* (generate control block)
MODCB* (modify control block)
SHOWCB (show control block)
TESTCB* (test control block)

)

A program that accesses a VSAM data set reqnires the usual OPEN to connect
the data set and CLOSE to disconnect it, the GET macro to read records, and
PUT to write or rewrite records. An important difference in the use of macros
under VSAM is the RPL (request for parameter list) macro. As shown in the
following relationship, a GET or PUT specifies an RPL macro name rather than
a file name. The RPL in turn specifies an ACB (access control block) macro,
which in its tum relates to the job control entry for the data set:

DSNAME = EMPLOYEE. RECORDS. POlO •••

Job control:

Impen:tive macro:

GET RPL = RPLname

,-J
RPLname RPL ACB = VSAM..........

Define Access ControlBloclt:~
VSAM....... ACB DDNAME =fil...........

----~
//fil....c;;;,

Define request:

)

The ACB Macro: Access Method Control Block 491

The ACB macro is equivalent to the OS DCB or DOS DTF file definition
macros. As well, the OPEN macro supplies information about the type of file
organization, record length, and key. Each execution of OPEN, CLOSE, GET,
PUT, and ERASE causes VSAM to check its validity and to insert a code into
register 15 that you can check. A return code of X'OO' means that the operation
was successful. You can use the SHOWCB macro to determine the exact cause
of the error.

THE ACB MACRO: ACCESS METHOD CONTROL BLOCK

The ACB macro identifies a data set that is to be processed. Its main purpose is
to indicate the proposed type of processing (sequential or direct) and the use of
exit routines, if any. The DEFlNE CLUSTER command of AMS has already
stored much of the information about the data set in the VSAM catalog. When
a program opens the data set via the ACB, VSAM delivers this information to
virtual storage.

Entries for an ACB macro may be in any sequence, and you may code only
those that you need. Following is the general format, which you code like a DCB
or DTF, with a comma following each entry and a continuation character in column
72. All operands ·are optional.

name ACB AM=VSAM, +

DDNAME=filename, +

EXLST=address, +

MACRF=(IADRll,KEYl
I ,DIRJ I ,SEQl I ,SKPJ
I , I HJ I ,OUTJ
I , HRM rAI X]), +

STRHO=number

(

name

AM=VSAM

DDHAME

EXLST

The name indicates the symbolic address for the ACB when
assembled. Ifyou omit the DDNAME operandfrom the ACB
definition, this name should match the filename in your DLBL
or DD job statement.
Code this parameter if your installation also uses VTAM;
otherwise, the assembler assumes VSAM.
This entry provides the name of your data set that the program
is to process. This name matches the filename in your DLBL
or DD job statement.
The address references a list of your addresses of routines that
provide exits. Use the EXLST macro to generate the list, and
enter its name as the address. A common use is to code an

492 Virtual Storage Access Method (VSAM) Chap. 19

MACRF

entry for an end-of-file exit for sequential reading. If you
have no exit routines, omit the operand.
The options define the type of processing that you plan. In
the following, an underlined entry is a default:

ADR I KEY

DIR I SEQ I SKP

, l!:! lOUT

NRMIAIX

Use ADR for addressed access (KS and
ES) and KEY for keyed access (KS and
RR).
DIR provides direct processing, SEQ
provides sequential processing, and SKP
means skip sequential (for KS and RR).
IN retrieves records and OUT permits re
trieval, insertion, add-to-end, or update
for keyed access and retrieval, update, or
add-to-end for addressed access.
The DDNAMEoperand supplies the name
of the data set (or path). NRM means
normal processing of the data set, whereas
AIX means that this is an alternate index.

STRNO

Other MACRF options are RST I NRS for resetting catalog
information and NUB I UBF for user buffers.
The entry supplies the total number of RPLs (request param
eter lists) that your program will use at the same time (the
default is 1).

)

ACB also has provision for parameters that define the number and size of
buffers; however, the macro has standard defaults.

In the program example in Fig. 19-4, the ACB macro VSMFlLOT has only
two entries and allows the rest to default. Access is keyed (KEY), processing is
sequential (SEQ), and the file is output (OUT). There is no exit list, STRNO
defaults to 1, and MACRF defaults to NRM (normal path).

The assembler does not generate an I/O module for an ACB, nor does the
linkage editor include one. Instead, the system dynamically generates the module
at execute time.

THE RPL MACRO: REQUEST PARAME'rER UST

The request macros GET, PUT, ERASE, and POINT require a reference to an
RPL macro. For eXaplple, the program in Fig. 19-4 issues the following GET
macro:

GET RPL=RPLISTIN

The OPEN Macro 4S3

The operand supplies the name of the RPL macro that contains the information
needed to access a record. If your program is to access a data set in different
ways, you can code an RPL macro for each type of access; each RPL keeps track
of its location in the data set.

The standard format for RPL is as follows. The name for the RPL macro
is the one that you code in the GET or PUT operand. Every entry is optional.

RPLname RPL AM;VSAM, +

ACB=address, +

AREA=address, +

AREALEH=!ength, +

ARG=address, +

KEYLEH;!ength, +

OPTCD;(options), +

RECLEH;!ength

AM

ACB

AREA

AREALEH
ARG

KEYLEH

OPTCD

RECLEH

THE OPEN MACRO

The entry VSAM specifies that this is a VSAM (not VTAM)
control block.
The entry gives the name of the associated ACE that defines
the data set.
The address references an I/O workarea in which a record is
available for output or is to be entered on input.
The entry supplies the length of the record area.
The address supplies the search argument-a key, including
a relative record number or an REA.
The length is that of the key ifprocessing by generic key. (For
normal keyed access, the catalog supplies the key length.)
Processing options are SEQ, SKP, and DIR; request options
are UPD (update) and NUP (no update). For example, a
direct update would be (DIR,UPD).
For writing a record, your program supplies the length to VSAM,
and for retrieval, VSAM supplies the length to your program.
If records are variable length, you can use the SHOWCB and
TESTCB macros to examine the field (see the IBM Supervisor
manual).

The OPEN macro ensures that your program has authority to access the specified
data set and generates VSAM control blocks.

[label] OPEN address [,address]

494 Virtual Storage Access Method (VSAM) Chap. 19

The operand designates the address of one or more ACBs, which you may
code either as a macro name or as a register notation (registers 2-12); for example:

OPEN VSFILE
or LA 6,VSFILE

OPEN (6)

You can code up to 16 filenames in one OPEN and can include both ACB
names and DCB or D1F names. Note, however, that to facilitate debugging,
avoid mixing them in the same OPEN. OPEN sets a return code in register 15
to indicate success (zero) or failure (nonzero), which your program can test:

X'OO'

X'04'

X'OS'

'Opened all ACBs successfully.
Opened all ACBs successfully but issued a warning message for
one or more.
Failed to open one or more ACBs.

On a failed OPEN or CLOSE, you can also check the diagnostics following
program execution for a message such as OPEN ERROR X'6E', and check Ap
pendix K of the ffiM Supervisor manual for an explanation of the code.

THE CLOSE MACRO

The CLOSE macro completes any I/O operations that are still outstanding, writes
any remaining output buffers, and updates catalog entries for the data set.

[label J CLOSE address [,address ...]

You can code up to 16 names in one CLOSE and can include both ACE.
names and DCB or D1F names. CLOSE sets a return code in register 15 to
indicate success or failure, which your program can test:

)

X'OO

X'04'

X'OS'

Closed all ACBs successfully.
Failed to close one or more ACBs successfully.
Insufficient virtual storage space for close routine or could not
locate modules. .

THE REQUEST MACROS: GET. PUT. ERASE

The VSAM request macros are GET, PUT, ERASE, POINT, and ENDREQ.
For each of these, VSAM sets register 15 with a return code to indicate success or
failure of the operation, as follows:

"j

The Request Macros: GET, PUT, ERASE 495

X'OO'

X'04'

X'OS'

x'OC'

The GET Macro

Successful operation.
Request not accepted because of an active request from another
task on the same RPL. End-of-file also causes this return code.
A logical error; examine the specific error code in the RPL.
Uncorrectible I/O error; examine the specific error code in the
RPL.

GET retrieves a record from a data set. The operand specifies the address of an
RPL that defines the data set being processed. The entry may either (1) cite the
address by name or (2) use register notation, any register 2-12, in parentheses.
You may use register 1; its use is more efficient, but GET does not preserve its
address.

1. GET

2. LA
GET

RPL=RPLname
r-eg,RPLname
RPL=(reg)

The RPL macro provides the address of your workarea where GET is to
deliver an input record. Register 13 must contain the address of a savearea defined
as 18·fullwords.

Under sequential input, GET delivers the next record in the data set. The
OPTCD entry in the RPL macro would appear, for example, as
OPTCD= (KEY,SEQ) or OPTCD= (ADR,SEQ). You have to provide for end
of-file by means of an EXLST operand in the associated ACB macro; see Fig. 19
4 for an example.

For nonsequential accessing, GET delivers the record that the key or relative
record number specifies in the search argument field. The OPTCD entry in the
RPL macro would appear, for example, as OPTCD = (KEY,SKP) or
OPTCD= (KEY,DIR), or as an RBA in the search argument field, as
OPTCD = (ADR,DIR).

You also use GET to update or delete a record.

The PUT Macro

PUT writes or rewrites a record in a data set. The operand of PUT specifies the
address of an RPL that defines the data set being processed. The entry may either
(1) cite the address by name or (2) use register notation, any register 2-12, in
parentheses. You may use register 1; its use is more efficient, but PUT does not
preserve its address.

1. PUT

2. LA

PUT

RPL=RPLname
r-eg,RPLname

RPL=(reg)

496 Virtual Storage Access Method (VSAM) Chap. 19

The RPL macro provides the address of your workarea containing the record
that PUT is to add or update in the data set. Register 13 must contain the address
of a savearea defined as 18 fullwords.

To create (load) or extend a data set, use sequential output. The OPTCD
entry in the RPL macro would appear, for example, as OPTCD=(SEQ or SKP).
SKP means "skip sequential" and enables you to start writing at any specific record.

For writing a KSDS or RRDS, if OPTCD contains any of the following, PUT
stores a new record in key sequence or relative record sequence:

OPTCD=(KEY,SKP,NUP)
OPTCD=(KEY,DIR,NUP)
OPTCD=(KEY,SEG,NUP)

Skip, no update
Direct, no update
Sequential, no update

Note that VSAM does not allow you to change a key in a KSDS (delete the
record and write a new one). To change a record, first GET it using OPTCO = UFD,
change its contents (but not the key), and PUT it, also using OPTCD= UFD. To
write a record in ESDS, use OPTCD=(ADR, " " .).

The ERASE Macro

The purpose of the ERASE macro is to delete a record from a KSDS or an RRDS.
To locate an unwanted record, you must previously issue a GET with an RPL
specifying OPTCD= (UFD...).

[Iabell ERASE RPL=address or =(resister)

For ESDS, a common practice is to define a delete byte in the record. To
"delete" a record, insert a special character such as X'FF'; all programs that process
the data set should"bypass all records containing the delete byte. You can occa
sionally rewrite the data set, dropping all deletes.

THE EXLST MACRO

If your ACB macro indicates an EXLST operand, code a related EXLST macro.
EXLST provides an optional list of addresses for user exit routines that handle
end-of-file and error analysis. All operands in the macro are optional.

[labell EXLST AM=VSAM, +

EODAD=address, +

LERAD=address, +

SYNAD=address

When VSAM detects the coded condition, the program enters your exit

)

')

The SHOWCB Macro 497

routine. Register 13 must contain the address of your register savearea. For
example, if you are reading sequentially, supply an end-of-data address (EODAD)
in the EXLST macro-see the ACB for VSMFILIN in Fig. 19-4.

Here are explanations of the operands for EXLST:

VSAM
EODAD

LERAD

SYNAD

Indicates a VSAM control block.
Supplies the address of your erid-of-data routine. You may also
read sequentially backward, and VSAM enters your routine when
reading past the first record. The request return code for this
condition is X'04'.
Indicates the address of the routine that analyzes logical errors
that occurred during GET, PUT, POINT, and ERASE. The
request return code for this condition is X'08'.
Provides the address of your routine that analyzes physical I/O
errors on GET, PUT, POINT, ERASE, and CLOSE. The re
quest return code for this condition is X'OC'.

)

Other operands are EXCPAD and JRNAD.

THE SHOWCB MACRO

The original program in Fig. 19-4 contained an error that caused it to fail on a
PUT operation. The use of the SHOWCB macro in the error routine for PUT
(R30PUT) helped determine the actual cause of the error.

The purpose of SHOWCB is to display fields in an ACB, EXLST, or RPL.
Code SHOWCB following a VSAM macro where you want to identify errors that
VSAM has detected. The SHOWCB in the PUT error routine in Fig. 19-4 is as
follows:

SHOWCB RPL=RPLISTOT,AREA=FDBKWD,FIELDS=CFDBK>,LENGTH=4

FDBKWD DC F'O'

AREA

FIELDS

LENGTH

Designates the name of a fullword where VSAM is to place an
error code.
Tells SHOWCB the type of display; the keyword FDBK (feed
back) causes a display of error codes for request macros.
Provides the length of the area in bytes.

,
/

On a failed request, VSAM stores the error code in the rightmost byte of the
fullword area. These are some common error codes:

08 Attempt to store a record with a duplicate key.
oc Out-of-sequence or duplicate record for KSDS or RRDS.

498 Virtual Storage Access Method (VSAM)

10 No record located on retrieval.
1C No space available to store a record.

Chap. 19

/

Your program can test for the type of error and display a message. For
nonfatal errors, it could continue processing; for fatal errors, it could terminate.

The original error in Fig. 19-4 was caused by the fact that the RPL macro
RPLISTOT did not contain an entry for RECLEN; the program terminated on
the first PUT error, with register 15 containingX'08' (a "logical error"). Insertion
of the SHOWCB macro in the next run revealed the cause of the errorin FDBKWD:
00006C. Appendix K of the IBM Supervisor manual explains the error (in part)
as follows: "The RECLEN value specified in the RPL macro was [either] larger
than the allowed maximum [or] equal to zero...." Coding a RECLEN operand
in the RPL macro solved the problem, and the program then executed through to
normal termination. One added point: Technically, after" each SHOWCB, you
should test register 15 for a successful or failed operation.

SAMPLE PROGRAM: LOADING A KEY-SEQUENCED DATA SET

The program in Fig. 19-4 reads records from the system reader and sequentially
creates a key-sequenced data set. A DEFINE CLUSTER command has allocated
space for this data set as INDEXED (KSDS), with three tracks, a 4-byte key
starting in position 0, and an 8O-byte record size. The program loads the entire
data set and closes it on completion. For illustrative (but not practical) purposes,
it reopens the data set and reads and prints each record.

The PUT macrO that writes records into the data set is:

PUT RPl=RPLISTOT

RPLISTOT defines the name of the ACB macro (VSMFILOT), the address of the
output record, and its length. Although the example simply duplicates the records
into the data set, in practice you would probably define various fields and store
numeric values as packed or binary.

The ACB macro defines VSMFILOT for keyed accessing, sequential pro
cessing, and output. The DDNAME, VSAMFIL, in this example relates to the
name for the data set in the DLBL job control entry (DD under OS).
. For reading the data set, the GET macro is

GET RPl=RPLISTIN

RPLISTIN defines the name of the ACB macro (VSMFILIN), the address in which
GET is to read an input record, and the record length.

The ACB macro defines VSMFILIN for keyed access, sequential processing,
and input. The DDNAME, VSAMFIL, relates to the name for the data set in

)

- -''\

Sample Program: Loading a Key-Sequenced Data Set 499

IIlCAMS SYSTEM SERVICES

DELETE (VSIlMFIL.ABEL) CLUSTER PURGE
IDC05501 ENTRY (C) VSIlMFIL.ABEL DELETED
IDC05501 ENTRY (D) VSIlMFIL.DATA DELETED
IDC05501 ENTRY (I) VSIlMFIL.INDEX DELETED
IDCOOOlI FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

DEFINE CLUSTER (NAME(VSIlMFIL.ABEL)
TRACKS(3)
VOLtlME(SVSE03)
INDEXED -
KEYS(4 0)
RECORDSIZE(60 60)) -

DATA (NAME (VSIlMFIL.DATA))
INDEX (NAME (VSIlMFIL. INDEX)

IDCOOOlI FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

IDC00021 IIlCAMS PROCESSING COMPLETE. MAXIMtlM CONDITION CODE WAS 0

I I OPTION LINK,PARTDllMP ,NOXREF ,LOG
ACTION NOMAP

II EXEC ASSEMBLY,SIZE=256K

3 PRINT NOGEN,NODATA
4 * MAIN PRO C E S SIN G
5 * ----------------------------
6 PROGVSM START
7 BALR 12,0 INITIALIZE
6 USING *,12 BASE REG &

) 9 LA 13,VSAMSAVE VSAM SAVEAREA
10· OPEN FILEIN,VSMFILOT
19 LTR 15,15 SUCCESSFUL OPEN?
20 BNZ R100PEN NO - TERMINATE
21 GET FILEIN,VSMREC READ 1ST RECORD
26 A10LOOP BAL 6,B10LOAD CREATE FILE
29 GET FILEIN,VSMREC READ NEXT
35 B A10LOOP

37 A60EOF CLOSE FILEIN,VSMFILOT
46 LA 13 , VSAMSAVE
47 OPEN FILEPRT,VSMFILIN
56 LTR 15,15 SUCCESSFUL OPEN?
57 BNZ R100PEN NO -- TERMINATE
56 BAL 6,C10PRINT . READ & PRINT VSAM FILE
60 A90EOF CLOSE FILEPRT,VSMFILOT
69 EOO NORMAL TERMINATION

LOAD VSAM FILE73 *
74 *
75 B10LOAD POT
62 LTR
63 BNZ
64 BR

RPL-RPLISTOT
15,15
R30POT
6

WRITE VSAM RECORD
SUCCESSFUL WRITE?

NO --ERROR
RETURN

READ & PRINT VSAM FILE

SUCCESSFUL READ?
NO - TERMINATE

Loading a key-sequenced data set.

RPL=RPLISTIN
15,15
R40GET

Figure 19-4

66 *
67 *
66 C10PRINT GET
95 LTR
96 BNZ

500 Virtual Storage Access Method (VSAMj Chap. 19

PRINT RECORD
97
98

104

106 *
107 *'
108 RI00PEN
109
HO R30PUT
IH
H2
164
173
174 R40=
175
176
228
237 R90DUMP

·238
244

MVC PRREC,VSMREC
PUT PILEPRT ,PRINT
B CI0PRINT

ERROR ROUTINES

MVI ERRCDE,C '0' OPEN ERROR
B R90DUMP
MV! ERRCDE,C'P' POT ERROR
ST 15,SAVE15
SHOWCB RPL=RPLISTOT,AREA=FDBKWD, FIELDS: (FDBK) ,LENGTH=4
CLOSE FlLEIN,VSMFILOT.
B R90DUMP
toW! ERRCDE, C' G' GET ERROR
ST 15,SAVE15
SHOWCB RPL=RPLISTIN,AREA-FDBKWD,FIELDS=(FDBK),LENGTH=4
CLOSE FILEPRT,VSMFILOT
EQU *
PDUMP ERRCDE,PRINT+133
EOJ ABNORMAL TERMINATION

EOF. EXIT FOR VSl\M lIP
RPL FOR VSMFILIN +

+
+

248 * -------------------------
249* DECLARATIVES
250 * -------------------------
252 FILEIN DEFIN A80EOF
278 FILEPRT DEFPR
308 VSMFILOT ACB DDNAME=VSAMFIL,

MACRF=(KEY,SEQ,OUT)

341 RPLISTOT RPL ACB=VSMFILOT,
AREA=VSMREC ,
AREALEN...ao,
RECLEN=80,
OPTCD=(KEY,SEQ,NUP)

371 VSMFILIN ACB DDNAME=VSAMFIL,
MACRF= (KEY, SEQ, IN) ,
EXLST=EOFDCB

404 EOFDCB EXLST EODAD=A90EOF
416 RPLISTIN RPL ACB-VSMFILIN,

AREA""vSMREC ,
ABEALEN-SO,
OPTCD- (KEY ,SEQ ,NUP)

DEFINE INPUT FILE
DEFINE PRINTER FILE
DEFINE VSl\M O/P FILE

RPL FOR VSMFlr.<:lT

DEFINE VSl\M I/P FILE

+

+
+

)+
+

+
+

446 VSl\MSAVE ils
447 ERRCDE DC
448 SAVE15 DS
449 FDBKWD DC
450 VSMREC DS
451 RECKEY DS
452 DS

18F
X'QO'
F
F'O'
OCL80
CL04
CL76

VSl\M SAVEAREA
ERROR CODE

INPUT/OUTPUT RECORD

*
*

454
455
456
457
458
459
460
461

PRINT

PRREC

DS OCL133
DC X'09'
DC CLeO"
DC CL52' I

LTORG
=C'$$BOPEN
=C'$$BCLOSE'
=CL8 I IKQVTMS I

PRINT RECORD

*
*
*

Figure 19-4 (continued)

)
Keyed Direct Retrieval 501

462
463
464
465
466
467
46S
469
470

=CLS'$$BPDllMP'
=A(ERRCDE,PRINT+133)
=A(FlLEIN)
=A(VSMREC)
=A(RPLISTO'1')
=A(RPLISTIN)
=A(FILEPRT)
=A(PRINT)

END PROGVSM

(output £rom
printing contents
of loaded data set)

(continued)FJgUre 19-4

II EXEC LNKEDT,SIZE=128K

II DLBL VSAMFIL,'VSAMFrL.ABEL'"VSAM
II EXTENT SYS008,SVSE03
II ABSGN SYSOOS,X'303'
II EXEC ,srZE=128K

output:-

0034AES PROCESSOBS
0047MICROTEL rNDUSTRIES
0065ACE ELECTRONICS .

