
Loosely Coupled Multiprocessors

Our previous discussions of multiprocessors focused on systems built with a modest
number of processors (no more than about 50), which communicate via a shared bus.

The class of computers we shall consider in this and the next lecture is called “MPP”, for
Massively Parallel Processor”. As we shall see, the development of MPP systems was
resisted for a long time, due to the belief that such designs could not be cost effective.

We shall see that MPP systems finally evolved due to a number of factors, at least one of
which only became operative in the late 1990’s.

1. The availability of small and inexpensive microprocessor units (Intel 80386, etc.)
that could be efficiently packaged into a small unit.

2. The discovery that many very important problems were quite amenable to
parallel implementation.

3. The discovery that many of these important problems had structures of such
regularity that sequential code could be automatically translated for parallel
execution with little loss in efficiency.

The process of converting a sequential program for parallel execution is often called
“parallelization”. One speaks of “parallelizing an algorithm”; often this is misspoken
as “paralyzing an algorithm” – which unfortunately might be true.



The Speed–Up Factor

In an earlier lecture, we spoke of the speed–up factor, S(N), which denotes how much
faster a program will execute on N processors than on one processor. At the time, we
referenced early opinions that the maximum speed–up for N processors would be
somewhere in the range [log2(N), N/log2(N)].

We shall show some data for multicomputers with 2 to 65,536 processors in the next few
slides. Recall that 65,536 = 216. The processor counts were chosen so that I could
perform the calculation log2(N) in my head; log2(65,536) = 16 because 65,536 = 216.

The plots are log–log plots, in which each axis is scaled logarithmically. This allows the
data to be seen. The top line represents linear speedup, the theoretical upper limit.

In the speedup graph, we see that the speed–up factor N/log2(N) might be acceptable,
though it is not impressive.

The next graph is what I call “cost efficiency”. It is the speed–up factor divided by the
number of processors: S(N)/N. This factor measures the economic viability of the design.

Given the assumptions above, we see easily why large MPP designs did not appear
to be attractive in the early 1990’s and before.



The Speed–Up Factor: S(N)

Examine a few values for the N/log2(N) speedup: S(1024) = 102 and S(65536) = 4096.
These might be acceptable under certain specific circumstances.



The Cost Efficiency Factor: S(N) / N

This chart shows the real problem that was seen for MPP systems before the late 1990’s.
Simply put, they were thought to be very cost inefficient.



Linear Speedup: The MPP Goal

The goal of MPP system design is called “linear speedup”, in which the performance of
an N–processor system is approximately N times that of a single processor system.

Earlier in this lecture we made the comment that “Many important problems, particularly
ones that apply regular computations to massive data sets, are quite amenable to parallel
implementations”.

Within the context of our lectures, the ambiguous phrase “quite amenable to parallel
implementations” acquires a specific meaning: there are well–know algorithms to solve
the problem and these algorithms can display a nearly–linear speedup when implemented
on MPP systems.

As noted in an earlier lecture “Characteristics of Numerical Applications”, problems that
can be solved by algorithms in the class called “continuum models” are likely to show
near–linear speedup. This is due to the limited communication between cells in the
continuum grid.

There are other situations in which MPP systems might be used. In 1990, Hennessy and
Patters on [Ref. 2, page 575] suggested that “a multiprocessor may be more effective for
a timesharing workload than a SISD [single processor]”. This seems to be the usage on
the large IBM mainframe used by CSU to teach the course in assembly language.



Linear Speedup: The View from the Early 1990’s

Here is what Harold Stone [Ref. 3] said in his textbook. The first thing to note is that he
uses the term “peak performance” for what we call “linear speedup”.

His definition of peak performance is quite specific. I quote it here.

“When a multiprocessor is operating at peak performance, all processors are
engaged in useful work. No processor is idle, and no processor is executing
an instruction that would not be executed if the same algorithm were
executing on a single processor. In this state of peak performance, all N
processors are contributing to effective performance, and the processing rate
is increased by a factor of N. Peak performance is a very special state that
is rarely achievable.” [Ref. 3, page 340].

Stone notes a number of factors that introduce inefficiencies and inhibit peak
performance. Here is his list.

1. The delays introduced by interprocessor communication.

2. The overhead in synchronizing the work of one processor with another.

3. The possibility that one or more processors will run out of tasks and do nothing.

4. The process cost of controlling the system and scheduling the tasks.



Early History: The C.mmp

While this lecture will focus on multicomputers, it is instructive to begin with a review of
a paper on the C.mmp, which is a shared–memory multiprocessor developed at Carnegie
Mellon University in the early 1970’s.

The C.mmp is described in a paper by Wulf and Harbinson [Ref. 6], which has been
noted as “one of the most thorough and balanced research–project retrospectives … ever
seen”. Remarkably, this paper gives a thorough description of the project’s failures.

The C.mmp is described [Ref. 6] as “a multiprocessor composed of 16 PDP–11’s, 16
independent memory banks, a crosspoint [crossbar] switch which permits any processor
to access any memory, and a typical complement of I/O equipment”. It includes an
independent bus, called the “IP bus”, used to communicate control signals.

As of 1978, the system included the following 16 processors.

5 PDP–11/20’s, each rated at 0.20 MIPS (that is 200,000 instructions per second)

11 PDP–11/40’s, each rated at 0.40 MIPS

3 megabytes of shared memory (650 nsec core and 300 nsec semiconductor)

The system was observed to compute at 6 MIPS.



The Design Goals of the C.mmp

The goal of the project seems to have been the construction of a simple system using as
many commercially available components as possible.

The C.mmp was intended to be a research project not only in distributed processors, but
also in distributed software. The native operating system designed for the C.mmp was
called “Hydra”. It was intended as an OS kernel, intended to provide only minimal
services and encourage experimentation in system software.

As of 1978, the software developed on top of the Hydra kernel included file systems,
directory systems, schedulers and a number of language processors.

Another part of the project involved the development of performance evaluation tools,
including the Hardware Monitor for recording the signals on the PDP–11 data bus and
software tools for analyzing the performance traces.

One of the more important software tools was the Kernel Tracer, which was built into the
Hydra kernel. It allowed selected operating