)

the DLBL job control entry. Note that there is an ACB and RPL macro for both
input and output, but both ACE macros specify the same DDNAME: VSAMFIL.

Error routines are for failures on OPEN, GET, and PUT. These rather
primitive routines supply an error code and the contents of the declaratives; in
practice, you may want to enlarge these routines. If you fail to provide error
routines, your program may crash with no clear cause.

During testing, you may have changed the contents of a VSAM data set and
now want to reload (re-create) the original data set. Except for updating with
new keys, VSAM does not permit overwriting records in a data set. You have to
use IDCAMS to DELETE and again DEFlNE the data set as follows:

DELETECdata-set-name) CLUSTER PURGE .•.
DEFINE CLUSTERCNAMECdata-set-name) -

Loading an ESDS

To convert the program in Fig. 19-4 from KSDS to ESDS, change DEFlNE CLUS
TER from INDEXED to NONINDEXED and delete the KEYS and INDEX
entries. Change the ACB MACRF from KEY to ADR, and change the RPL
OPTeD from KEY to ADR-that's all.

KEYED DIRECT RETRIEVAL

Key-sequenced data sets provide for both sequential and direct processing by key.
For direct processing, you must supply VSAM with the key of the record to be
accessed. If you use a key to access a record directly, it must be the same length

502 Virtual Storage Access Method (VSAM) Chap. 19

)

as the keys in the data set (as indicated in the KEYS operand of DEFINE CLUS
lER), and the key must actually exist in the data set. For example, ifyou request
a record with key 0028 and there is no such record, VSAM returns an error code
in register 15.

Using the data set in Fig. 19-4, assume that a program is to access records
directly. A user enters record key numbers via a terminal, and the program is to
display the record on the screen. In this partial example, the RPL macro specifies
the name (ARG) of the key to be in a 4-byte field named KEYFLD. These are
the specific coding requirements for the ACB, RPL, and GET macros:

VSMFILE ACB DDNAME=name, +

MACRF=(KEY,DIR,IN)

RPLIST RPL ACB=VSMFILE, +

AREA=DCBREC, +

AREALEN=eo, +

ARG=KEYFLD, +

OPTCD=(KEY,DIR,NUP)
KEYFLD DS CL4
DCBREC DS CLeo

[Accept a ~ey number from the terminal]
MVC KEYFLD,keyno
GET RPL=RPLI ST
LTR 15,15
BNZ error

[Display the record on the screen]

For updating a KSDS record, change the MACRF from IN to OUT, and
change the OPTCD from NUP to UPD. GET the record, make the required
changes to it (but not the key!), and PUT the record using the same RPL.

SORTING VSAM FILES

You can sort VSAM records into either ascending or descending sequence. You
must first use DEFINE CLUSlER to allocate a vacant data set (NONINDEXED)
for SORT to write the sorted data set. Here is a typical SORT specification:

II EXEC SORT,SIZE=256K
SORT FIELDS=(1,4,CH,A,9,4,PD,D)
RECORD TYPE=F ,LENGTH=(150)
INPFIL VSAM
OUTFIL ESDS
END

1+

)

)
VSAM Utility PRINT 503

')

SORr causes the SORT program to load into storage and begin execution.
SORT FIELDS defines the fields to be sorted, indicated by major control to
minor, from left to right. In this example, the major sort field begins in
position 1 (the first position), is 4 bytes long, is in character (CH) format,
and is to be sorted in ascending (A) sequence. The minor sort field begins
in position 9, is 4 bytes long, is in packed (PD) format, and is to be sorted
in descending (0) sequence. The example could be a sort of departments
in ascending sequence, and within each department are employee salaries in
descending sequence.
RECORD TYPE indicates fixed (F) length and record length (150 bytes).
INPFIL informs SORT that the input file is VSAM; SORT can determine
the type of data set from the VSAM catalog.
OUTFIL defines the type of output file, in this case entry-sequenced. This
entry should match the DEFINE CLUSTER for this data set, NONIN-
DEXED. .

Job control commands for SORTIN and SORTOUT provide the names of
the data sets. Since job control varies by operating system and by installation
requirements, check with your installation before attempting the SORT utility.

VSAM UTILITY PRINT

IDCAMS furnishes a convenient utility program named PRINT that can print the
contents of a VSAM, SAM, or ISAM data set. The following provides the steps
for OS and for DOS:

OS: IISTEP EXEC PGM=IDCAMS
PRINT INFILECfilename> CHARACTER or HEX or DUMP

DOS:
I-
II EXEC IDCAMS,SIZE=2S6K

PRINT INFILECfilename> CHARACTER or HEX or DUMP
I-

The options for PRINT indicate the format of the printout, in character, hexa
decimal, or both (DUMP prints hex on the left and character format on the right).

INFILE(fiIename) matches the name in the OS DD or DOS DLBL job
statement with any valid filename as long as the two are identical. The DD or
DLBL statement notifies VSAM which data set is to print.

PRINT lists KSDS and ISAM data sets in key sequence and lists ESDS,
RRDS, and SAM data sets in physical sequence. You can also print beginning
and ending at a specific record.

504 Virtual Storage Access Method (VSAM)

KEY POINTS

Chap. 19

• A key-sequenced data set (KSDS) maintains records in sequence of key, such
as employee or part number, and is equivalent to indexed sequential access
method.

• An entry-sequenced data set (ESDS) maintains records in the sequence
in which they "{ere initially entered and is equivalent to sequential organi
zation.

• A relative-record data set (RRDS) maintains records in order of relative
record number and is equivalent to direct file organization.

• For the three types of data sets, VSAM stores records in groups (one or
more) of control intervals. At the end of each control interval is control
information that describes the data records.

• Before physically writing (loading) records in a VSAM data set, you must
first catalog its struetlire. Access method services (AMS) enables you to
furnish VSAM with such details about the data set as its name, organization
type, record length, key location, and password (if any).

• VSAM furnishes two types of accessing, keyed and addressed, and three types
of processing, sequential, direct, and skip sequential.

• The most common errors in processing VSAM data sets occur because of the
need to match definitions in the program, job control, and the cataloged
VSAM data set.

• The data-set-name in job control (such as CUSTOMER.INQUIRy) must
agree with the NAME(data-set-name) entry in DEFJNE CLUSTER. This
name is the only one by which VSAM recognizes the data set. VSAM relates
the ACB DDNAME in the program to the job control name and the job
control name to the data-set-name.

• If a data set is cataloged as KSDS, ESDS, or RRDS, each program must
access it accordingly.

• For KSDS, the length and starting position of the key in a record must agree
with the KEYS entry in DEFINE CLUSTER and, for direct input, with the
defined ARG in the OPTCD.

• Every program that references the data set defines the fields with identical
formats and lengths in the same positions; the actual field names need not
be identical. You may define as character any input field in a record that
the program does not reference. The simplest practice is to catalog all record
definitions in the assembler source library and COPY the definition into the
program during assembly.

• After each OPEN, CLOSE, GET, PUT, and SHOWCB, test register 15 for
success or failure, and use SHOWCB (as well as TESTCB) as a debugging
aid.

)

Chap. 19 Problems

PROBLEMS

505

19-1. What are the three types of VSAM data sets, and how do they differ?
19-2. Explain control interval, control interval split, and RBA.

19-3. Assume a KSDS that contains records with keys in two control areas as follows:

Control area 1:

Control area 2:

360, 373, 385
390, 412, 415
420, 475, 480
512, 590, 595

What are the contents of (a) the two sequence sets; (b) the index set?

19-4. What is the program that catalogs the structure of a VSAM data set, and what are
its three component levels?

19-5. Code DEFINE CLUSTER for the data-set-name CUSTOMER.FILE, assuming 20
blocks, ESDS, and l00-byte records.

19-6. Code job control (OS DD and DOS DLBL) for the data set in Problem 19-5 with
filename CUSTVS.

19-7. Code the ACE macro named CUSVSIN for the data set in Problem 19-6for addressed
sequential input and an EXLST macro named EOFCUS for end-of-file.

19-8. Code the RPL macro named RPLCUSIN for the ACE in Problem 19-7 with an input
area named CUSVSREC.

19-9. Code the GET macro to read the data set in Problem 19-8.

19-10. Write a program that creates a KSDS supplier file from the following input records:

01-05
06-25
26-46
47-67
68-74
75-80

Suppl ier number
Suppl ier name
Street
City
Amount payable
Date of last purchase (yymmdd)

Store the amount payable in packed format.

506

20
IrIDEXED SEQUErITIAL

ACCESS METUOD
(ISAM)

OBJECTWE

To explain the design of indexed sequential access
method and its processing requirements.

Indexed sequential access method (ISAM) is available in many variations on mi
crocomputers, minicomputers, and mainframes, although the preferred method
under DOSNS and OSNS is the newer VSAM.

A significant way in which ISAM (and other nonsequential file organization
methods) differs from sequential organization is that the record keys in an indexed
file must be unique; this is a system requirement, not just a programming practice.
Consequently, an indexed file is typically a master file. Also, there is a clear
difference between updating a sequential file and updating an indexed file. When
you update a sequential file, you rewrite the entire file; this practice leaves the
original file as a convenient backup in case the job must be rerun. When you
update an indexed file, the system rewrites records in the file directly in place,
thereby providing nO automatic backup file. To create a backUp, you periodically
copy the file onto another device.

The flexibility of indexed sequential access method is realized at some cost

)
Characteristics of Indexed Sequential Files 507

)

)

in both storage space and accessing time. First, the system requires various levels
of indexes to help locate records in the file. Second, the system stores new, added
records in special reserved overflow areas.

Check that your system supports ISAM before attempting to use it.

CHARACTERISTICS OF INDEXED SEQUENTIAL FILES

ISAM iuitially stores records sequentially and permits both sequential and random
processing. The features that provide this flexibility are indexes to locate a correct
cylinder and track and keys to locate a record on a track.

Keys

A key is a record control field such as customer number or stock number. Records
in an indexed file are in sequence by key to permit sequential processing and to
aid in locating records randomly, and blocks are formatted with keys. That is,
ISAM writes each block immediately preceded by the highest key within the block,
namely, the key of the last or only record in the block. The key is usually also
embedded within each data record, as normal. ;.

Unblocked Records

This is the layout of keys for unblocked records:

Ikey 201 [jrecord 201okey 20S[!record 20SDkey 2060 record 206[

The records could represent, for example, customer numbers, and the keys could
be for customer numbers 201, 20S, and 206. In this example, the key is 3 characters
long and the data record is the conventional size. Under unblocked format, a key
precedes each block contaiuing one record.

Blocked Records

This is the layout of keys for blocked records based on the preceding unblocked
example:

Ikey 206[lrecord 201Irecord 20S/record 2061

Under blocked format, the key for the last record in the block, 206, precedes the
block.

ISAM automatically handles this use of keys, and when you perform a read
operation, the system delivers the block, not the separate key, to main storage.

508

Indexes

Indexed Sequential Access Method (ISAM) Chap. 20

To facilitate locating records randomly, ISAM maintains three levels of indexes
on disk: track index, cylinder index, and an optional master index.

Track index. When ISAM creates a file, it stores a track index in track 0
ofeach cylinderthat the file uses. The track index contains the highest key number
for each track on the cylinder. For example, if track 4 on cylinder 12 contains
records with keys 201,205,206, and 208, the track index contains an entry for key
208 and a reference to cylinder 12, track 4. If a disk device has ten tracks per
cylinder, there are ten key entries for each track index, in ascending sequence.

Cylinder index. When ISAM creates a file, it stores a cylinder index on a
separate cylinder containing the highest key for each cylinder. For example, if
the file is stored on six cylinders, the cylinder index contains six entries.

Master index. An optional master index facilitates locating an appropriate
cylinder index. This index is recommended if the entries in the cylinder index
exceed four cylinders-a very large file.

PROCESSING AN INDEXED FILE

Consider a small indexed file containing 14 records on cylinder 5, with tracks 1
and 2 containing five records and track 3 containing four. This area is known as
the prime data area. Track 1, for example, contains records with keys 205, 206,
208, 210, and 213. Assume that records are suitably blocked.

)

TRACK

1
2
3

DATA RECORDS ON CYUNDER 5

205 206 208 210 213
214 219 220 222 225
226 227 230 236 unused

Track 0 of cylinder 5 contains the track index, with an entry indicating the
high key for each track. The track index entries specify that the highest keys on
cylinder 5, tracks 1, 2, and 3 are 213, 225, and 236, respectively:

track index key cylinder track key cylinder track key cylinder track

/ 'i- \1 ~ \l 'i- \l
track 0 I 213 0501 I I 225 0502 I I 236 0503 I

The cylinder index contains an entry for each cylinder that contains data,

)
Processing an Indexed File 509

Cylinder index

indicating the high key for each cylinder. In this case, the only index entry is key
236 on cylinder 5 (the track number is not important in this index):

key cylinder
:s.-.~

12360500 I
As an example of processing, a program has to locate randomly a record with

key "12.7. The read statement directs the system to perform the following steps:

1. Check the cylinder index (assuming no master index), comparing key "12.7
against its first entry, 236. Since "12.7 is lower, the required record should be
on cylinder 5.

2. Access the track index in cylinder 5, track 0, comparing key 227 successively
against each entry: 213 (high), 225 (high), and 236 (low). According to the
entry for 236, the required record should be on cylinder 5, track 3.

3. Check the keys on track 3; find key 227 and deliver the record to the program's
input area. If the key and the record do not exist, ISAM signals an error.

As you can see, locating a record randomly involves a .number of additional
processing steps, although little extra programming effort is required. Even more
processing steps are involved if a new record has to be added. If ISAM has to
insert the record within the file, it may have to "bump" a record into an overflow
area.

Overflow Areas

When a program first creates a file, ISAM stores the records sequentially in a
prime data area. If you subsequently add a new record; ISAM stores it in an
overflow area and maintains links to point to it.

There are two types of overflow areas: cylinder and independent:

1. For a cylinder overflow area, each cylinder has its own overflow track area.
ISAM reserves tracks on the same cylinder as the prime data for all of its
overflow records stored on a specific cylinder. The advantage of cylinder
overflow is that less disk seek time is required to locate records on a different
cylinder. The disadvantage is an uneven distribution of overflow records:
Some of the overflow cylinders may contain many records, whereas other
overflow cylinders may contain few or none.

2. For an independent overflow area, ISAM reserves a number of separate cyl
inders for all overflow records in the file. The advantage is that the distri
bution of overflow records is unimportant. The disadvantage is in the ad
ditional access time to locate records in the overflow area.

510 Indexed Sequential Access Method (ISAM) Chap. 20

A system may adopt both types: the cylinder overflow area for initial overflows
and the independent overflow area in case cylinder overflow areas overflow.

In our most recent example, adding a record with key 209 causes ISAM to
bump record 213 from track 1 into an overflow area, move 210 in its place, and
insert 209 in the place vacated by 210. The following assumes a cylinder overflow
area in track 9:

TRACK

1
2
3

9

DATA RECORDS ON CYUNDER 5

205 206 208 209 210
214 219 220 222 225
226 227 230 236 unused

213

prime data area

overflow area

The track index now becomes 210, with a pointer (not shown) to key 213 in the
overflow area: .

track index

key cylinder track key cylinder track key cylinder track
s...: ~ 'i...: ~ :s....: ">--l
I 210 0501 I I 225 0502 I I 236 0503 I

Reorganizing an Indexed File

Because a large number of records in overflow areas cause inefficient processing,
an installation can use a program periodically to rewrite or reorganize the file.
The program simply reads the records sequentially and writes them into another
disk area. ISAM automatically follows its indexes for the input file and delivers
the records sequentially from the prime and overflow areas. It stores all the output
records sequentially in the new prime data area and automatically creates new
indexes. At this time, the program may drop records coded for deletion.

PROCESSING DOS INDEXED SEQUENTIAL FILES

Since ISAM automatically handles indexes and overflow areas, little added pro
gramming effort is involved in the use of indexed files. There are four approaches
to processing:

1. Load or Extend. The initial creation of an ISAM file is known as loading.
Once a file is loaded, you may extend it by storing higher-key records at the
end of the file.

2. Adding Records. New records have keys that do not currently exist on the
file. You have to insert or add these records within the file.

)

\
}

Processing DOS Indexed Sequential Files 511

)

3. Random Retrieval. To update an ISAM file with data (such as sales and
payments on customer records), you use the key to locate the master record
randomly and rewrite the updated record.

4. Sequential Processing. If you have many records to update and the new
transactions are in sequence, you can sequentially read, change, and rewrite
the ISAM master.

Load or Extend a DOS ISAM File

Loading a file creates it for the first time, and extending involves storing records
at the end. Input records must be in ascending sequence by a predetermined key,
and alI keys must be unique. For load and extend, you code the usual OPEN and
CLOSE to activate and deactivate the file. Figure 20-] uses sequential input
records to load an ISAM file named DISKIS. The new macros for this purpose
are SETFL, WRITE, ENDFL, and DTFIS.

Name Operation Operand

[labell SETFL filename
[labell WRITE filename,HEWKEY
[labell ENDFL filename

Let's examine the imperative macros and the DTFIS file definition macro.

SETFL (set file load model. SETFL initializes an ISAM file by prefor
matting the last track of each track index. The operand references the DTFIS
name of the ISAM file to be loaded. In Fig. 2()"], SETFL immediately follows
the OPEN macro.

WRITE. The WRITE macro loads a record into the ISAM file. Operand
] is your DTFIS filename, and operand 2 is the word NEWKEY. You store the
key and data area in a workarea (named ISAMOUT in Fig. 2()"]). DTFIS knows
this area through the entry WORKL=ISAMOUT. For the WRITE statement,
ISAM checks that the new key is in ascending sequence. ISAM then transfers
the key and data area to an I/O area (named IOARISAM in the figure and known
to DTFIS by IOAREAL=IOARISAM). Here ISAM constructs the count area:

WDRKL= ISAMDUT: Ikey !dataI
IDAREAL=IDARISAM: !count!keyldatal

ENDFL (end file load model. After alI records are written and before the
CLOSE, ENDFL writes the last data block (if any), an end-of-file record, and any
required index entries.

512 Indexed Sequential Access Method (ISAM) Chap. 20

MAIN PROCESS
MVC ISKEYNQ.A=IN
MVC ISRECORD.SDISKIN
WRI:rE DISKIS.NEWKEY
TM DISKISC,B'lllllllO'
Be Rl0ERR
GE'r DISKSD.SDISKIN

"B AlOLOOP

END - 0 F - F I L E
ENDFL DISKIS
'l'M DISKISC.B'1100000i'
BO R10ERR
CLOSE DISKSD.DISKIS
EOJ

1
2 PROG20A
3
4
5

14
20
21
22

29 *
30 AlOLOOP
31
32"
37
38
39
45

47 *
48 A90END
60
61
62
71

PRINT
Si'ARi'
BALR
USING
OPEN
SE'rFL
'I'M
Be
GE'r

ON,NODATA,NOGEN

3,0
*,3
DISKSD,DISKIS
DISKIS
DISKISC,B ' 10011000'
Rl0ERR
DISKSD.SDISKIN

SE'r ISllM LIMI'rS
~ SE'rFL ERRORS?

YES - ERROR ROll'rlNE
GE'r lSi' SEQ' L RECORD

I N G
SE'r UP KEY NUMBER
SE'r UP ISllM DISK RECORD
WRI:rE ISllM RECORD
~ WRI:rE ERRORS?

YES - ERROR ROll'rINE
GE'r NEX'l' SEQ' L RECORD

NO - CONi'INUE

END ISllM FILE LIMIi'S
ANY ENDFL ERRORS?

YES - ERROR ROll'rINE
NORMAL i'ERMINATION

n* DECLARAi'IVES
93 DISKSD Il'rFSD BLKSIZE-360. SEQtJEN:rIAL DISK INPUT +

DEVADDR-SYS015. +
EOFADDR-A90END. +
DEVlCE~3340. +
l0AREA1-IOARSD1. +
RECFOBM-FIXBLK, +
RECSlZE-90, +
TYPEFLE~INPll'r. +
WORKA-YES

154 IOARSDl DS CL360 SEQ'L DISK BUFFER-l

75 *
76 Rl0ERR
77*
78 *
79
88

DISK ERROR ROUTINES
EQU * DISK ERROR

RECOVERY ROll'rlNES

CLOSE DISKSD.DISKIS ABNORMAL i'ERMINAi'ION
EOJ

)

156 SDISKIN DS
157 ACc:rIN DS
158 DS

OCL90
CL06
CL84

SEQ'L DISK INPll'r AREA
* KEY* RESi' OF RECORD

160 DISKIS Di'FIS CYLOFL-1.
DEVlCE-3340.
DSXXTNTz2,
lOAREAL-lOARISllM.
IOROll'r-LOAD.
KEYLEN=6,
KEYLOC=l,
NRECDS=3,
RECFORM-FIXBLK.
RECSlZE-90.
VERIFY=YE$,
WORKL-ISllMOUT

209 IOARISAM DS CL284

INDEXED SEQ' L LOAD

ISAM BUFFER AREA

+
+
+
+
+
+
+
+
+
+
+

Figure 20-1 Program: loading a DOS ISAM file.

)

)
Processing DOS Indexed Sequential Files 513

211 ISAMOUT DS
212 ISKEYNO DS
213 ISBECORD DS

OCLS6
CL06
CLSO

ISAM WORKAREA
• KEY LOCATION
'* DATA AREA

215
216
217
218
21S
220
221
222
223

LTQRG
=C'$$BOPEN
=C'$$BSETFL'
-C'$$BENDFL'
=C' $$BCLOSE'
-A(DISKIS)
=A(DISKSD)
=A(SDISKIN)

END PROG20A

Figure 20-1 (continued)

)

)

The DTAS Macro

The maximum length for an ISAM filename is 7. In Fig. 20-1, the OTFIS entries
for the file being loaded are as follows:

CYLOFL= 1 gives the number of tracks on each cylinder to be reserved for
each cylinder overflow area (if any). .

DEVICE= 3340 is the disk device containing the prime data area or overflow
area.

DSKXTNT = 2 provides the number of extents that the file uses: one for each
data extent and one for each index area and independent overflow area extent.
The program in Fig. 20-1 has one extent for the prime data area and one for
the cylinder index.
lOAREAL=IOARISAM provides the name of the ISAM I/O load area. The
symbolic name, IOARISAM, references the OS buffer area. For loading
blocked records, you calculate the field length as

Count area (8) + key length (6) + block length (90 x 3) = 284

lOROUT=LOAD tells the assembler that the program is to load an ISAM
file.

KEYLEN=6 gives the length of each record's key.
KEYLOC = 1 tells ISAM the starting location of the key in the record, where
1 is the first position.
NRECDS=3 provides the number of records per block.
RECFORM=FIXBLK indicates fixed, blocked record format.
RECSIZE =90 gives the length of each record.
VERIFY = YES tells the system to check the parity of each record as it is
written.

WORKL=ISAMOUT gives the name of your load workarea, which is a OS
defined elsewhere in the program. For blocked records, you cal!=Ulate the

514

field length as

Indexed Sequential Access Method (ISAM) Chap. 20

)

Key length (6) + data area (90 x 3) = 284

For unblocked records, you would calculate tbe field length as

Count area (8) + key length + "sequence link field" (10) + record length

Status Condition

On execution, ISAM macros may generate error conditions, which you may test.
After each I/O operation, ISAM places its status in a one-byte field. named
filenameC. For example, if your D'IFIS name is DISKIS, ISAM calls tbe status
byte DISKISC. Following is a list of tbe 8 bits in filenameC tbat the system may
set when loading an ISAM file:

BIT

o
1
2
3
4
5

6

7

LOAD STATUS ERROR CONDmON

Any uncorrectable disk error except wrong length record.
Wrong length record detected on output.
The prime data area is full.
SETFL has detected a full cylinder index.
SETFL has detected a full master index.
Duplicate record-tbe current key is tbe same as tbe one
previously loaded.
Sequence error-the current key is lower tban the one
previously loaded.
The prime data area is full, and ENDFL has no place to store
tbe end-of-file record.

-~~,

)

The program in Fig. 20-1 uses TM operations to test DISKIS after execution
of tbe macros SETFL, WRITE, and ENDFL. After SETFL, for example, TM
tests whetber bits 0, 3, and 4 are on. If any of tbe conditions exist, tbe program
executes an error routine (not coded) where the program may isolate tbe error
and issue an error message.

The job control commands also vary. First, the DLBL job entry for "codes"
contains ISC, meaning indexed sequential create, and second, there is an EXIENT
command for botb tbe cylinder index and tbe data area.

Random Retrieval of an ISAM File

The main purpose of organizing a file as indexed sequential is to facilitate the
random accessing of records. For this, tbere are a number of special coding
requirements. The program in Fig. 20-2 randomly retrieves records in tbe file

./

)
Processing DOS Indexed Sequential Files 515

I
/

created in Fig. 20-1. The program reads a file of modification records in random
sequence, with changes to the ISAM master file. For each modification record,
the program uses the account number (key) to locate the correct ISAM record,
corrects it, and then updates the record on the ISAM file.

ISAM macros for random retrieval. The new macros for random retrieval
are

Hame Operation Operand

[label] READ filename,KEY
[labell WAITF filename
[labell WRITE filename,KEY

READ causes ISAM to access a required record from the file. Operand 1
contains the DlFIS filename, and operand 2 contains the word KEY. You
store the key in the field referenced by the DlFIS entry KEYARG. In Fig,
20-2, KEYARG=KEYNO. For each modification reCord processed, the
program transfers the account key number to KEYNO.
WAITF allows completion of a READ or WRITE operation before another
is attempted. Since a random retrieval reads and rewrites the same record,
you must ensure that the operation is finished. Code WAITF anywhere
following a READ or WRITE and preceding the next READ or WRIlE.

1
3 PROG20B
4
5
6

15

22 *
23 A10LOOP
24
29
30
31
36
37
38
39
40
42
47
48
49
55

PRINT ON,NODATA,NOGEN
START
BALR 3,0
USING *,3
OPEN FILEIN,DISKIS
GET FILEIN,RECDIN

MAIN PROCESS
MVC ISKEYNO,ACCTIN
READ DISKIS,KEY
TM DISKISC,B'11010101'
BO R10ERR
WAITF DISKIS
MVC ACCTDKO ,ACCTIN
MVC NAMEDKO,NAMEIN
MVC ADDRDKO ,ADDRIN
PACK BALNDKO,BALNIN
MVC DATEDKO,DATEIN
WRITE DISKIS,KEY
TM DISKISC,B'llOOOOOO'
BO R10ERR
GET FILEIN,RECDIN
B A10LOOP

READ 1ST INPUT RECORD

IN G
SET UP KEY NUMBER
READ ISAM RANDOMLY
ANY :READ ERROR?

YES - ERROR ROUTINE
COMPLETE READ OPERATION
MOVE FIELDS
* TO DISK
* WQRKAREA
*
*WRITE NEW ISAM RECORD
ANY WRITE ERROR?
* YES - ERROR ROUTINE
READ NEXT INPUT RECORD
* NO - CONTINUE

Figure 20-2 Program: random retrieval of a DOS ISAM file.

516 Indexed Sequential Access Method (ISAM) Chap. 20

)

57 *
58 A90END
67

END-OF-FILE
CLOSE FILEIN,DISKIS
EOJ

TERMINATION

7"1 *
72 RI0ERR EQU
73 *
74 B

DISK ERROR ROUTINES
* DISK ERROR

RECOVERY ROUTINES
A90END

76 * DEC L A RAT I V E S
77 FILEIN . DTFCD DEVADDR-SYSIPT, INPUT FILE +

I0AREA1-IOARIN1, +
BLKSIZE=80, +
DEVICE-2540, +
EOFADDR-A90END, +
TYPEFLE=INPUT, +
WORKA=YES

101 IOARINI DS CL80 INPUT BUFFER 1

103 RECOIN OS
104 CODEIN DS
105 ACCTIN OS
106 NAMEIN OS
107 ADDRIN DS
108 BALNIN DS
109 DATEIN OS

OCL80
CL02
CL06
CL20
CL40
ZL06'OOOO.OO'
CL06 I DDloIfiY I

INPUT AREA:
* RECORD CODE '01'
* A=llNT NO.
* NAME* ADDRESS
* BALANCE
* DATE

111 DISKIS DTFIS CYLOFL=I,
DEVICE-3340,
DSKXTNT-2,
IOAREAR=IOARISAM,
IOROUT-RETRVE,
:KEYARG-ISKEYNO,
KEYLEN=6,
KEYLOC-l,
NRECDS-3,
BECFORM=FIXBLK ,
RECSIZE-90,
TYPEFLE=RANDOM,
VERIFY-YES,
WORKR=ISAMOUT

193 IOARISAM DS CL270

lSAM 1lANllGl RETRIEVAL +
+
+
+
+
+
+
+
+
+
+
+
+

ISAM BUFFER AREA

.,
)

195 ISAMOUT
196 ISKEYNO
197 ACCTDKO
198 NAMEDKO
199 ADDRDKO
200 BALNDKO
201 DATEDKO
202

204
205
206
207
208
209
210

DS OCL90
DS CL06
DS CL06
DS CL20
DS CL40
OS PL04
DS CL06
DC CL14'

LTORG
=C'$$BOPEN
=C' $$BCLOSE'
=A(FILEIN)
-A (RECDIN)
=A(DISKIS)

END PROG20B
FJgUre20-2 (continued)

ISAM WORKAREA:
* KEY AREA
'* ACCOUNT NO.
* NAME
* ADDRESS
* BALANCE
* DATE
* RESERVED

j

Processing DOS Indexed Sequential Rles 517

WRITE rewrites an ISAM record. Operand 1 is the DTFIS filename, and
operand 2 is the word KEY, which refers to your entry in KEYARG.

The DTRS Macro

In Fig. 20-2, the DlFIS entries for the random retrieval include these:

IOAREAR=IOARISAM provides the name of the ISAM I/O retrieval area.
The symbolic name, IOARISAM, references the DS retrieval area for un
blocked records. For blocked records, the buffer size is

Record length (including keys) x blocking factor

For unblocked records, the buffer size is:

Key length + "sequence link field" (10) + record length

TYPEFLE= RANDOM means that the system is to retrieve records randomly
by key. Other entries are SEQNIL for sequential and RANSEQ for both
random and sequential.
WORKR=ISAMOur gives the name of your retrieval workarea.

Status Condition

The status byte for add and retrieve is different from load. Following is a list of
the 8 bits in filenameC that the system may set:

BIT ADD AND RETRIEVE STATUS CONDmON

o Any uncorrectable disk error except wrong length record.
1 Wrong length record detected on an I/O operation.
2 End-of-!'ile during sequential retrieval (not an error).
3 The requested record is not in the file.
4 The ID given to SETFL for SEQNIL is outside the prime data

limits.
5 Duplicate record-an attempt to add a record that already ex

ists in the file.
6 The cylinder overflow area is full.
7 A retrieval operation is ttying to process an overflow record.

The program in Fig. 20-2 uses TM operations to test DISKIS after execution
of the macros READ and WRITE. Once again, the program would isolate the
error and issue an error message.

518 Indexed Sequential Access Method (ISAM) Chap. 20

Sequential Reading of an ISAM File

Sequential reading of an ISAM file involves the use of the SETL, GET, and ESETL
macros. SElL (Set Low) establishes the starting point of the first record to be
processed. Its options include these:

• Set the starting point at the first record in the file:

SETL filename,BOF

• Set the starting point at the record with the key in the field defined by the
DTFIS KEYARG entry: .

SETL filename,KEY

• Set the startingpoint at the first record within a specified group. For example,
the KEYARG field could contain "B480000" to indicate all records with key
beginning with B48:

SETL filename,GKEY

The ESElL macro terminates sequential mode and is coded as ESElL,
filename.

DTFIS entries include these:

IOAREAS=boffername for the name of the buffer area. You calculate the
buffer size just as you do for random retrieval.
IOROUT=RETRVE to indicate sequential retrieval.
TYPEFLE=SEQNTL or RANDOM for sequential or random retrieval.
KEYLOC=n to indicate the first byte of the key in a record; if processing
begins with a specified key or group of keys and records are blocked.

To delete a record, you may reserve a byte in the record and store a code in
it. A practice is to use the first byte to match OS requirements. Subsequently,
your program may test for the code when retrieving records and when reorganizing
the file.

PROCESSING OS INDEXED SEQUENTIAL FILES

Processing ISAM files under OS is similar to DOS processing, except that QISAM
(queued indexed sequential access method) is used for sequential processing and
BISAM (basic indexed sequential access method) is used for random processing.

)

Processing OS Indexed Sequential Files

The Delete Rag

519

RKP

RECFM

DDHAME
DSORG
MACRF
BLKSIZE
CYLOFL
KEYLEH
LRECL
HTM
OPT CD

,/

Under OS, the practice is to reserve the first byte of each record with a
delete flag, defined with a blank when you create the file. You also code
OPTCD=L in the DCB macro or the DD command. When you want to delete
a record, store X'FF' in this byte. QISAM subsequently will not be able to re
trieve the record. QISAM automatically drops the record when the file is re
organized.

Let's examine some features of OS ISAM processing.

Load an ISAM File

The OS imperative macros concerned with loading an ISAM file are the conven
tional OPEN, PUT, and CLOSE. DCB entries are as follows:

Name of the data set.
IS for indexed sequential.
(PM) for move mode or (PL) for locate mode.
Length of each block.
Number of overflow tracks per cylinder.
Length of the key area.
Length of each record.
Number of tracks for the master index, if any.
Options required, such as MYLU in any sequence:
M establishes a master index (or omit M).
Y controls use of cylinder overflow areas.
I controls use of an independent area.
L is a delete flag to cause bypassing records with X'FF' in the
first byte.
U (for fixed length only) establishes the track index in main
storage.
Record format for fixed/variable and unblockedlblocked: F,
FB, V, and VB.
Relative location of the first byte of the key field, where 0 is
the first location. (For variable-length records, the value is 4
or greater.)

Sequential Retrieval and Update

Under OS, sequential retrieval and update involve the OPEN, SETL, GET, PUTX,
ESETL, and CLOSE macros. Once the data set has been created with standard

520 Indexed Sequential Access Method (ISAM) Chap. 20

)

labels, many DCB entries are no longer required. DDNAME and DSORG=IS
are still used, and the following entries are available:

MACRF=<entry)

EODAD=eofaddress
SYNAD=address

The entries are
(GM) or (GL) for input
(PM) or (PL) for output
(GM,SK,PU) if read and rewrite in place, where
S is use of SElL, K is key or key class, and PU is
use of PUTX macro
Used for input, if reading to end-of-file.
Requests optional error checking.

The SETl macro. SElL (Set Low address) establishes the first sequential
record to be processed anywhere within the data set. The general format is the
following:

Harne Operation Operand
[labell SETL dcb-name,start-position,address

The start.-position operand has the following options:

B Begin with the first record in the data set. (Omit operand 3 for B
orBD.)

K Begin with the record with the key in the operand 3 address.
KC Begin with the first record of the key closs in operand 3. A key class

is any group of keys beginning with a common value, such as all keys
H48xxxx. If the first record is "deleted," begin with the first non
deleted record.
Begin with the record at the actual device address in operand 3.

BD, KD, KDH, KCD, and 10 cause retrieval of only the data portion of a record.
Here are some examples of SElL to set the first record in a file named

DISKIS, using a 6-character key:

• Begin with the first record in the data set:

SETL DISKIS,B

• Begin with the record with the key 012644:

SETL DISKIS,K,KEYADDl

')

~\

/

Processing OS Indexed Sequential Files .

PROG20C START
SAVE (14,12)
BALR 3,0
USING *,3
ST 13,SAVEAREA+4
LA 13 ,SAVEAREA

521

A90EOF ESETL ISFILE
CLOSE (ISFILE)
L 13,SAVEAREA+4
RETURN (14,12)

A10LOOP

A20

OPEN
SETL
TIME
ST
SP
GET

CP
BNL
MVI
PUTX
GET
B

(ISFILE)
ISFILE,B

1 ,TODAY
TODAY,=P' 5000'
ISFILE

26(3,1) ,TODAY
A20
0(1) ,X"FF'
ISFILE
ISFILE
A10LooP

START 1ST RECORD OF DATA SET

CALC DATE 5 YEARS AGO
GET 1ST RECORD

5 YEARS OR OLDER?
* NO - BYPASS
* YES - SET DELETE CODE
* RE-WRITE REOORD
GET NEXT
LOOP

END-OF-FILE

SAVEAREA DS
TODAY DS
IOAREA DS

18F
F
CL100

TODAY'S DATE: OOYYDDD+
DISK 10 AREA

ISFILE DCB DDNAME=INDEXDD,
DSORG=IS,
EODAll=A90EOF,
MACRF=(GL,S,PU\

LTORG
END PROG20C

+
+
+

Figure 20-3 Program: sequential retrieval of an OS ISAM file.

• Begin with the fITst record of the key class 012:

5ETL DISKIS,KC,KEYADD2

KEYADD1
KEYADD2

DC
DC

C'012644'
C'012',XL3'OO'

6-character key
3-character key class

The ESE'lL macro, used as ESE'lL deb-name, terminates sequential re
trieval. If there is more than one SE'lL, ESE'lL must precede each one.

The program in Fig. 20-3 reads an ISAM file sequentially and inserts a delete
code in any record that is more than five years old. The TIME macro delivers
the standard date from the communication region as packed OOyyddd +, and the
date in the record (positions 26-28) is in the same format. The PUTX macro
rewrites an obsolete record with a delete byte in the fITst position.

522 Indexed Sequential Access Method (ISAMj

KEY POINTS

Chap. 20

• The indexed system writes a key preceding each block of records. The key
is that of the highest record in the block.

• The track index, cylinder index, and master index help the system locate
records randomly.

• The track index is in track 0 of each cylinder of the file and contains the
highest key number for each track of the cylinder.

• The cylinder index is on a separate cylinder and contains the key number of
the highest record on the cylinder.

• The optional master index is recommended if the cylinder index exceeds four
cylinders in size.

• The master index facilitates locating keys in the cylinder index, the cylinder
index facilitates locating keys in the track index, and the track index facilitates
locating the track containing the required record.

• ISAM creates a file sequentially in a prime data area. Subsequent additions
of higher keys append to the end, and additions of lower keys cause records
to bump into an overflow area.

• Cylinder overflow areas reserve tracks on a cylinder for all overflows in that
cylinder. This method reduces disk access time.

• Independent overflow areas reserve separate cylinders for overflows from the
entire file. This method helps if there is an uneven distribution of overflow
records-that is, many overflow records in some cylinders and few or none
in others.

PROBLEMS

26-1. What is the purpose of (a) the master index; (b) the cylinder index; (c) the track
index?

20-2. An indexed file contains three records per block. For a block containing records
with keys 542, 563, and 572, what is the key for the block?

20-3. An indexed file contains unblocked records on cylinder 8 beginning with track l.
Assuming four records per track, show the organization of the records on the tracks
for keys 412, 413, 415, 417, 419, 420, 424, 425, 432, 433.

20-4. For the file in Problem 20-3, show the contents of (a) the track index; (b) the cylinder
index.

20-5. For the file in Problem 20-3, show the records on the tracks if a program adds a
record with key 422. Assume that track 20 handles overflow records.

20-6. What are the two overflow areas and their advantages and disadvantages? Under
what circumstances would you recommend use of both types of overflow areas?

)

Chap. 20 Problems 523

20-7. What is the normal procedure to remove records from an overflow area into proper
sequence in the prime data area?

20-8. What is the common method for deleting records from an indexed file for (a) DOS;
(b) OS?

20-9. What are the different ways to process an ISAM file? What is the difference between
extending and adding records?

20-10. Write a program that creates an ISAM supplier file on disk from the following input
records:

01-05
06-25
26-46
47-67
68-74
75-80

Supplier number
Supplier name
Street
City
Amount payable
Date of last purchase (yymmdd>

,/

Store the amount payable in packed format.

524

21
OPERATING

SYSTEMS

OBJECTIVI::

To introduce basic operating systems for DOS and as
andjob control requirements.

This chapter introduces material that is suitable for more advanced assembler
programming. The first section examines general operating systems and the var
ious support programs. Subsequent sections explain the functions of the program
status word and the interrupt system. Finally, there is a discussion of input/output
channels, physical laCS, and the input/output system.

These topics provide an introduction to systems programming and the rela
tionship between the computer hardware and the manufacturer's software. A
knowledge of these features can be a useful asset when serious bugs occur and
when a solution requires an intimate knowledge of the system.

In an installation, one or more systems programmers, who are familiar with
the computer architecture and assembler language, provide .support for the oper
ating system. Among the software that IBM supplies to support the system are
language translators such as assembler, COBOL, and PUI and utility programs
for cataloging and sorting files.

)

Operating Systems

OPERATING SYSTEMS

525

Operating systems were developed to minimize the need for operator intervention
during the processing of programs. An operating system is a collection of related
programs that provide for the preparation and execution of a user's programs.
The system is stored on disk, and part of it, the supervisor program, is loaded into
the lower part of main storage.

You submit job control commands to tell the system what action to perform.
For example, you may want to assemble and execute a source program. To this
end, you insert job control commands before and after the source program and
submit it as a job to the system. In simple terms, the operating system performs
the following steps:

1. Preceding the source program is a job control command that tells the operating
system to assemble a program. The system loads the assembler program
from a disk library into storage and transfers control to it for execution.

2. The assembler reads and translates the source program into an object program
and stores it on disk.

3. Another job control command tells the system to li.nl.<;-edit the object program.
The system loads the linkage editor from a disk library into storage ana
transfers control to it for execution.

4. The linkage editor reads and translates the object program, adds any required
input/output modules, and stores it on disk as an executable module.

S. Another job control command tells the system to execute the executable
module. The system loads the module into storage and transfers control to
it for execution.

6. The program executes until normal or abnormal termination, when it returns
processing control to the system.

7. A job command tells the system that this is the end of the job, since a job
may consist of any number of execution steps. The system then terminates
that job and prepares for the next job to be executed.

Throughout the processing, the system continually intervenes to handle all
input/output, interrupts for program checks, and protecting the supervisor and any
other programs executing in storage.

ffiM provides various operating systems, depending on users' requirements,
and they differ in services offered and the amount of storage they require. These
are some major operating systems:

DOS
DOSNSE

OSNSl

Disk Operating System
Disk Operating System

Operating System

Medium-sized systems
Medium-sized systems with
virtual storage
Large system

526

OSNS2
OSIMVS

Operating System
Operating System

Operating Systems

Large system
Large system

Chap. 21

)

Systems Generation

The manufacturer typically supplies the operating system on reels ofmagnetic tape,
along with an extensive set of supporting manuals. A systems programmer has
to tailor the supplied operating system according to the installation's requirements,
such as the number and type of disk drives, the number and type of tenninals to
be supported, the amount of processing time available to users, and the levels of
security that are to prevail. This procedure is known as systems generation, ab
breviated as sysgen.

Operating System Organization

Figure 21-1 shows the general organization of Disk Operating System (DOS), on
which this text is largely based. The three main parts are the control program,
system service programs, and processing programs.

Control Program

The control program, which controls all other programs being processed, consists
of initial program load (IPL), the supervisor, and job control. Under OS, the
functions are task management, data management, and job management.

Disk ope:atiDg system

I I I

I -'I I -r=s- I1- I
Supezvisor Job JPL Linkage Libnrlan TranslatolS Utility User

control editor I progxams programs

Source Reloeatable Core image Procedure
statement library library library

library

FJgUre 21-1 Disk operating system organization.

)

)

Operating Systems 527

IPL is a program that the operator uses daily or whenever required to load
the supervisor into storage. On some systems, this process is known as booting
the system.

Job control handles the transition between jobs run on the system. Your
job commands tell the system what action to perform next.

The supervisor, the nucleus of the operating system, resides in lower storage,
beginning at location X'200'. The system loads user (problem) programs in storage
following the supervisor area, resulting in at least two programs in storage: the
supervisor program and one or more problem programs. Only one is executing
at any time, but control passes between them.

The supervisor is concerned with handling interrupts for input/output devices,
fetching required modules from the program library, and handling errors inprogram
execution. An important part of the supervisor is the input/output control system
(laCS), known under as as data management.

Figure 21-2 (not an exact representation) illustrates the general layout of the
supervisor in main storage. Let's examine its contents.

1. Communication Region. This area contains the following data:

LOCATION CONTENTS

00-07
08-11
12-22

The current date, as mm/dd/yy or dd/mm/yy
Reserved
User area, set to zero when a JOB command is read to
provide communication within a job step or between job
steps

23 User program status indicator (UPSI)
24-31 Job name, entered from job control
32-35 Address: highest byte of problem program area
36-39 Address: highest byte of current problem program phase
40-43 Address: highest byte ofphase with highest ending address
44-45 Length of label area for problem program

2. Channel Scheduler. The channels provide a path between main storage

Transient area

CPU bytes

Supervisor
resident
area {

!".!:<:.<I~~o~~!. ~~~o~~ _
1. CommuniCations region
2. Channel scheduler
3. Storage protection
4. Interrupt handling
5. System loader
6. Error recovery routines
7. Program information block
8. I/O devi.ces control table
9.Transientarea-----
ProblemProg;;;m(Sj--- --

Figure 21-2 Supervisor areas.

528 Operating Systems Chap. 21

and the input/output devices for all 110 interrupts and permit overlapping of pro
gram execution with 110 operations. If the requested channel, control unit, and
device are available, the channel operation begins. If they are busy, the channel
scheduler places its request in a queue and waits until the device is available. The
channel notifies the scheduler when the 110 operation is complete or that an error
has occurred.

3. Storage Protection. Storage protection prevents a problem program from
erroneously moving data into the supervisor area 3lld destroying it. Under a
multiprogramming system, this feature also prevents a program in one partition
from erasing a program in another partition.

4. Interrupt Handling. An interrupt is a signal that informs the system to
interrupt the program that is currently executing and to transfer control to the
appropriate supervisor routine. A later section on the.program status word covers
this topic in detail.

S. System Loader. The system loader is responsible for loading programs
into main storage for execution.

6. Error Recovery Routines. A special routine hancl1es error recovery for
each 110 device or class of devices. When an error is·sensed, the channel scheduler
invokes the required routine, which attempts to correct the error.

7. Program Information Block (PIB). The PIB contains information tables
that the supervisor needs to know about the current programs in storage.

8. 110 Devices Control Table. This area contains a table of 110 devices that
relate physical unit addresses (X'nnn') with logical addresses (SYSxxx).

9. Transient Area. This area provides temporary storage for less used rou
tines that the supervisor loads as required, such as OPEN, CLOSE, DUMP, end
of-job hancl1ing, some error recovery, and checkpoint routines.

System Service Programs

System service programs include the linkage editor and the librarian.

Unkage editor. The linkage editor has two main functions:

1. To include input/output modules. An installation catalogs 110 modules in
the system library (covered next). When you code and assemble a program,
it does not yet contain the complete instructions for hancl1ing input/output.
On completion of assembly, the linkage editor includes all the required 110
modules from the library.

2. To link together separately assembled programs. You may code and assem
ble a number of subprograms separately and link-edit these subprograms into

)

Operating Systems 529

one executable program. The linkage editor enables data in one subprogram
to be recognized in another and facilitates transfer of control between sub
programs at execution time.

Librarian. The operating system contains libraries on a disk known as SYSRES
to catalog both IBM programs and the installation's own commonly used programs
and subroutines. DOSNS supports four libraries:

1. The source statement library (SSL) catalogs as a book any program, macro,
or subroutine still in source code. You can use the assembler directive COPY
to include cataloged code into your source program for subsequent assem
bling.

2. The relocatable library (RL) catalogs frequently used modules that are as
sembled but not yet ready for execution. The assembler directs the linkage
editor to include I/O modules automatically, and you can use the INCLUDE
command to direct the linkage editor to include your own cataloged modules
with your own assembled programs.

3. The core image library (ClL) contains phases in executable machine code,
ready for execution. The ClL contains; for example, the assembler, COBOL,
PUI, and other translator programs, various utility programs such as LINK
and SORT, and your own production programs ready for execution. To
request the supervisor to load a phase from the ClL into main storage for
execution, use the job control command /I EXEC phasename.

4. The procedure library (PL) contains cataloged job control to facilitate au
tomatic processing of jobs.

The OS libraries vary by name according to the version of OS, but basically
the OS libraries equivalent to the DOS source statement, relocatable, and COre
image are, respectively, source library, object library, and load library, and they
serve the same functions.

Processing Programs

Processing programs are cataloged on disk in three groups:

1. Language translators that IBM supplies with the system include assembler,
PUI, COBOL, and RPG.

2. Utility programs that IBM supplies include such special-purpose programs as
disk initialization, copy file-to-file, and sort/merge.

3. User-written programs that users in the installation write and that IBM does
not support. All the programs in this text are user-written programs.

For example, the job command /I EXEC ASSEMBLY causes the system to

(

530 Operating Systems Chap. 21

load the assembler from the CIL into an available area ("partition") in storage
and begins assembling a program. The job command II OPTION LINK directs
the assembler to write the assembled module on SYSLNK in the relocatable library.

Once the program is assembled and stored on SYSLNK, the job command
/I EXEC LNKEDT tells the linkage editor to load the module from SYSLNK into

FIXED STORAGE LOCATIONS

AREA, dec. He. addr EC only Function
().. 7 0 Initia1 program loading PSW, restart new PSW
8- 15 8 Initia1 program loading CCWl, restart old PSW

16- 23 10 Initia1 program loading CCW2
24- 31 18 hternal old PSW
32- 39 20 Supervisor Call old PSW
40- 47 28 Program old PSW
48- 55 30 Machine-cl>eck old PSW
56- 63 28 Inpnt/ontput old PSW
64- 71 40 Channel statns word (see diagram)
72- 75 48 Channel adem... word (0-3 key, 4-7 zeros, 8-31 CCW adem...)
80- 63 50 Interval timer
88- 95 58 hternaI new PSW
96-103 60 Snpervisor Call new PSW

104-111 68 Program new PSW
112-119 70 Machine-check new PSW
120-127 78 Inpnt/ontput new PSW
132-133 84 CPU adem... assoc:'d with external interruption, or unchanged
132-133 84 X CPU address assoctd with external intenuption, or zeros
124-135 86 X hternaI interruption code
186-139 88 X SVC interruption (O-12ze""" 13-14 ILC, 15:0, 18-31 code)
140-143 8C X Program interrupt (0-12 zeros, 13-14 ILC, 15:0, 18-31 code)
144-147 90 X Translation exception adem... (0-7 zeros, 8-3l adem...)
148-149 84 Monitor class (0-7 zeros, 8-15 class number)
150-151 96 X PER interruption code (0-3 code, 4-15 zeros)
152-155 98 X PER adem... (0-7 zeros, 8-31 adem...)
156-159 9C Monitor code (0-7 ..",., 8-31 monitor code)
168-171 AS Channel ID (0-3 type, 4-15 model, 16-31 max. roEL length)
172-175 AC I/O exteoded logontaddr... (0-7 unused, 8-31 adem...)
176-179 BO Limited channel logout (see diagram)
185-187 B9 X I/O add.... (0-7 zeros, 8-23 adem...)
218-223 DB CPU timer save area
224-231 EO Clock comparator save area
232-239 E8 Machine-check interruption code
248-251 F8 Fai1ingproc=orsto_adem...(0-7 zeros, 8-31 adem...)
252-255 Fe Region code"
258-351 100 Fixed logout area"
352-383 160 Floating-point register save area
384-447 180 General register save area
448-511 lCO Control register "'..area
512t 200 CPU ""tended logout area (size varies)

*May vary among models: see system Iibruy manuals for speci('IC model

tLoeuion may be changed by programming (bits 8-28 of CR 15 specify adem...)

Figure 21-3 FIXed storage locations.

)

Multiprogramming 531

/

storage, to complete addressing, and to include I/O modules from the RL. As
suming that there was no job command to catalog it, the linkage editor writes the
linked phase in the CIL in a noncatalog area. If the next job command is II EXEC
with no specified phasename, the supervisor loads the phase from the noncatalog
area into storage for execution. The next program that the linkage editor links
overlays the previous one in the CIL noncatalog area.

The job command II OPTION CATAL instead of II OPTION LINK tells the
system both to link the program and to catalog the linked phase in the catalog area
of the CIL. You normally catalog production programs in the CIL and for im
mediate execution use the job command II EXEC phasename.

AXED STORAGE LOCAnONS

As mentioned earlier, the first X'200' bytes of storage are reserved for use by the
CPU. Figure 21-3 lists the contents of these fixed storage locations.

MULnPROGRAMMING

Multiprogramming is the concurrent execution of more than one program in stor
age. Technically, a computer executes ouly one instruction at a time, but because
of the fast speed of the processor and the relative slowness of I/O devices, the
computer's ability to service a number of programs at the same time makes it
appear that processing is simultaneous. For this purpose, an operating system that
supports multiprogramming divides storage into various partitions and is conse
quently far more complex than a single-job system.

The number and size of partitions vary according to the requirements of an
installation. One job in each partition may be subject to execution at the same
time, although only one program is actually executing. Each partition may handle
jobs of a particular nature. For example, one partition handles relatively short
jobs ofhigh priority, whereas another partition handles large jobs oflower priority.

The job scheduler routes jobs to a particular partition according to its class.
Thus a system may assign class A to certain jobs, to be run in the first partition.

In Fig. 21-4, the job queue is divided into four classes, and main storage is
divided into three user partitions. Jobs in class A run in partition 1, jobs in classes
B and C run in partition 2, and jobs in class P run in partition 3.

Depending on the system, storage may be divided into many partitions, and
a job class may be designated to run in anyone of the partitions. Also, a partition
may be designated to run any number of classes.

When an operator uses the IPL procedure to boot the system, the supervisor
is loaded from the CIL into low storage. The supervisor next loads job control
from the CIL into the various partitions. The supervisor then scans the system
readers and terminals for job control commands.

When a job completes processing, the job scheduler selects another job from

532 Operating Systems Chap. 21

Supervisor

, job I,job 4, job 5 r------ Partition I

I job 7

~
(class Ai

, job 2, job 8 Partition 2
(class B, C)

> job3,job 6

~ Partition 3
(class Pi

P

c

B

Class A

Main storage Figure 21-4 Job queue and partitions.

the queue to replace it. For example, if partition 1 is free, the job scheduler in
Fig. 21-4 selects from the class A queue either the job with the highest priority or,
if all jobs have the same priority, the first job in the queue.

The system has to provide a more or less equitable arrangement for processing
jobs in each partition. Under time slicing, each partition is allotted in tum a time
slice of so many milliseconds of execution. Control passes to the next partition
when the time has expired, the job is waiting for an I/O operation to complete, or
the job is finished.

VIRTUAL STORAGE
.)

In a multiprogramming environment, a large program may not fit entirely in a
partition. As a consequence, both DOSNS and OSNS support a virtual storage
system that divides programs into segments of 64K bytes, which are in tum divided
into ·pages of 2K or (usually) 4K bytes. On disk, the entire program is contained
as pages in a page data set, and in storage VS arranges a page pool for as much
of the program as it can store, as shown in Fig. 21-5. As a consequence, a program
that is lOOK in size could run in a 64K partition. If the executing program ref
erences an address for a part of the program that is not in storage, VS swaps an
unneeded page into the page data set on disk and pages in the required page from

Main storace
iii

Disk

Pac_pool Page data set FJgUre 21-5 Page pool.

Program Status Word: PSW 533

\

disk into the page pool in storage. (Actually, VS swaps onto disk only if the
program has not changed the contents of the page.) The 16 control registers handle
much of the paging operations. .

Since a page from disk may map into any page in the pool, VS has to change
addresses; this process is known as dynamic address translation (DAT).

When running a realtime application such as process control, a data com
munications manager, or an optical scan device, you may not want VS to page it
out. It is possible to assign an area of nonpageable (real) storage for such jobs
or use a "page fix" to lock certain pages into real storage.

PROGRAM STATUS WORD: PSW

The PSW is a doubleword of data stored in the control section of the CPU to
control an executing program and to indicate its status. The two PSW modes are
basic control (BC) mode and extended control (EC) mode. A 0 in PSW bit 12
indicates BC mode, and a 1 indicates EC mode. EC mode provides an extended
control facility for virtual storage.

One of the main features of the PSW is to control the state of operationi
Users of the system have no concern with certain operations such as storage man
agement and allocation of I/O devices, and if they were allowed access to every
instruction, they could inadvertently access other users' partitions or damage the
system. To provide protection, certain instructions, such as Start I/O and Load
PSW, are designated as privileged.

The PSW format is the same in only certain positions for .each mode. Figure
21-6 illustrates the two modes, in which the bits are numbered 0 through 63 from
left to right. Some of the more relevant fields are explained next.

Bit 14: Wait state. When bit 14 is 0, the CPU is in running state execuring
instructions. When bit 14 is 1, the CPU is in wait state; which involves
waiting for an action such as an I/O operation to be completed.
Bit 15: State. For both modes, 0 = supervisor state and 1 = problem state.
When the computer is executing the supervisor program, the bit is 0 and all
instructions are valid. When in the problem state, the bit is 1 and privileged
instructions cannot be executed.
Bits 16-31: Program interrupt code (BC mode). When a program interrupt
occurs, the computer sets these bits according to the type. The following
list shows the interrupt" codes in hex format:

0001 Operation exception
0002 Privileged operation exception
0003 Execute exception
0004 Protection exception
0005 Addressing exception

534 Operating Systems

PROGRAM srATUS WORD (BC Mode)

IChaJmel masks
E Protect'n CMWP IntelTUption code Ikey

0 6 7 8 11 12 15 16 23124 31

~~ I _ctionadd= I
32 3436m 39 40 47148 55156 63

Chap. 21

o-s Channel 0 to 5 masks
6 Mask for chaJmel6 and up
7 (E) Exteraal mask

12 (C-O) Basic control mode
13 (M) MachiD<><:heck mask
14 (W-l) Wait state
15 (P-l) Problem slate

32-33 (ILC) _ction length code
34-35 (CC) Condition code
36 Fixed-poinl overt1ow mask
37 Decimal ove:d1ow mask
38 Exponent underfiow mask
39 SigniflCaDce mask

15 (P-l) Prohlem slate
18-19 (CC) Condition code
20 Filted-point overflow mask
21 Decimal oveJf1ow mask
22 Exponent underflow mask
23 Significance mask

0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE
OOOF

PROGRAM srATUS WORD (EC Mode)

I ORoo l11'IE
Protect'n

CMWP 00 CC
Program

00000000 Ikey mask

0 78 11 12 15 16 18 20 23 24 31

I 0000 0000 I _ction add= I
32 39 40 47148 55156 63

1 (R) Program eveot rec:otding mask
5 <T-l) Translation mode
6 (1) Input/output mask
7 (E) Exteraal mask

12 (C-l) Extend.a control mode
13 (M) MachiD<><:heck mask
14 (W-l) Wait state

FJgUre 21-6 PSW format for BC and EC modes.

Specification exception
Data exception
Fixed-point overflow exception
Fixed-point divide exception
Decimal overflow exception
Decimal divide exception
Exponent overflow exception
Exponent underflow exception
Significance exception
Floating-point divide exception

)

Interrupts

0010
0011
0012
0013
0040
0080

Segment translation exception
Page translation exception
Translation specification exception
Special operation exception
Monitor event
Program event (may be combined with another code)

535

\

Bits 34-35: Condition code. BC mode only; the condition code under EC
mode is in bits 18-19. Comparisons and certain arithmetic instructions set
this code.
Bits 40-63: Instruction address. This area contains the address of the next
instruction to be executed. The CPU accesses the specified instruction from
main storage, decodes it in the control section, and executes it in the arith
meticllogic section. The first 2 bits of a machine instruction indicate its
length. The CPU adds this length to the instruction address in the PSW,
which now indicates the address of the next instruction. For a branch in
struction, the branch address may replace the PSW instruction address.

INTERRUPTS

An interrupt occurs when the supervisor has to suspend normal processing to
perform a special task. The six main classes of interrupts are as follows:

1. Program Check Interrupt. This interrupt occurs when the computer cannot
execute an operation, such as performing arithmetic on invalid packed data.
This is the common type of interrupt when a program terminates abnormally.
Appendix B lists the various types of program interrupts.

2. Supervisor Call Interrupt. A problem program may issue a request for input!
output or to terminate processing. A transfer from the problem program to
the supervisor requires a supervisor call (SVC) operation and causes an in
terrupt.

3. ExtemalInterrupt. An external device may need attention, such as the op
erator pressing the request key on the console or a request for communica
tions.

4. Machine Check Interrupt. The machine-checking circuits may detect a hard
ware error, such as a byte not containing an odd number of on bits (odd
parity).

5. Input!Output Interrupt. Completion of an I/O operation making a unit avail
able or malfunction of an I/O device (such as a disk head crash) cause this
interrupt.

6. Restart Interrupt. This interrupt permits an operator or another CPU to
invoke execution of a program.

536 Operating Systems Chap. 21

The supervisor region contains an interrupt handler for each type of interrupt.
On an interrupt, the system alters the PSW as required and stores the PSW in a
fixed storage location, where it is available to any program for testing.

The PSW discussed to this point is known as the current PSW. When an
interrupt occurs, the computer stores the current PSW and loads a new PSW that
controls the new program, usually the supervisor. The current PSW is in the
control section of the CPU, whereas the old and new PSWs are stored in main
storage, as the following indicates:

CPU I _Cu=nt PSW

(1) / ,\(2)

Main storage I Old PSWs NewPSWs

The interrupt replaces the current PSW in this way. (1) It stores the current
PSW into main storage as the old PSW, and (2) it fetches a new PSW from main
storage, to become the current PSW. The old PSW now contains in its instruction
address the location following the instruction that caused the interrupt. The com
puter stores PSWs in 12 doubleword locations in fixed storage; 6 are for old PSWs
and 6 are for new PSWs, depending on the class of interrupt:

OLDPSW NEWPSW

Restart 0008 ooסס

External 0024 0088
Supervisor call 0032 0096
Program old PSW 0040 0104
Machine check 0048 0112
Input/output 0056 0120

Let's trace the sequence of events following a supervisor interrupt. Assume
that the supervisor has stored in the six new PSWs the address ofeach ofits interrupt
routines. (The old-PSWs are not required yet.) Remember also that when an
instruction executes, the computerupdates the instruction address and the condition
code in the current PSW as required.

1. A program requests input from disk. The GET or READ macro contains
a supervisor call to link to the supervisor for input/output. This is a supervisor
interrupt.

)

Channels 537

2. The instruction address in the current PSW contains the address in the pro
gram immediately following the SVC that caused the interrupt. The CPU
stores this current PSW in the old PSW for supervisor interrupt, location 32.
The new PSW for supervisor interrupt, location 96, contains supervisor state
bit = 0 and the address of the supervisor interrupt routine. The CPU moves
this new PSW to the current PSW and is now in the supervisor state.

3. The PSW instruction address contains the address of the supervisor I/O rou
tine, which now executes. The channel scheduler requests the channel for
disk input.

4. To return to the problem program, the supervisor loads the old PSW from
location 32 back into the current PSW. The instruction links to the PSW
instruction address, which is the address in the program following the original
SVC that caused the interrupt. The system switches the PSW from supervisor
state back to problem state.

In the event of a program check interrupt, the computer sets its cause on
PSW bits 16-31, the program interrupt code. For example, if the problem program
attempts arithmetic on invalid data, the computer senses a data exception and
stores X'OOO7' in PSW bits 16-31. The computer then stores the current PSW in
old PSW location 0040 and loads the new PSW from 0104 into the current PSW.
This PSW contains the address of the supervisor's program check routine, which
tests the old PSW to determine what type of program check caused the interrupt.

The supervisor displays the contents of the old PSW in hexadecimal and the
cause of the program check (data exception), flushes the interrupted program, and
begins processing the next job. Suppose that the invalid operation is an MP at
location X'6A320'. Since MP is 6 bytes long, the instruction address in the PSW
and the one printed will be X'6A326'. You can tell from the supervisor diagnostic
message that the error is a data exception and that the invalid operation immediately
precedes the instruction at X'6A326'.

CHANNELS

A channel is a component that functions as a separate computer operated by channel
commands to control I/O devices. It directs data between devices and main storage
and permits attaching a great variety of I/O devices. The more powerful the
computer model, the more channels it may support. The two types of channels
are multiplexer and selector.

1. Multiplexer channels are designed to support simultaneous operation of more
than one device by interleaving blocks of data. The two types of multiplexer
channels are byte-multiplexer and block-multiplexer. A byte-multiplexer
channel typically handles low-speed devices, such as printers and terminals.

538 Operating Systems Chap. 21

A block-multiplexer can support higher-speed devices, and its ability to in
terleave blocks of data facilitates simultaneous I/O operations.

2. Selector channels, no longer common, are designed to handle high-speed
devices, such as disk and tape drives. The channel can transfer data from
ouly one device at a time, a process known as burst mode.

Each channel has a 4-bit address coded as in the following example:

CHANNEL ADDRESS TYPE

0 0000 byte-multiplexer
1 0001 block-multiplexer
2 0010 block-multiplexer
3 0011 block-multiplexer
4 0100 block-multiplexer
5 0101 block-multiplexer
6 0110 block-multiplexer

A conrrol unit, or controller, is required to interface with a channel. A
channel is basically device-independent, whereas a contiol unit is device-dependent.
Thus a block-multiplexer channel can operate many type of devices, but a disk
drive control unit can operate only a disk drive. Figure 21-7 illustrates a typical
configuration of channels, control units, and devices.

-CPU and main Channel 0 Control r
Console--- unitstorage

I
'8

Control Printer
unit

Channell L---'"
I

l h-Tannm& JControl Control
unit unit

I

l-T=m~ J-l
/'

./ ~ ---"'
Disk 1 Disk 2

'- '-

Figure 21-7 Channels, control units, and devices.

)

Channels 539

For example, a computer uses a multiplexer channel to connect it to a printer's
control unit. The control unit has a 4-bit address. Further, each device has a 4
bit address and is known to the system by a physical address. The device address
is therefore a 12-bit code that specifies:

DEVICE

Channel
Control unit
Device

CODE

OCCC
UUUU
DDDD

If the printer's device number is 1110 (X'E') and it is attached to channel 0, control
unit 1, then to the system its physical address is 0000 00011110, or X'01E'. Further,
if two disk devices are numbered 0000 and 0001 and they are both attached to
channel 1, control unit 9, their physical addresses are X'190' and X'191', respec
tively. This physical address permits the attaching of 28 , or 256 devices.

Symbolic Assignments

Although the supervisor references IJO devices by their physical numbers, your
programs use symbolic names. You may assign a symbolic name to any device
temporarily or (more or less) permanently, and a device may have more than one
symbolic name assigned. The operating system uses certain names, known as
system logical units, that include the following:

SYSIPT

SYSRDR

SYSIN

SYSLST

SYSPCH
SYSOUT

SYSLNK
SYSLOG

SYSRES
SYSRLB
SYSSLB

The terminal, system reader, or disk device used as input for
programs
The terminal, system reader, or disk device used as input for
job control for the system
The system name to assign both SYSIPT and SYSRDR to the
same terminal, system reader, or disk device
The printer or disk used as the main output device for the
system
The device used as the main unit for output
The system name to assign both SYSLST and SYSPCH to the
same output device
The disk area used as input for the linkage editor
The console or printer used by the system to log operator
messages and job control statements
The disk device where the operating system resides
The djsk device for the relocatable library
The disk device for the system library

In addition, you may reference programmer logical units, SYSOOO-SYSnnn.

540 Operating Systems Chap. 21

For example, you may assign the logical address SYS025 to a disk drive with physical
address X'170'. The supervisor stores the physical and logical addresses in an
I/O devices control table in order to relate them. A simplified table could contain
the following:

I/O DEVICE

Reader
Printer
Disk
drive
Tape
drive

PHYSICAL ADDRESS

X'ooc'
X'OOE'
X'170'

X'280'

LOGICAL UNITS

SYSIPT, SYSRDR
SYSLST.
SYSLNK, SYSRES, SYS025

SYS03l, SYS035

A reference to SYSLST is to the printer, and a reference to SYSLNK, SYSRES,
or SYS025, depending on its particular use, is to disk device X'170'. You may
assign a logical address permanently or temporarily and may change logical ad
dresses from job to job. For instance, you could use an ASSGN job control
command to reassign SYS035 for a program from a disk device X'170' to another
disk device X'l72'.

110 LOGIC MODULES

Consider a program that reads a tape file named TAPEFL. The program would
require a DTFMT or DCB file definition macro to define the characteristics of the
file and tape device to generate a link to an I/O logic module. The assembler
determines which particular logic module, based on (1) the kind of DTF and (2)
the specifications within the file definition, such as device number, an input or
output file, the number of buffers, and whether processing is in a workarea (WORKA)
or a buffer (IOREG). In the following example, the assembler has generated a
logic module named DFFBCWZ (the name would vary depending on specifications
within the DTFMT).

)

Instructiom:

Ileclarafues:

UOmodules:

Job control:

GET TAPEFL, TAPEREC

I
TAPEFL DTFMT •••

IJFFBCWZ

~
IJFFBCWZ module

~
/I ASSGN TAPEFL, X'281'

Imperative macro

File defmition macro

I/O module included by
linkage editor

Assign to physical address

Physical IOCS 541

When linking a program, the linkage editor searches for addresses in the
external symbol dictionary that the assembler generates. For this example, the
ESD would contain entries at least for the program name and UFFBCWZ. The
linker accesses the named module cataloged on disk (provided it was ever cataloged)
and inclndes it at the end of the assembled object program. One role of a system
programmer is to define and catalog these I/O modules.

On execution of the program, the GET macro links to the specified file
definition macro, DTFMT. This macro contains the address of the I/O logic
module at the end of the object program where the linker included it. The module,
combined with information from the DTFMT, contains all the instructions nec
essary to notify the supervisor as to the actual type of I/O operation, device, block
size, and so forth.

The only remaining information is to determine which tape device; the su
pervisor derives it from the job control entry, which in this example assigns X'281'
as the physical address. The supervisor then (at last) delivers the physical request
for input via a channel command.

For example, the printer module, PRMOD, consists of three letters (00)
and five option letters (abcde), as OOabcde. The options are based on the def
initions in the D1FPR macro, as follows:

a RECFORM: FlXUNB (F), VARUNB (V), UNDEF (D)
b CILCHR: ASA (A), YES (Y), CONTROL (C)
c PRINTOV=YES and ERROPT=YES (B), PRINTOV=YES and

ERROPT not specified (Z), plus 14 other options
d IOAREA2: defined (I), not defined (Z)
e WORKA: YES (W), YES and RDONLY = YES (V), neither specified

(Z)

A common printer module for IBM control character; two buffers, and a
workarea would be OOFYZIW. For one buffer, the module is IJDFYZZW.

PHYSICAL IOCS

Physical 10CS (PIOCS), the basic level of 10CS, provides for channel scheduling,
error recovery, and interrupt handling.. When using PIOCS, you write a channel
program (the channel command word) and synchronize the program with comple
tion of the I/O operation. You must also provide for testing the command control
block for certain errors, for checking wrong-length records, for switching between
I/O areas where two are used, and, if records are blocked, for blocking and de
blocking.

PIOCS macros include CCW, CCB, EXCP, and WAIT.

542

Channel Command Word (CCWI

Operating Systems Chap. 21

The CCW macro causes the assembler to construct an 8-byte channel command
word that defines the 110 command to be executed.

Name Operation Operand

[labelJ eew command-code,data-address,flag5,count-field

• command-code defines the operation to be performed, such as 1 = write, 2
= read, X'09' = print and space one line. '

• data-address provides the storage address of the first byte where data is to
be read or written. .

• flag bits determine the next action when the channel completes an operation
defined in a CCW. You can set flag bits to 1 to vary the channel's operation
(explained in detail later).

• count-field provides an expression that defines the·number of bytes in the
data block that is to be processed.

Command Control Block (CCBJ

You define a CCB macro for each 110 device that PIOCS macros reference. The
CCB comprises the first 16 bytes of most generated DlF tables. The CCB com
municates information to PIOCS to cause required 110 operations and receives
status information after the operation.

Name Operation Operand

blockname eeB SYSnnn,command-iist-narne

• blockname is the symbolic name associated with the CCB, used as an old
PSW for the EXCP and WAIT macros.

• SYSnnn is the symbolic name of the 110 device associated with the CCB.
• command-list-name is the symbolic name of the first CCW used with the

CCB.

Execute Chann~1 Program (EXCPJ

The EXCP macro reqllests physical 10CS to start an 110 operation, and PIOCS
relates the blockname to the CCB to determine the device. When the channel

)

)

\

Physical IOCS 543

and the device become available, the channel program is started. Program control
then returns to your program.

Harne Operation Operand

[labell EXCP blockname or (1)

The operand gives the symbolic name of the CCB macro to be referenced.

The WAIT Macro

The WAlT macro synchronizes program execution with completion of an I/O
operation, since the program normally requires its completionbefore it can continue
execution. (When bit 0 of byte 2 of the CCB for the file is set to 1, the WAlT is
completed and processing resumes.) For example, if you have issued an EXCP
operation to read a data block, you now WAlT for delivery of the entire block
before you can begin processing it.

Name Operation Operand
[labell WAIT blockname or (1)

The operand gives the symbolic name of the CCB macro to be referenced.

CCW Flag Bits

You may set and use the flag bits in the CCW as follows:

• Bit 32 (chain data flag), set by X'SO', specifies data chaining. When the
CCW has processed the number of bytes defined in its count field, the I/O
operation does not terminate if this bit is set. The operation continues with
the next CCW in storage. You may use data chaining to read Or write data
into or out of storage areas that are not necessarily adjacent.

In the following three CCWs, the first two use X'SO' in the flag bits,
operand 3, to specify data chaining. An EXCP and CCB may then reference
the first CCW, and as a result, the chain of three CCWs causes the contents
of an SO-byte input record to be read into three separate areas in storage: 20
bytes in NAME, 30 bytes in ADDRESS, and 30 bytes in CITY.

DATCHAIN CCW
CCW
CCW

2,HAME,X'80',20
,ADDRESS,X'80',30
,CITY,X'OO',30

Read 20 bytes into NAME, chain.
Read 30 bytes into ADDRESS, chain.
Read 30 bytes into CITY, terminate.

544 Operating Systems Chap. 21

• Bit 33 (chain command flag), set by X'40', specifies command chaining to
enable the channel to execute more than one CCW before terminating the
110 operation. Each CCW applies to a separate 110 record.

The following set of CCWs could provide for reading three input blocks,
each 100 bytes long:

COMCHAIH CCW 2,IHAREA,X'40',100 Read record-l into
IHAREA, chain.

CCW 2,INAREA+100,X'40',100 Read record-2 into
IHAREA+l00, chain.

CCW 2,INAREA+200,X'OO',100 Read record-3 into
INAREA+200, terminate.

• Bit 34 (suppress length indication flag), set by X'20', is used to suppress an
error indication that occurs when the number ofbytes transmitted differs from
the count in the CCW.

• Bit 35 (skip flag), set by X'10', is used to suppress transmission of input data.
The device actually reads the data, but the channel does not transmit the
record.

• Bit 36 (program controlled interrupt flag), set by X'08', causes an interrupt
when this CCW's operation is complete. (This is used when one supervisor
SIO instruction executes more than one CCW.)

• Bit 37 (indirect data address flag), as well as other features about physical
10CS, is covered in the IBM Principles of Operation manual and the appro
priate supervisor manual for your system.

Sample Physical IOCS Program

The program in Fig. 21-8 illustrates many of the features of physical 10CS we have
discussed. It performs the following operations:

• At initialization, prints three heading lines by means of command chaining
(X'4O').

• Reads input records one at a time containing salesman name and company.
• Prints each record.
• Terminates on reaching end-ot-file.

Note that the program defines a CCB/CCW pair for each type of record, and
the EXCPIWAIT operations reference the CCB name-INDEVIC for the reader,
OUlDEV1 for heading lines, and OUIDEV2 for sales detail lines. Each CCB
contains the name of the 110 device, SYSIPT or SYSLST, and the name of an
associated CCW: INRECD, TITLES, and DETAIL, respectively.

)

Physical IOCS

LQC OBJECT CODE

000000
000000 0530

S'l'MT
l
2
3
4

6
lO

SOURCE STATn!ENT
PRINT NODATA,NOGEN

PIOCSPRG START 0
BALR 3,0
USING *,3

EXCP OUTDEVl
WAIT OUTDEVl

545

INITIALIZE
*
*
PRINT TITLES
*

l7 AlOOREAD EXCP INDEVIC
2l WAIT INDEVIC

READ RECORD

*
CLC BECORD(2) ,oze'1*' END FILE?
BE A900END YES
MlTC StJRNOUT ,SURNAME LOAD
MVC GIVENOUT ,GlVENAME * PRINT
MlTC COMPOUT ,COMPANY * LINE

00002A D50l 3076 3332 28
000030 4780 305C 29
000034 D2l3 32B8 3076 3l
00003A D2l3 32CD 308A 32
000040 D2lD 32E2 309E 33

35
39

00005A 47FO 3014 45

EXCP
WAIT
B

OUTDEV2
OUTDEV2
AlOOREl\D

PRINT
*
RETlJllN

47 A900END EOJ END OF JOB

51 * -----------------------
52* DECLARATIVES
53 * -----------------------
54 INDEVIC CCB SYSIPT, INRECRD IjP DEVICE

0000700200007820000050 65 INRECRD COW X'02',RECORD,X'20',80

~~~~ E§ ~~~~o

000202
000202 4040404040404040
0002lC E2E4D9D5ClD4C540
00023l C7C9E5C5D540D5Cl
000246 C3D6D4D7ClD5E840

lOO.TERT:rARY DS
lOl DC
l02 DC
l03 DC
l04 DC

OCLl33
CL26' .
CL21. I SURNAME I

CL21'GlVEN NAME'
CL6S'CQMPANY'

TITLE 13

/

Figure 21-8 Program: physical IOCS.



546 Operating Systems Chap. 21

106 OUTDElT2 CCB SYSLST ,0llTRECRD OjP DEITICE
000297 00 ->
000298 090002A0200D0085 118 OUTRECRD eew X'09',DETAIL,X'20',133

DETAIL
"'LINE

OCL133
CL26 ,
CL20
CL01'
CL20
CL01'
CL30
CL35 1

LTORG ,
zA(OOTDElTl )
=A (INDElTIC)
-A (OOTDElT2)
=C'/*'

END PIOCSPRG

DS
DC
DS
DC

GIVENOOT DS
DC
DS
DC

129
130
131
132
133
134

120 DETAIL
121
122 SURNOOT
123
124
125
126 COMPOOT
127

0002AO
0002A0 4040404040404040
0002BA
0002C1l 40
0002CF
0002E3 40
0002E4
000302 4040404040404040

000328
000328 000000C8
00032C 00000060
000330 00000287
000334 615C

output:-
TOP SALESMEN OF

THE WESTERN REGION

SURNAME GIVEN NAME COMPANY

RUTH
JOHNSON
COLLINS
COBB
SPEAKER
SIMMONS
SISLER
WAGNER

GEORGE HERMAN
WALTER
EDDIE
TYRUS RAYMOND
TRIS
AL
GEORGE
HANS

Figure 21-8 (continued)

LASER CORP.
AMX ELECTRONICS
B M I
AUDIO SHACK
PACKLETT HEWARD
VIDEO DUMP .
COMPUTER HEAP
DIGITAL CORP.

-'.
)

KEY POINTS

• Systems generation (sysgen) involves tailoring the supplied operating system
to the installation's requirements, such as the number and type of disk drives,
the number and type of terminals to be supported, the amount of process
time available to users, and the levels of security that are to prevail.

• The control program, which controls alI other programs being processed,
consists of initial program load (IPL), the supervisor, and job control. Under
OS, the functions are task management, data management, and job man
agement.

• Initial program load (IPL) is a program that the operator uses daily or when
ever required to load the supervisor into storage. The system loader is
responsible for loading programs into main storage for execution.

• The supervisor resides in lower storage, beginning at location X'200'. The



Chap. 21 Key Points 547

supervisor is concerned with handling interrupts for input/output devices,
fetching required modules from the program library, and handling errors in
program execution.

• Channels provide a path between main storage and the input/output devices
and permit overlapping of program execution with I/O operations. The
channel scheduler handles all I/O interrupts.

• Storage protection prevents a problem program from erroneously moving
data into the supervisor area and destroying it.

• An interrupt is a signal that informs the system to interrupt the program that
is currently executing and to transfer control to the appropriate supervisor
routine.

• The source statement library (SSL) catalogs as a book any program, macro,
or subroutine still in source code.

• The relocatable library (RL) catalogs frequently used modules that are as
sembled but not yet ready for execution.

• The core image library (CIL) contains phases in executable machine code,
ready for execution.

• Multiprogramming is the concurrent execution of more than one program in
storage. An operating system that supports mUltiprogramming divides stor
age into various partitions. One job in each partition may be subject to
execution at the same time, although only one program is actually executing.

• The PSW is stored in the control section of the CPU to control an executing
program and to indicate its status. The two PSW modes are basic.control
(BC) mode and extended control (EC) mode.

• Certain instructions such as Start I/O and Load PSW are privileged to provide
protection against users' accessing the wrong partitions.

• An interrupt occurs when the supervisor has to suspend normal processing
to perform a special task. The supervisor region contains an interrupt handler
for each type of interrupt.

• A channel is a component that functions as a separate computer operated by
channel commands to control I/O devices. It directs data between devices
and main storage and permits the attachment of a variety of I/O devices.
The two types are multiplexer and selector.

• The operating system uses certain names, known as system logical units, such
as SYSIPT, SYSLST, and SYSLOG. Programmer logical units are refer
enced as SYSOOO-SYSnnn.

• Physical IOCS (PlOCS), the basic level of IOCS, provides for channel sched
uling, errorrecovery, and interrupt handling. When using PlOCS, you write
a channel program (the channel commandword) and synchronize the program
with completion of the I/O operation. .

• The CCW macro causes the assembler to construct an 8-byte channel com
mand word that defines the I/O command to be executed.



548

PROBLEMS

Operating Systems Chap. 21

21-1. What is the purpose of an operating system?
21-2. Where is the supervisor located in storage?
21-3. What is a sysgen?
21-4. What is the purpose of the supervisor transient area?
21-5. Where is the channel scheduler and what is its function?
21-6. In which libraries are the following stored (a) phase; (b) module; (c) book?
21-7. What are the two main functions of the linkage editor?
21-8. Explain the role of partitions and the job scheduler.
21-9. What is dynamic address translation?

21-10. What do the first 512 bytes of main storage contain?
21-11. What are the two modes and the two states of the PSW?
21-12. Where in the PSW (the name and bit positions) is the next sequential instruction

located?
21-13. What are the classes of interrupts and their causes?
21-14. What is the purpose of channels? What are the two types and their differences?
21-15. A printer, number 1101, is attached to control unit 0010 and a multiplexer channel.

What is the printer's physical address in hex?
21-16. Distinguish between physical address and logical address.
21-17. What are system logical units and programmer logical units?
21-18. Revise a simple program and substitute physical IOCS for input/output.

")

j



\,

!

APPENDIX

A
DEXADECIMAL·DECIMAL

CONVERSION

This appendix provides the steps in converting between hexadecimal and decimal
formats. The first section shows how to convert hex A7B8 to decimal 42,936 and
the second section shows how to convert 42,936 back to hex A7B8.

CONVERTING HEXADECIMAl TO DECIMAL

To convert hex number A7B8 to a decimal number, start with the leftmost hex
digit (A), continuously multiply each hex digit by 16, and accumulate the results.
Since multiplication is in decimal, convert hex digits A through F to decimal 10
through 15.

549



550 Hexadecimal-Decimal Conversion App.A

First digit, A (10): 10
Multiply by 16: X 16

160
Add next digit, 7: + 7

167
Multiply by 16: x 16

21)72

Add next digit, B (11): + 11

2683
Multiply by 16: x 16

42,928
Add next digit, 8: + 8

Decimal value 42,936

You can also use tbe conversion table in Fig. A-1. For hex number A7B8,
think oftbe rightmost digit (8) as position 1, tbe next digit to tbe left (B) as position
2, tbe next digit (7) as position 3, and tbe leftmost digit (A) as position 4. Refer
to tbe figure and locate tbe value for each hex digit:

For position 1 (8), column 1 equals
For position 2 (B), column 2 equals
For position 3 (7), column 3 equals
For position 4 (A), column 4 equals

Decimal value:

CONVERTING DECIMAL TO HEXADECIMAL

8
176

1,792
40,960

42,936

...,
j

To convert decimal number 42,936 to hexadecimal, first divide tbe original number
42,936 by 16; tbe remainder becomes the rightmost hex digit, 6. Next divide tbe
new quotient 2,683 by 16; the remainder, 11 = B, becomes tbe next hex digit to
tbe left. Develop tbe hex number from tbe remainders of each step of the division.
Continue in tbis manner until tbe quotient is zero.

DMSION QUOnENT REMAINDER HEX
42,936 .,. 16 2,683 8 8 (rightmost)
2,683 .,. 16 167 11 B

167 .,. 16 10 7 7
10.,. 16 0 10 A (leftmost)



< '

H
e
x Dec

il
e
x Dec

H
e
x Dec

II
e
x Dec

H
e
x Dec

il- H
e e
x Dec x Dec

H
e
x Dec

.~

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268,435,456 1 16,777,216 1 1,046,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,040,192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,386,606 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9,431,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 8 176 811
C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

1Il-

B 7 ~ :;

Figure A·I

4 3 2" 1



552 Hexadecimal-Decimal Conversion App.A

You can also use Fig. A-1 to convert decimal to hexadecimal. For decimal
number 42,936, locate the number that is equal or next smaller. Note the equiv
alent hex number and its position in the table. Subtract the decimal value of that
hex digit from 42,936, and locate the difference in the table. The procedure works
as follows:

DECIMAL HEX

Starting decimal value: 42,936
Subtract next smaller number: -40,960 = "AOOO

Difference: 1,976
Subtract next smaller number: - 1,792 = 700

Difference: 184
Subtract next smaller number: - 176 = BO
Difference: 8 = __8

Final hex number: A7B8



APPENDIX

B
PROGRAM

INTERRUPTS

A program interrupt occurs when a program attempts an operation that requires
special attention. These are the program interrupts, listed by hex code number.

1. Operation Exception

The CPU has attempted to execute an invalid machine operation, such as hex
adecimal zeros. Possible causes: (a) missing branch instruction, and the program
has entered a declarative area; (b) the instruction, such as a floating-point oper
ation, is not installed on the computer; (c) during assembly, an invalid instruction
has caused the assembler to generate hexadecimal zeros in place of the machine
code. For a 6-byte instruction, such as MVCwithan invalid operand, the assembler
generates 6 bytes of hex zeros. At execute time, the computer tries to execute
the zero operation code, causing an operation exception. (Since the computer
attempts to execute 2 bytes at a time, the system may generate three consecutive
operation exceptions.) See also the causes for an addressing exception.

2. Privileged-Qperation Exception

An attempt has been made to execute a privileged instruction that only the su
pervisor is permitted to execute. Possible causes: See operation (1) and addressing

553

!
\



554 Program Interrupts App. B

-j
.. /

(5) exceptions. Since there are many causes, it may be necessary to take a hex
adecimal dump of the program to determine the contents of I/O areas and other
declaratives to discover at what point during execution the error occurred.

3. Execute Exception

An attempt has been made to use the EX instruction on another EX instruction.

4. Protection Exception

A storage protection device prevents programs from erroneously moving data into
the supervisor area or other partitions. Such attempts (for example, by MYC and
ZAP) cause the computer to signal the error. Possible causes: (a) the program
has erroneously loaded data into one of its base registers; (b) improper explicit
use of a base register.

5. Addressing Exception

The program is attempting to reference an address that is outside available storage.
Possible causes: (a) a branch to an address in a register containing an invalid value;
(b) an instruction, such as MYC, has erroneously moved a data field into program
instructions; (c) improper use of a base register, for example, loaded with a wrong
value; (d) a BR instruction has branched to an address in a register and the wrong
register was coded or its contents were changed.

6. Specification Exception

The program has. violated a rule of an instruction. (a) For any type of operation,
an attempt has been made to execute or branch to an instruction that does not
begin on an even storage address (possibly an incorrect base register). (b) For
packed operations DP and MP, a multiplier or divisor exceeds 8 bytes, or the length
of the operand 1 field is less than or equal to that of operand 2. (c) For binary
operations D, DR, M, MR, SLDA, SLDL, SRDA, and SRDL, the instruction
does not reference an even-numbered register. (d) A floating-point operation
does not reference register 0, 2, 4, or 6, or an extended-precision instruction does
not reference a proper pair of registers, 0 and 2 or 4 and 6. (e) CLCL or MYCL
does not reference an even-numbered register.

7. Data Exception

An attempt has been made to perform arithmetic on an invalid packed field. (a)
For AP, CP, CVB, DP, ED, EDMK, MP, SP, SRP, or ZAP, the digit or sign
positions contain invalid data. Possible causes: An input field contains blanks or



App.B Program Interrupts 555

other nondigits that pack invalidly; failure to pack, Or an improper pack; an AP
hl!S added to an accumulator that was not initialized with valid packed data; im
proper use of relative addressing; an MVC has erroneously destroyed a packed
field; improper explicit use of a base register. (b) The multiplicand field for an
MPis too short. (c) The operation fields for AP, CP, DP, MP, SP, or ZAP overlap
improperly due to incorrect use of relative addressing.

8. Fixed-Point Overflow Exception

A binary operation (A, AR, AR, LCR, LPR, S, SR, SR, SLA, or SLDA) has
caused the contents of a register to overflow, losing a leftmost significant digit.
The maximum value that a register can contain is, in decimal notation,
+2,147,483,647.

9. Fixed-Point Divide Exception

A binary divide (D or DR) or a CVB has generated a value that has exceeded the
capacity of a register. A common cause for divide operations is dividing by a zero
value. The maximum value that a register can contain is, in decimal notation,'"
+2,147,483,647.

A. Decimal-Overflow Exception

The result of a decimal packed operation (AP, SP, SRP, or ZAP) is too large for
the receiving field. Solution: Redefine the receiving field so that it can contain
the largest possible value, or perform a right shift to reduce the size of the value.

B. Decimal-Divide Ex~ption

The generated quotient/remainder for a DP operation is too large for the defined
area. Possible causes: (a) failure to follow the rules of DP; (b) the divisor contains
a zero value.

C. Exponent-Overflow Exception

A floating-point arithmetic operation has caused an exponent to overflow (exceed
+63).

D. Exponent-Underflow Exception

A floating-point arithmetic operation has caused an exponent to underflow (less
than -64).



556

E. Significance Exception

Program Interrupts App. B

A floating-point add or subtract has caused a zero fraction. All significant digits
are lost, and subsequent computations may be meaningless.

F. Floating-Point Divide Exception

A floating-point operation has attempted a division using a zero divisor.

In each case, the system issues an error message, giving the type of program
interrupt and the address where the interrupt occurred. Sometimes an error causes
a program to enter a declarative area or another invalid area outside the program.
(The computer may even find a valid machine code there.) In debugging, deter
mine how the program arrived at the invalid address. In many cases, a dump of
the program's registers and storage area is essential in tracing the cause of the
error.

Another common error, though not a program interrupt, is generated by the
operating system: INVALID STATEMENT. The system is attempting to read
an invalid job control command. A common cause is a program that has terminated
before reading all its data in the job stream, and the system is trying to read its
remaining data records as job commands. Possible causes are (a) missing branch
instructions causing the program inadvertently to enter its end-of-file routine; (b)
branching to the end-of-file routine on an error condition without flushing re
maining records in the job stream.



APPENDIX

c
ASSEMBLER

I"STRUCTIO" SET

....

(

j

MACHINE INSTRUCTIONS MACHINE INSTRUCTIONS (Contd) .. ..... ...- -"" "" M' "'.- - - "'" ~, -...... All 'A RR Rl.R2 &dusMOR(cl XI .7 SI 01lB1I,I2... "'. A SA RX Rl.02()C2.B2) Exdusftoe OR (d XC 07 SS O'IL.B1J.D2182l
Md~1d A9 FA SS 01IU.B').D2U,.2,,82) .- EX .. RX R,.021X2"B2)
Add"-"-d(c) At! 4A AX Rl.D2CX2.82J HIll: 110 (e,p) HID ..... 021921
Add Lo;al fe) AlJ' ,. RR R,..., 1Ulr~(c.p) HOV 9<0, S 021B2'
Add l..ogiQIid Al- S. AX Rl.D21X2,.82) .....- 'C .., RX Rl.D2lX2,.B2)

AND'" NR ,. RR R."" 1-'~U#tdtIt''''''k:)1CM BF AS R,.M3.o2182)
ANOId H 54 AX Rl.D2IX2.B2) 1-n'SWK.., (pJ "" =B.
ANOId HI .. 51 01(81).12 I~StonIgI' K.-, fp) IS" 09 RR R'.R2
ANOId He 04 SS D'IL.B1)J)2tB:z) ..... lJ' ,. RR R, ....
&r-ch...t Link '""" as RA Rl.R2 ..... L .. RX Rl.D2tX2.B2)
BrWICh .-ad Link BAt. .. AX R'.D2IX2.B2) .....- LA

., AX Rl.D2lX2,82I
~ on Condition 8CR a1 RR "',m Loed 8ftCI T_ Id LTIl .2 RR Rl.R2
Innd'l on c:o.ition Be .7 RX M'.D2IX2,.B2) 1Md~t(c) LeA '3 RR Rl.R2_.."""'" 8CTR 06 RR R,.R2 .....~"" LCrt. B7 AS Rl.R3.D2{B2)_.."""'" BeT .. AX R,.,D2tX2.82J .........- LH .. RX Rl.D2lX2,82)
Bnnch 01'11.... HiIb BXH 86 AS Rl"R3.02UI2l .....- LM 98 AS Rl.R3,.D2lB2J

~ Oft t..-x LGwor e.- OXLE 87 AS Rl.R3,02(82J LoId H9tiw td LNR 11 RR R1.R2
a-IJOIc:,pJ ClJ'10 9OD1 • 02(82) 1J*I PoIitiwe Ie) LPR .0 RR Rt.R2
_Id ell •• RR Rt.R2 t.QIId PSW In,p1 U'SW 82 • 021B2l

_'d C so RX Rl.D2n<2.82) LM1lI If_~ Ic,p) lJ'A B' RX Rl.D2lX2.B2J
~.wJ.$Mp(d cs SA AS Rl.R3,.02I821 _on Me AF •• 011811.12
CotnPtre 0IcimM te) Cl' F' ss D,.U.81 ',02U2.B21 - MYI 92 •• 011811.12
~ IJt:1fIIM MttI.$lIIIIp (e) cos .. AS R,.R3,.D2182) - MVC 02 ss DllL.BU.[)2CI2)__Id

eN .. AX Rl.D20C2.821 "-Lotrglc) MVCL 0. RR R1.R2

CompIn~1d ClJ' •• RR R."" -- MVN 0' ss 011L.81J.D2(B2)

~~Id CL .. AX RUJ20t2.82) McM'wilti ort-t MYO F' ss 01(L1.81),.02(L2.82J

Compwe Ll)gicII Cd CLC 05 ss D1(L,81J,.02tB2t _z."., MV2 03 ss D1(L,81J,.D2(82)

eomrr- LOSJic*lld CU 95 51 D1(81),.12 Muhiply ... 'C RR R1.R2

c.....,Logiul e:a-:.- CLM 80 AS R1.M3,.D2(B2J ........ M 5C RX R1.D2IX2.82)__Id
Multiply DeciinIII ... FC ss D1lL1,B1J,.021L2,.B2)

~LlIfJicIILOI'Ild CLCL OF RA R1.R2 Mult;pty Halfwon1 MH 4C AX R1.o21X2.B21

c:on-n:~ u;-., CV8 ,F RX R1,.D21X2,82) ORld OR •• RR R1.R2

CorNIirt~ 0IcifW cvo 4E Rx R1.D21X2,82) OR'" 0 .. RX R1.D2~

~(Pl 83 IScdlF 'p ....1Il ORId D. 96 .1 D118n)2...... OR .0 RR R1.R2 ORId DC 06 ss D1(L,,81l..D2(B2J...... 0 so AX R1,D21X2.82J .... PAC" F2 ss D1(U,BnJ)2(L2,.B2)

Diwica Decim.I OP FO ss 01 (L1.81J.D2(L2,B:2) .....n.o"" PTL8 82D0'
Edi~ Ie) EO DE SS DlIL.8U.D2(82) R-s Dinc:I: (P) RDO as 51 D11811.12
Ecitand MIrk Cd .OMK Of SS D11L,8n.D2(B2) "-r~Bit (c,pl RRB 8213 S 02t921
&c:Iu:siwe OR Ie) XR 17 RR R1.R2 S«Qodr (e,p) 5C" 8204 • 021B21
Udu:Iive OR Id X 51 RX R1.D2(X2,.B2) S«00c*~(P1 SC<C B206 S 02t921

557



floatia.,.....·uiut Instructions .. ....... ..- - ~, -AddN~&and«I(C',..d AXR 36 RR Rl.R2
Add NormaIiad,. lDng (d ADA 2A RR Rl)<2
Add NonNIiad,. lorlg fd AD 6A RX Rl.D21X2.B2)
Add~ShortIe) AER 3A RR Rl.R2
Add NoomaIind. Short ee) AE 7A RX Rl.D21X2,.B2)
Add Unnonnlliz'ld. l.OI'lg Id AWR 2E RR R1,R2
Add~ized.Long !c) AW EE RX Rl.D21X2.B21
Add UtMIOiii End Short (e) AUR 3E RR Rl.R2
Add l.In.--lized. Short (d AU 7E RX Rl.D2IX2".B2)
eornp,re. Long (d CDR 29 RR R1.R2
e:em.:.-. Long (d CD .. RX Rl.D21X2.B2J
~.Shon(d eeR 39 RR Rl.R2
Corrlpwe. Short (d CE 79 RX Rl.D21X2.B2)
DMde,.Long DDR 2D RR RI.R2
DMa..l.on9 DO 6D RX Rl,02IX2.B2)
Diwic». Short DER 3D RR Rl,R2
~.Shon: DE 70 RX RI.D2CX2.B2J-."'" HDR 24 RR RI,R2-."- HER 34 RR R1,R2
t.a.d.c:l Tc:sI" Long Id LTDR 22 RR RI,R2
Lo-I~T-. Sbon (d LTER 32 RR RI,R2
Lc.d~t.Longed LCDR 23 RR RI,R2
Lo.d~SbonCc:1 LeeR 33 RR Rl.R2........... LOR 2B RR Rl,R2

MACHINE INSTRUCTIONS IConldI

558

-'"OPT
SPX
$I'M
SPKA
SSK
SSM
SAP
S1.OA
SLDL
SLA
SLL
SADA
SADL
SAA
SAL
SlOP
SID
SIQF
ST
STlDe
STC
STCM
STCK
STCKC
STCTL
STAP
STlDP
STPT
STH
STM
STPX
STNSM

-SKond opw",ncl not_:ki all QHS It Is TFor OS/V5 alMl DOSfV5:
~(X2.B21 for RX fonNt 01 R2 lor RR tomvt'. source, GC33-C010.

EXTENDED MNEMONIC INSTRUCTIONSt
~CocIIo· ........1_.·
CAX DI' RRI MeMliftg IRX or RRI

8 or 8R Une:onditton.! Brandi BC DI' BCR 15.
NOP or NOPR No es--tion BC eM' BCR O.
8H or BHR Branc:h on A High Be eM' BeR 2,.
BLIIII'BLR ~onALow BCDI'BCR 4.
eEorBER In(ldlonAEqualB BCorBCR 8.
BNHorBNHR e.-ctlonAHotHigtl BCorBCR 13.
8NLorBNLR er.nchonANotL.ow BCorBeR 11.
INE or BNER IJqndj on At Not EQUoII 8 Be or BCR 7.
BOorBOR Branchonaw.rttow BCorBCR I.
IP or BPR Brancto on Ptw Be or BCR 2,.
BM 01' BMR e.-ctl on ,.;,.. BC or 8CR 4.
8NPor~ ar.ndI on Not Plus BCorBCA 13,
BNMorBNMR Branch on Not Minus BCorBCR 11.
BNZ or BNZR Brandl on Not z.rg BC or BCA 7.
BZOI"UR Branch on z.o Be or 8CA 8•
8OorBOR BranctlifOnes BCorBCA 1.
BM or BMR Bo'anch if MiQd BC or 8CA 4.
HZ orBZR Branch if Zeros 8C or SCA 8,
BNOorBNOR BArdiitNotOJ'ieS BCorBCRI4.

CONDITION CODES
Condition eocs. Setting 0 1 • 3
~BitV~ B • • ,
~I~

Adc!. Add Halr-d - <-. >- .....,ow
Add """'" -. --. -. IlOt~.

~- ~- """ -AND - ~,- -
~. eem.-. Hal'-d equ.aI lstoplow lltophigh
~ __ SMpIDoubl-

--' ~,......

EDIT AND EDMIC PATTERN CHARACTERS (ift hu;)
2O-digit:se1loc:tor 4O-blank ~

21-start of signir__ 48-period 68--l:omma
22-fiekl~teM' 58-dol1¥ sigtl C309-CR

A_
""'""""'....Ikel

Aridwnetic,.........
_T",-InstNCtion

Assembler Instruction Set App. C

fIoatin9-Poiftt Instli=tiolts IConId) .. ....... -- a><>, ~l "'.-........... LD .. RX Rt,.D2IX2.82.
c.o.d ...... Long 4d LNDR 21 RR Rl)<2
I.o-d Ne,ItNe. Stiott Cd LNER 31 RR R1,R2
LOId~.long Cd LPDR 2D RR Rl.R2
l.C*t Positive. Short (d LPER 3D RR Rl,R2
Lo«I RourwIlId, &--*d fD Long (xl LRDR 2S RR Rl,R2
LtMtIR~ Long 10 $/IoIt be) LRER 3S RR Rl,R2........- LER 3B RR Rl)<2........- LE 7B RX Rl.D2IX2.B2J
Multiply. ElC-*d (x) MXR 26 RR R')<2
....1ipIy. LOIl9 MDR 2C RR R1,R2
Multiply. Long MD 6C RX Rl.D2tX2.B2)
lbltipIy. LotJfI&--*d Ix) MXDR 71 RR Rl,R2
Multiply. LOtIg/&fMJd«I (x) MXD 01 RX Rl.D2tX2.B2)
MuI~.Shon MER 3C RR R1,R2
Multipfy. Shon ME 7C RX Rl,D2tX2.82).......... $TO .. RX Rl.o21X2.821
-."- STE 7D RX Rl.D2IX2.821
SUbWcr NoIJNIind. &,.",., lc.x) SXR ,., RR Rl,R2
SubtIact HomiIIizId, Long 4d $DR 2B RR Rl,R2
SuWact:~ Long k:) SO EB RX Rl,D2(X2.B2J
~ NonriIIiad, Shon Cd SER 3B RR Rl,R2
&abnctNonNt~Sbon Cd SE 7B RX Rl,D2CX2.B21
$ubtQct UIWlOfF ,..... 1..oflI fc) SWR 2F RR Rl,R2
~Utic..... ".Longld SW OF RX Rl,D21X2.621
SubtlXt Unnorme!i;nd, 9lon Ie) SUR OF RR Rl.R2
SubcJxtUn~StlOft fe' SU 7F RX Rl.021X2.B2)

Co Condition cedi is :set. P. Privi&egld il'lSUll(:tian.
n. New condi1:ion code is loaDed. 1,. Extended precisionfl.,.ti~

..
-..

01(81),12
Rl.R2
Rt)J2(XZ,B?)
Dl(Lt,81J.D21L2.82l
Rl.D2tX2.82J
R1,R2
Rt.D2CX2.B2l
I
D2IB2I
021821
02182)
DUBII)2
OUU1J.D2182J
DllL.8".D2182)
DtILl.B1J.D2IL2.B2)
D1(81).12
DlILl.81'.DZU.2.B2t

"'.-.
021821
021B21
R,
021821
Rl.R2
021821
D1tU,81J,D2(82l)3
Rl.D2(82)
Rl.D2(B2)
Rl.D2I821
Rl.D2C821
Rl.D2(B2)
Rt.D2(B2)
R1P2(82l
R1J)2(82l
Rl.R3.,D21B2J
D2tB21
021B21
R,,D2tX2,Il2l
O2'B21
Rl.D2lX2.B2l
Rt.M3.02182l
02182)
02182)
Rl.R3.D2(B2)
021B21
021B2l
021821
Rt,D2IX2.82l
Rl,R3.02(B21
021B21
01(8':.12

.....-~,
8208 S
1210 S
.. RR
B20AS
OS RR
.. S
FO SS
SF RS

"" RS.. RS
.. RS
ae RS
8C RS
SA RS
.. RS
AE RS
9COO S
9Cll1 S
SO RX
""'" S42 RX
ae RS
ll205 S
B207 S
.. RS
1212 S
B202 S
B209 S
.. RX
oo RS
1211 S
AC 51

AD SI
18 RR
sa RX
FB SS
48 AX
IF RR
SF RX
OA RR
93 S
9... S
9DOD S
91 51
De SS
DD SS
F3 SS
84 51
FB SS

....
s.t cPU r_tpa
s.tl"ntlill tp)
s.c~MIlk In)
Sel'I'$WK.,,,.,,~ (pJ
sas.... Key CP)
Sl'tsv-m ....~
ShihMd ROfIIttI~ Id
Shift tAft Double Id
Shift ... DouI* Logic:II
Shift Uh: SinsJI- Cd
Shift LaftSit9J~
Shih: Right DoutW tel
Shift Right~ L..ogicaI
Shift Ri;lt Single Cd
ShiftR~Single LO§JicaI
SigtW"""Cc,p)
Start UO (ep)
Sort110 F..".... k,pl....
sa-CI'-'ID (c,p)
....a....
sa-~.,.,...
....CIo<kI<l
SlIwClGd:~ (PI....- ...Sr-cPUAc*:fIwr (P)
$tor. cPU ID (PI
SnwrC'PUT_ (p)..--Store Multiple
Sr-PmUt (P)
SlDR'TbenAND~
-!PI

SIOIfI ,."." ORSpam Ihsk (PI STOSM
Soba'Kt(e) SA
_1<1 S
SutMrad: DecilnII Id SP
Subnct HIItvword lel SH
Suba'K1: Logic:II (d $LA
Subtnct: l.I:IgiQI Cd SL
~~I SVC
TeA. and SIt Cd TS
Tato....llc,p) TOt
Tat I/O (CoD) TID
Tat undw Mask Id TM
T_ TR
T.......andT_tcl TRT_ ....'"
Wri. Dinct (PI WRD
Zero and Add c.eimII Cd ZAP



... ... ... ... C*> - ...-.....
~

>".
~ ~ -- C*> - .......-., .....

~ ""'" C*> - ~~ pc,. peo'1

3,LAS • 3.1.A8 3.LAS • • .us .LAS o 3.LA9 3.LA9 • 3US &lli!qdo:rs.. IillOIdoasl. ..... -OtlOM:n'ltH CtlOM:n'o'H OtlOM4l'cl'H OtlOM:n'O'H ""'" C*> - '*!:.-wouun PPW
a.OM a.OM ""'" C*> - --QHOllrll:nenoa ~fal!C4· J a

J.N3WN9nV dON:) -- ""'" C*> - _.......- -<
0_ - --- ""'" C*> - ~~ puell!'l$

-.~ .... .......... - --- ""'" C*> - ~pue~"1!P3_..... - ". -.,... 't6!qdIUSL IlIIOfdo:rs.. ..... --LoO"L-lI O-O"l-li l-:)'OooH O<)'(}ool:l l!8 -""")aQl:I -- ""'" ..-,. - --UO!l~ ...... P!~ -- ~fINIP'Q- ....... ...... .......... ......... ......... - ...- - -J.pue.......J."""'1 tMUOO--'S - ...... - ....""IM'-J.-..... -...... MS:> -- 0I1_J. - - H$ puI::aD.L......... "- "- .....--.- epowllJlllll~ -- ......,"". .......... '- '-- ,."...,-
_.~ -_MS:> _0' QI~uns: -- ""'" ..-,. ---........_.~ -_MS:> ......- :tOIS'OIlUllS -..... - ".- .. -., .....- .......... ""'" ..-,. - ~~I:I~NS-..... ........ pe.IOISMS:)~ 011 111M -- ""'" ..-,. - ~etCIftOO :a,ra 1INS.....- ......... -- - YO-..... - 1*OUMS:l ~U! ...-0- - ......- -- .......- ......-....... -- ""'" - M!I!IOoI P'01-- -- _MS:> U!ado_ 0/1-.:) ..-,. .... ...-.....

~~I -- ""'" ..-,. - _.....
""'" ..-,. - _.1pue~

""'" C*> - ~"""'OlP,"~ WlZl!CIlSl MIO~:asl C»N" ....JIPUltUllX*O~1
-< """> .- -- -- - YO..,..",..-- .- ~dpecr'l 'l8!qCSO_1. MOl doll, ..... ,."...,-

(PIUD:J) S3QOO NOUIONOO (~uo:») S3ao:» NOIJ.lONCX»

6SS las UO!l:mJlSUI JalqwasS'f :J 'dd\1

(



APPENDIX

D
DOS MID os

JOBCONTKOL

This appendix provides some typical examples of job control under DOS and OS.

DOS JOB CONTROL

Here is an example of conventional job control to assemble and execute a program
under DOS:

560

II JOB jobname
II OPTION DUMP,LIST,LOG,XREF

ACTION MAP

Jobname may be 1-8 characters.
DUMP: Print contents of storage on

abnormal execute error (or
NODUMP).

LIST: List the assembled program (or
NOLIST).

LOG: Print the job control statements
(or NOLOG).

XREF: Print a cross-reference of sym
bolic names after the assembly
(or NOXREF).

Print a map of the link-edited progtam
(or NOMAP).



DOS Job Control

// EXEC ASSEMBLY
· .. (source program here)

/*
// EXEC LNKEDT
// EXEC

· .. (input data here)
/*
/&

561

Load assembler and begin assembly.

End of assembly.
Perform link edit.
Load linked module into storage; begin
execution.

End ofinput data.
End of job; return to supervisor.

Larger DOS systems provide for cataloging commonly used job control on
disk in the procedure library. The preceding example of job control could be
cataloged, for example, to provide for automatic assembly, link edit, and execute
through the use of only a few job commands, as follows:

* $$ JOB jobname
// EXEC PROC=ASSEMBLY

(source program here)

/*

· .. (input data here)

/*
/&

* $$ EOJ

DOS Job Control for Magnetic Tape

Jobname may be 1-8 characters.
Cataloged procedure ASSEMBLY con
tains assembly, link-edit, and execute job
commands.

End of assembly.

End of input data.
End of job.

The job commands for magnetic tape are similar to those for the system reader
and printer. However, tape files require additional information on a TLBL job
command to provide greater control over the file.

II TLBLfilename,'file-ID',date,file-serial-no.,vo!ume-sequence
no.,file-sequence-no.,generation-no.,version-no.

filename
'file-ID'

retention date

file serial number

Name of the DTFMT, the only required entry.
The file identifier in the file label, 1-17 char
acters.
One of two formats for output files: (1) yyl
ddd, the date of retention; e.g., 95/030 tells
the system to retain the file until Jan. 30, 1995;
(2) dddd, a retention period mdays.
1-6 characters, the volume serial number for
the first or only volume of the file.



562 DOS and OS Job Control App.D

volume sequence number

file sequence number

generation number
version number

1-4 digits for the volume number in a multi
volume file.
1-4 digits for the file number in a multifile
volume.
1-4 digits for the generation number.
1-2 digits for the version number.

If you omit any of the last four entries, the system assumes 1 if output and ignores
if input.

DOS Job Control for Direct Access Storage Devices

Each extent (disk area) for a disk file requires two job control commands, DLBL
and EXTENT, equivalent to the magnetic tape TLBL job command. Note that
you may store a file on more than one extent. DLBL and EXTENT follow the
LNKEDT command, coded as follows:

II EXEC LtlKEDT
1/ DLBL filename ...
II EXTENT symbolic-unit: ..

Here are details for the DLBL and EXTENT commands:

II DLBL filename,~file-IDI,date,code5

filename
'file-ID'

retention date

codes

Name of the DlFSD, 1-7 characters.
1-44 characters, between apostrophes. This is the first
field of the format 1 label. Y-ou can code the file ID and
optionally generation and version number. If you omit
this entry, the system uses the filename.
One of two formats for output: (1) dddd = retention
period in days; (2) yy/ddd = date of retention; e.g., 95/
030 means retain file until January 30, 1995. If you omit
this entry, the system assumes 7 days.
Type of file label: SD is sequential disk; ISC is index
sequential create; ISE is index sequential extend; DA is
direct access. If you omit this entry, the system assumes
SD.

1/ EXTENT 5ymbol~c-unit,serial-no.,type,sequence-no.,relative-

track,number-of-tracKs,split-cylinder-track .

symbolic unit The symbolic unit SYSnnn for the file. If you omit
this entry, the system assumes the unit from the pre
ceding EXTENT, if any.



OS Job Control

serial number

type

sequence number

relative track

number of tracks

split cylinder track

OS JOB CONTROL

563

The volume serial number for the volume. If you
omit this entry, the system uses the number from the
preceding EXTENT, if any.
The type of extent, where 1 is data area with no split
cylinder; 2 is independent overflow area for IS; 4 is
index area for IS; 8 is data area, split cylinder. If
omitted, the system assumes type 1.
The sequence number (0-255) of this extent in a mul
tiextent file. Not required for SD and DA, but if
used, the extent begins with O. For IS with a master
index, the number begins with 0; otherwise IS files
begin with extent 1.
1-5 digits to indicate the sequential track number,
relative to 0, where the extentbegins. The formula
to calculate the relative track is

RT = tracks per cylinder x cylinder number

+ track number

Example for a 3350 (30 tracicslcylinder), on cylinder
3, track 4:

RT = (30 x 3) + 4 = 94

1-5 digits to indicate the number of tracks allocated
for the file on this extent.
Digits 0-19 to signify the upper track number for split
cylinders in SD files. (There may be more than one
SD file within a cylinder.)

There are different versions of OS job control language. The following illustrates
one version, providing for assembly, link edit, and execution of test data. The
program uses the system reader and a printer file, both of which require a DD
(data definition) job command.

/Ijobname JOB [optional account#~acct9-information,pro9rammer-name]

I/stepname EXEC ASMGCLG Use ASMG to assemble, With no execute.

~
Level of assembler, e.g_, For G.
Compile (assemble).
Link-edit the assembled program.
Go, or execute the linked program.

//ASM.5YSIN DD + The. means that the source program
immediately follows in the job stream.



564 DOS and as Job Control App.O

... (source program here)
/* End of assembly.
IIGO.SY5UDUMP DD SYSOUT=A Causes printing of execution error

diagnostics.
I/GO.printername DD SYSOUT=A Data definition for printer in program

DCB. (A is class of output for printer.)
IIGO.readername DD + Data definition for system reader. (*

indicates that input data immediately follows.>

I
/I

•.. (input data here)
End of input data.
Optional entry for end of job.

Descriptions of the OS EXEC and DD commands follow. As a convention:

• Braces { } indicate a choice of one entry.
• Brackets [ 1indicate an optional entry from which you may choose one entry

or none.
• Parentheses ( ), where they appear, must be coded.

The OS EXEC Command

The general format for the OS EXEC command is the following:

Iitstepnamel EXEC
{

PGM=pr09ramname }
PGM=*.stepname.ddname
PGM=*.stepnarne.procstepname.ddname
[PROC=]procedure-name
[other options]

Other options for EXEC include ACcr (accounting information), COND,
DPRTY (for MVT), PARM (parameter), RD (restart definition), REGION (for
MVT), ROLL (for MVT), and TIME (to assign CPU time limit for a step).

ACCT[.procstepname]=(accounting information)

[

<cOde,operator) ]
COND[.procstepname]= (code,operator,stepname)

(code,operator,stepname,procstepname)

DPRTY[.procstepname]=(value1,value2)

PARM[.procstepname]=value

RD[.procstepname]=R or RNC or HC or NR

REGIOH[.procstepname]=(valueK[,value1K])



as Job Control 565

({
YES} {,YES})ROLL[.proc.tepnamel= MO ,MO

TIME[.procstepname]=(mins,secs)

The OS DO Command

The DD (data definition) command defines the name and property of each device
that the program requires. Its general format is the following:

/Iddname DO operand
procstepname.ddname

The operand for DD permits a variety of options, as follows:.

[;ATA]

[

DCB=<attribut e.) ]
DCB=(dsname(1attributes)
DCB=(*.ddname[,attributes)
DCB=(*.stepname.ddname[,attributes)
DCB=(*.stepname.procstep.ddname[,attributes])

[DDMAME=ddnameJ

[
([

MEWJ['DELETE ][,DELETE J)]OLD ,KEEP ,KEEP
DISP= SHR ,PASS ,CATLG

MOD ,CATLG ,UMCATLG
,UMCATLG

dsname
dsname(areaname)
dsname<membername>
dsname<generation#)

DSMAME=~ &&d.name
&&dsname(areaname)
&&dsnameCmembername>
*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

[
FCB=(image-id [,ALlGM ])]

,VERIFY

Define a data set in the
input stream.

Completion of data
control block.

Postpones definition of
the data set.

Assigns status,
disposition, and
conditional disposition
of the data set.

Abbreviated as DSN.
Assign name to new or
existing data set.

Forms control for 3211
printer.



566 DOS and OS Job Control App. D

[LABEL=([data set seq#][parameters])

[SPACE=(parameters)]

[Label information (see
below>.

Allocate space on disk
for a new data set (see
below)~

(SYSOUT=(classname[,programname] [,forml])[OUTLIM=no.]]
Route a data set through
the output job stream.

[UHIT=(parameters)l

[VOLUME=(parameters)]

Unit information.

Also VOL. Provide
information ~bout the
volume (see below).

The following describes in detail the parameters for LABEL, UNIT, and
VOLUME.

"",.l:,"",",., ,.,"

,SL
,SUL
,AL
,AUL
,NSL
,HL
,BLP

[
,PASSWORD][,IH ][,l[EXPDT=yymmdd])*
,HOPWREAD ,OUT RETPD=nnnn

({
TRK }(,primary[,secOndarY][,directorY])[,RLSE][,COHTIG][,ROUHDl)

SPACE= CYL 1 ,lndex 1 ,MXIG
block size . ,AlX

SPACE=(ABSTR, (PI'" imary qty, address[ 1 ~i rectory]))
. ,lndex

([
Unit-address][,count]

UNIT= device-type,P [,DEFER][,SEP=(ddname1,
group-name 1

UHIT=AFF=ddname

... )1)

VOLUME=([PRIVATEl[,RETAIH][,VO!seql][,VOlcountl[,l[SER=serial l , ••• ])
(OT VOL) " REF=dsname

REF=*.ddname

"EXPDT is expiration date and RETPD is retention period.



as Job Control

For REF, other entries are

REF=*.stepname.ddname
REF=*.stepname.procstepname.ddname

Other DD operands include these:

567

DUMMY
DYNAM
AFF=ddname
OUTLIM=number

SPLIT=operand

SUBALLOC=operand

TERM=TS

Bypass JJO on a data set under BSAM and QSAM.
Request dynamic allocation under MVT with TSO.
Request channel separation.
Limit the number of logical records to be included
in an output data set.
Assign space for a new data set on a disk device
and to share cylinders.
Request part of the space on a disk device that the
job assigned earlier.
Inform the system that data is transferring to or
from a timesharing terminal.



APPENDIX

E
SPECIAL MACROS:

INIT, PUTPK,
DEFIN, DEFPK, EOJ

This appendix describes the special macros INlT, PU'IPR, DEFIN, DEFPR, and
EOJ used at the beginning of this text to handle program initiaIization and input!
output. The macros are simple to implement and to use, and anyone is free to
catalog them. Beginners often have trouble coding the regular full macros, making
punctuation and spelling errors and omitting entries. The use of macros such as
the ones in this appendix can avert a lot of initial coding errors and can free
beginners to concentrate on programming logic.

The INlT macro, which is used for initializing base register addressing, re
qnires versions for both DOS and OS, shown in Figs. E-! and E-2, respectively.
A further recommended refinement could include the DOS STXIT or OS SPIE
macro for error recovery.

//

MACRO
&INITZE INIT
&INITZE BALR 3,0

USING *,3,4,5
LA 5,2048
LA 4,2Q48(3,5)
LA 5,2048(4,5)
MEND

LOAD BASE REGISTER 3
ASSIGN BASE REGS 3,4 & 5
LOAD X'800' (1/2 OF X'lOOO')
LOAD BASE REG 4
LOAD BASE REG 5

568

Figure Eol The DOS INlT macro.



!

App. E Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ 569

MACRO
&INITZE INIT
&INITZE SAVE

BALR
USING
ST
LA
LA
LA
LA
B
SPACE

SAVEAREA DS
MEND

(14,12)
3,0
3,4,5
13.SAVEAREA+4
13.SAVEAREA
5.204S
4.204S(3.5)
5,2048(4,5)
SAVEAREA+1.8*4

lSF

SAVE REGS FOR SUPERVISOR

SAVE ADDRESSES FOR RETURN
TO SUPERVISOR

LOAD X'SOO' (1/2 OF X'lOOO')
LOAD BASE REG 4
LOAD BASE REG 5

SAVE AREA FOR INTERRuPTS

Fq:ure £02 The OS INIT macro.

MACRO
&WRITE PUTPR &FILE. &PRAREA. &CTLCHR

LCLC &CTL

*
•VALAREA AIF
&CTL SETC

AGO

*
.NEXTl AIF
&CTL SETC

AGO

*
.NEXT2 AIF
&CTL SETC

AGO

*
.NEXT3 AIF
&CTL SETC

AGO

*
.NEXT4 AIF
&CTL SETC

AGO

*
.NEXT5 AIF
&CTL SETC

AGO
.*
.NEXT6 AIF
&CTL SETC

AGO
.*
.NEXT7 AIF
&CTL SETC

AGO
.*

('&C'1'LQm' NE 'WSP1').NEXTl PRINT & SPACE 1.?
'X' 'Og' "
.NEXT9

( '&CTLCHR I NE 'WSP2' ) .NEXT2 PRINT & SPACE 2?
'X' '11' II

.NEXT9

( I &CTLCHR I NE 'WSP3').NEXT3 PRINT & SPACE 3?
'X' '19" 1

.NEXT9

( '&CTLCHR' NE •SPl' ) .NEXT4 SPACE 1. NO PRINT?
'X' 'OB'"
.NEXT9

('&CTLCHR' NE 'SP2') .NEXTS SPACE 2. NO PRINT?
'Xlll3' "
.NEXT9

('&CTLCHR' NE 'SP3') .NEXT6 SPACE 3, NO PRINT?
'X"lB" II

.NEXT9

( I &CTLCHR' NE I SK1' ) •NEXT7 SKIP TO NEW PAGE?
'X"SB" II

.NEXT9

( I &CTLCHR' NE 'WSPO ") .NEXTB PRINT & SPACE O?
'X"Olll.
.NEXT9

MNOTE 1., I INVALID PRINT CONTROL - DEFAULT TO WSPl.'
SETC 'X " 09,,1

.NEXTS
&CTL
.*
.NEXT9
&WRITE

.NEXT10

ANOP
MVI &PRAREA.&CTL
PUT &FILE,&PRAREA
ANOP
MEND

MOVE = CHAR TO PRINT
* & PRINT

Fq:ure £03 The PUTPR macro.



570 Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ App. E

."'\

The PUTPR macro, shown in Fig. E-3, generates two instructions, of the
form:

MVI PRIHT,X'nn'
PUT PRTR,PRIHT

Insert control character
Print line

If the control character is invalid, the macro instruction defaults to write and space
one line.

The DEFIN macro defines the system reader and assume the use ofa workarea
for input. (That is, you code GET filename,workarea.) The macrO usefully
checks the validity of the supplied end-of-file address. The DOS ver.;ion, shown
in Fig. E-4, generates a DTFCD, whereas the OS version, shown in Fig. E-5,
generates a DCB. The particular entries may vary by installation.

MACRO
&FlLEIN DEFIN &EOF

AIF (T'&EOF EQ 'I' OR T'&EOF EQ 'M'l.A10 EOF ADDRESS VALID?
MNOTE 1., I BOF ADDRESS NOT DEFINED I NO-

&EOF CLOSE &FILEIN * GENERATE EOF ROUTINE
EOJ

.AlO ANOP
&FILEIN DTFCD BLKSIZE=80, DEFINE INPUT FILE +

DEVADDR=SYSIPT, +
DEVlCE=2540. +
EOFADDR=&EOF, +
IOAREA1=INBUFF1, +
I0AREA2=INBUFF2, +
TYPEFLB=INPUT, +
WORKA=YES

SPACE
INBUFFl DC CL80" INPUT BUFFER-l
INBUFF2 DC CLSO I I INPUT BUFFER-2

MEND

Figure E4 The DOS DEFIN macro.

MACRO
&FILEIN DEFIN &EOF

AlF (TI&EOF EQ 11 1 OR T 1 &EOF EQ 1M') .A1.0 BOF ADDRESS VALID?
MNOTE 1,'EOF ADDRESS NOT DEFINED' NO-

&EOF CLOSE &FILEIN * GENERATE EOF ROUTINE
EOJ

.A10 ANOF
&FILEIN DCB DDNAME=SYSIN, DEFINE INPUT FILE +

DEVD=DA. +
DSORG=PS, +
EODAD=&EOF. +
MACRF=(GM)

MEND

FJgU1'O E-5 The OS DEFIN macro.

'._''',
j



App.E Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ 571

FJgUre E-6 The DOS DEFPR macro.

SYSPRINT EQU
ENTRY
MEND

MACRO
&PRFILE DEFPR
&PRFILE DTFPR BLKSIZE=133,

CTLCHR=YES,
DEVADDR=SYSLST,
DEVlCE""3203,
IOAREA1=PRBUFF1,
l0AREA2-PRBUFF2,
WORKA=YES

SPACE
PRBUFF1 DC CL133'
PRBtJFF2 DC CL133 ,

SPACE
MEND

MACRO
&PRFILE DEFPR
&PRFILE DeB DDNAME-SYSPRINT,

DEVD=DA,
DSORG=PS,
RECE'M=FBSM,
MACRF=(PM)
&PRFILE
SYSPRINT

DEFINE OUTPUT FILE

OUTPUT BUFFER-1
OUTPUT BUFFER-2

+
+
+
+
+
+

+
+
+
+

(

FJgUre E-7 The OS DEFPR macro.

MACRO
&LABEL EOJ
&LABEL L 13 ,SAIIEAREA+4

RETURN (14,12)
MEND

END-OF-JOB
RETURN TO SUPERVISOR

FJgUre E-8 The OS EOl macro.

The DEFPR macro defines the printer and assumes the use of a workarea
for output. (That is, you code PUT filename,workaro::a.) The DOS version,
shown in Fig. E-6, generates a DTFPR, whereas the OS version, shown in Fig.
E-7, generates a DeB. The particular entries may vary by installation.

DOS already has a simple EOl macro. The OS EOl macro, shown in Fig.
E-8, generates the load savearea and return and ties in with the OS INIT macro.



APPENDIX

F
EBCDIC CODE

REPRESENTATION

"/

572

CODE TRANSLAnON TABLE

Inwuclion
e_iG_ CaIltI'cb EBCOIC

"'- ... IRRl ICDle E8CDlCHI ASCII ""'- .-."' .... NUl ,........ ........
I 01 "'" "'" ]Z=-1"'9 ......"
'" SIX STX ,2->, ...."'~
"" EIX EIX ".,.. OOCOalU
.Ol ,PM " ,OJ l~~" I:::::, .. ..... HI ENQ ".,..... am It Ia. IM"l CIXODllO
, 07 sc. m BEl 12-'" CDDD11l

'Ol '51( as u'" ....""
.Ol ,51( HI 12-,'" ......,
~ .. ,vc .... IF U·,.... ....~~
"08 VI VI 12-_ CD» 1m
UO; " " I:z:.... 1""'"BOO co co ""00"IE MVa. so so JM-H UXDUII
IS IF Cltl 51 51 12-N" rDIIltll

" ~ lPO lItE lItE 12-11-1-H
:~=u " ... DC' DC' IN'"

I8U llR DC2 DC2 I1-M GlIllal»
N B lCO 1M 0C1 11-)09 OXlUIlIl
"I' ... 8ES DC4 1l~" iOXllom
" IS a.R ... "'" ".... lIODlGlDl

" " OR as SYlI Il.... DIClnD
2) II llR Il E18 11-7-9 (onom
" 18

.. CN< CN< 11-&-9 ..,""
" N

co EM EM ll-t-l'" 0XI1 IlIl

!!I~ AI cc 5lJ8 11-2-1-9 urnlno
• cu, 1SC n··3-I-9 lD31 lin

"'" MR "' FS 11...... "'110
"" OR '" ., 11+1-9 con 1101
"'IE AIR IRS RS u...... GCD1UII
31 J' SUI IUS US II-N-9 GIll IlII

" .. "'lR os
~P!

11+1...., ::::"" ENO' 50S ..,..
"" lM FS · ..... OUOal»
352) "OR • ..... CIllOaUl

"" IlOR BY' • .... mlOOJlXl

"" "OR IF • .... ..(IlIIGJO}

~ ,~ :"OR
m • .... GO»Olll
ESC ..,.. OUOO1l1

CODE TRANSlATION TABLE IContd),- Gnphics and ContnlS EBCDIC
"'- ... IRlO BCDle EBCDIC'll ASCII ""'- .-.. " LOR I ..... "'~ ...
'I" COR ) 001·... ODIO JIll",. ADO 5M · ..,.... (lUOJl»

e" 'OR aJ2 • ..,.... 01)101011
"1C "OR ..... mJlllOO

"" .OR IlIQ · ...... 0010 110•.. " .OR AlX ; ..... 0010mD
::1" 'OR BEl ....... OIIJO 1111.. '" 1I<R • 12-11+1"'-9 U)JJGlD).. " lNE' , .... ODllllODl

50" llER SYlI , ,.., eDuono,
" lCER , ,.. mU1II1l

"''' ... IN • ... 00110100
53" .... RS , ... amoln
56" ... ~ • ... mnol.
55" , ,.. anum
56" ... • ... omJm

"" CER • ,.... OlD'"
!:I~ I~ ~.

, ,.... OOUIlIO,.... am lJl1
IOlC ... DC4 < ..... OOllllll
61 30 OER ... · ..... ooulIrn

"" AllR > .... om 1111
81" '" "" ? 1-34 1»11 nu.... 5tH .... • M"'- ......." .. ... • ,....,.. ODII»1.. " src • ~ OIlDGUO

"" 1C C 12-...-0 CJCDCDll.... EX • 12-H" 01»01llll.. " .... £ ~ OD0101
10 .. IC1 F 12-0+1

:=::~, t1 • ,....,..
" .. .. • "..... .......
15 .. 01 I 1>-," .......... AN • • J l2-M IDlua
" .. 5H • ..... oaJUt

"'" ... al < < l ~.. ODIID
n .. [ I • " ..... ODll1•

'IC' CYD < • • • := :=~~"" CVI • , , 0

j

/



App. F EBCDIC Code Representation 573

CODE TRANSLAnON TABLE (Contd)

~=
GfaPhksllldCcntnlls . EBCDiC

Do<. "" ICDIC EBCDICID ASCII "'"""
B_

.. " 51 •• • • P IZ OJlICJ:lCO
'1 51 Q I2-U~14 OlO1al
"52 ~ ,~~~~ :~~=~"".... • T 12-11..... 01)1011I
"OS '" U 12-U.... OJnDlDt
"50 0 y

~~~
Oln01»

liST x W 01010111

:: .. L X 12-u.... DIUPD

" < y n·H 0101 JIlII.... A • ! I i~~ ::~~~0 " S s • s
92lC M · · · , 11+8 Gill 1m
"so D 1 I I 1 u 01011101.. ,. AI. , -- :~::'"'

amul)
"" Sl. • - - DI!!IJllJ.. ., STO - · · · U 0110'"
92 •• , , , • ... alllaDOt.. " • ,~~ :~~:~.. " <... .. • 1l+H 01»0.

'" os • 11...... 01100101.... : 1~

:~:::~"' .. MXD 11+1-9
J)4 .. Ul • u...... OIl) lID
lOS" co i QUODt.. .. AD • I 12-U 01» 1111I
m .. so • , Dtllt 1011... 6C MO .\ • • \ OnOIJCl)

'" 6D DO , • O+J OIa.t»l
.10 " AW , > > •

~:~:ft111'" sw · ? ? •
lIZ 10 SIE • 12-,,,, allieD»

'" n 0 JZ-'n+14 0111lml." 12 , 1::::.:0:.: :::::~lIS " •116 " • 1Z'"ll+I-9 01110_
m IS • 12-,....... 01110111
111 16 • 12-.......

::::g:~no T1 • l2-'11+H
." II If • 12-U...... 0111 JIlD
1Z1 " a · , ... Ol111DDl
122]A " • , , • ,..

:m~:m " " .- • • t ,..
'" u: .. 0' 0 0 ... OUlllllO

'" TO .. , I ,.. alUUD).. 1E AU > . - - · ...
:mn~127 If SU .r · · Ill. T-'

12B .. SSM "
.....,..

J2I .. • •, ...0101
1lD " LPSW • • • ,...,10
,>I " ' < < 12..- JXDCDll

'" SI • • I~ :=... .. 'DO , <

'" .. 'XII ·: "'0110

'" Ii BXlf I2...T xmlm
Il6 .. SRI. • •
J3T" su. I 1 i2+o
1lD SA SRA ."....... ...""
'" .. Sl.A os I "....,.. "'1011... "'. sID", .. St"-

, "....... "'lJI'... IE S'" · "'llllI,., IF - + 12+T" 1lXD 1111... .. STM JZ-'U-~• ..,...
IlS 91 1M

}SI J i JZ-'11"1
16692 MYI t , 12'-11-2 ..11D1O
NT " TS -S 1 I "',H llXllDm... " ., • • JZ-'ll"" P110Jll... " ell

St· • • J2'01l"'S ...oan
: " 01 : : J2'0IH JaOlOlJl

" XI 12-1N 1OJ1 0111.. oflS q • lZ-ll·a ID''''"' .. , , 12-,'" IDI lin
~ I:~ \

lZ-l~H

=:=~12-11-3-1

CODE TRANSLAnON TABLE (Contd)

... ,- CQIIllkS and ContrvIs EBCDIC

"" ISS> BCDIC fBCDIC«U ASCII ""'COlo B"",

'" 9C Slo.SIg'C " lZ-1l+& ..!~
lSI to TID-CUti S • 12-,..... 11111111

: " 1~1ID'i • "....... ... llllI.. • 12-1N-I 1OJ11I1i

'" .. - 1010'"
16. AT - · I..... ""...
~

III , , ,..... IOXlID1O

" • I 1111(»11... M • • .- 1I100J»

'" AS • • ,..... 11100101

: ,. • • 1HHi JJJ)QllO

" • • 'T 11100111... .. , T II+! 1010'"

'" III • , ,- IOXl ...

~ ~
11·..... ~~,J)1O· ,...... 10 JIll

m At
~~t.sl

r U-<><.. JlJl1J1)
m AD [........ II» Ulli

1:: " SIGP -ItS • '....... :~:~'" Me -51 • 11+1--1
n• .. • ~~l-a I011CDXI
m 81 lIlA ... • !2'"ll+I lI11tall

~ "
sa_

• 12-U.... 1O1l1ll1O.. • 12-I1-o? IIUlIIn
IllI .. · 12-U.... lOlIOllllu. as

F"" las
• 12-u.... lOl101Ql

'" .~ • Ilt~ :~:~I!!!
,

"'T
1M .. • Iz.I1-o-1 JIll JlQO... ..

~s lRS
• 12-lI-O< IIllllDl

'" SA 12'"11-0-208 1011)011
lBl OR ,

12-11~ 10111111.

'" Be , 1Z'"u...... J1l1IllD.. B. ~lRS 1 Iz.tl"'0-5'-8 JIll UIlI'.. " • 12-11...... JllI11K1
". " ICIA - 12-11-0-7-1 lOU 1111
1/2<0 ? 1 ,..
rn <' A A 12-. llDUlIlt

::: I~ • B B 12-' tllXlto.
C C c 1M l1lIlDUl... " D 0 D lJDDID

lOT C5 E E E 1H DIIlG10l:: C6 , , ,
~ 1IlXI01.

a G G G 110)0111.. CB • • H ".. ;::an t'I t • 1:: CA ,...,.... "'XlIOco IJlDlIl1

"" cc , lJD'".. co 11»1111.. a • I~;':': ... llllI.. " 111I1111.. OO ! 1 ,... lJI,'".. Dt J J 11-, IIIUIDI
210 oz MY< • • • ,~, lJIlOOIO
21. IS I/NZ 1 L 1 "" tJuom
'12 DO He M M M 11-4 11110JUlil
'0 " a.< • • • 'I? 000»1
214

I:::
DC • 0 • u-<

~::::~215 xc p p lH
'16 DB Q 0 0 U-I 11011IlD
'12 .. • • • ,... 11011101
2d .. f~l1'"H'9 ~::~'" D. 11......
23l DC TR 1l-11 ~., IlOlllW
221 DO TRT 12-,....... 1»1 1)01
"' .. ED

I~N= ~:~~'" IF EIlMX

'" ED • , 1lJI...

'" E1 11+'" UIOCUlI: E2 S S S ..
:~:~E1 T T T ...

'" I:; u u u
~

11»011I

'" • y y 11»0101:. I:: w w W ...
I !;~:!~• X X -

(

574

CODE TRANSLATION TABLE (Comd)

EBCDIC Code Representation

CODE TRANSLATION TABLE (Contd)

App. F

lnsttudillt Gnrlhicsn tonItoIs £SCOIC
"'-- ICDIC EaCDICtll ASCII ""'''''','" EO y y y :::. 1110 JtQO

m" Z Z Z I1Jl1 J1)1

'" fA 1100-2+9 I1J) Jl:J)

'" EO II....... 111) JOn

'" EC • 1l-CH...., 1I1J lID
m ED IH+H 11)) 11)1

'" I:; I~~':': I~~:~~'"'" ED SRP • • • • 1111 CD»

'" F1 IMJ I I 1 I Wt03Dl

'" " PAD: 2 2 2 2 Dum.

"'" ...'" , , , unum

Instruction Cr'P'!ics~ Controls EBCDIC
OK. .., t5S) BCDIC EBCDICIJI ASCII ""'"'",;;; • ~:mf5 , , , ,... .. • • • • I~~~llII fl , 7 , 7... f8 ZAP • • • • WI

'" .. CP 0 0 0 0 WIIDI

'" FA AP I t>-n+o-H nIl II»
25' F' ,P t>-,........ lUI lUi
g Fe MP

~=
Wl1Dl.. DP lUlUlI

'" " ~~.:.~.:.' m~~~'" " '0

)

)

')

· APPENDIX

G
SUMMARY

OF ASSEMBLER
DECLARATIVES

Here is a list of the assembler data types for defining DC and DS declaratives.

575

576 Summary of Assembler Declaratives

Implied Maximum TI1""CQ/ionl
Type Format length length Alignment pmdding

A addless 4 4 wold left

B binary digits - 256 byte left
c character' - 256 byte right

D. floating-point -- 8 8 doubleword right
(oug

E fioatiDg.point -- 4 8 wold right
short

F fixed-point binary 4 8 wold left
H fixedopoint binary 2 8 balfwold left
L floating-point-- 16 16 doublewold right

extended
p packed decimal - 16 byte left
Q symbol naming a 4 4 wold left

DXDorDSECr2

S addxess in basel 2 2 ha1fword -
displacement
rODDat

V ex.temal def'med 4 4 wold left
addless

X bexadecimal digits' - 256 byte left
Y addless 2 2 balfwoId left
Z zoned decimal - 16 byte left

App.G

'For DS, C and X type declaralives may have a defined length up to 65,535. "Q-type declaralives
are available only for F-leve1 Assembler.

APPENDIX

u
SUMMARY

OF ASSEMBLER
DIRECTIVES

Here is a list of the various assembler directives in each general category. Direc
tives marked with an asterisk C*) are available only under OSNS or VM.

Program sectioning and linking

COM Identify beginning of a common control section.
CSECT Identify start or resumption of a control section.
CXD* Cumulative length of an external dummy section.
DSECT Identify start or resumption of a dummy control section.
DXD* Define an external dummy section.
ENTRY Identify an entry point, referenced in another assembly.
EXTRN Identify an external symbol, defined in another assembly.
START Define start of the first control section in a program.
WXTRN Identify a weak external symbol (suppresses search of librar

ies).

Base register assignment

DROP Discontinue use of a base register.
USING Indicate sequence of base registers to use.

577

SPACE
TITLE

578 Summary of Assembler Directives App. H

Usting control

EJECT Start assembled listing on next page.
PRINT Control assembled listing (operands are ON/OFF, GENINO

GEN, and DATAINODATA).
Space n lines in the assembled listing.
Provide a title at the top of each page of listing.

Program control

CNOP Conditional no-operation (see next section).
COpy Copy code from an assembler source library.
END Signal end of an assembly module.
EQU Equate name or number to a symbol.
ICIL Define the format of following source statements.
ISEQ Start or end sequencing of source input statements.
LTORG Begin the literal pool.
OPSYN* Equate a name operation code with an operand op code.
ORG Set the location counter.
POP* Recover status ofPRINTIUSING directives saved by last PUSH.
PUNCH Provide output on cards.
PUSH* Save current PRINTIUSING status.
REPRO Reproduce the following card.

Macro definition

)
./

MACRO
MEND
MEXIT
MNOTE

Begin a macro definition.
Terminate a macro definition.
Exit from a macro definition.
Display a macro note.

Conditional assembly

ACTR Set loop counter for conditional assembly.
AGO Branch to sequence symbol.
AIF Conditional branch to sequence symbol.
ANOP Assembly no-operation.
GBLA Define global SETA symbol.
GBLB Define global SETB symboL
GBLC Define global SETC symbol.
LCLA Define local SETA symbol.
LCLB Define local SETB symbol.

)

App.H Summary of Assembler Directives 579

LCLC
SETA
SETB
SETC

Define local SETC symbol.
Set an arithmetic variable symbol.
Set a binary variable symbol.
Set a character variable symbol.

CHOP 4,8

CHOP 6,8

Conditio~alNo-Operation (CNOP)

The purpo~eof CNOP is to enable you to align instructions on integral boundaries.
You would most likely use CNOP where you have defined local declaratives at the
end of a subroutine and want to ensure that the first instruction for the next
subroutine begins on an even boundary.

There are six variations on CNOP, depending on whether you want alignment
based on fullword or doubleword boundaries. Operand 2 designates fullword (4)
or doubleword (8) alignment. Operand 1 determines the particular location in
the fullword or doubleword. To force the correct alignment, CNOP generates
from one to three NOP instructions, each 2 bytes long.

Fullword alignment

CHOP 0,4 On fullword boundary
CHOP 2,4 On address aligned on halfword boundary in middle of aligned

fullword

Doubleword alignment

CHOP 0,8 On doubleword boundary
CHOP 2,8 On second halfword immediately following doubleword

boundary
On fullword boundary in middle of aligned doubleword
On fourth halfword boundary in aligned doubleword

A common requirement for alignment on a fullword boundary is simply CNOP
0,4. If the assembler location counter was at X'762' , this tNop would generate
one NOP so that the following instruction begins at X'764'. Note, however, that
if the location counter is at an Odd-numbered address, the assembler forces normal
alignment before processing the CNOP.

Relevant IBM reference manuals

GC33-4010 OSNS-DOSNS-VMl370 Assembler Language
GC24-3414 DOS Assembler Language

580

APPENDIX

I
ANSWERS

TO SELECTED.·
PROBLEMS

Chapter 1

1-4. (a) 7; (c) 25.
1-5. (a) 110; (c) 10010.
1-6. (a) A; (c) 12; (e) 20.
1-7. (a) B; (c) 12; (e) 1A.

1-11. (a) 64 X 1,024 = 65,536.
1-18. (a) binary = 1111 0101; hex = ·F5.
1·19. (a) 370 F3F7F0 111100111111011111110000

(c) Sam E28194 11100010 1000000110010100 (lowercase)
1·21. (a) PAT D7C1E3 110101111100000111100011

Chapter 2

2-1. (a) A unit of data., such as employee number or rate of pay.
2-2. (a) The instruction that a computer executes.
2-5. (a) The program as written in symbolic language, prior to assembly.

\
--/'

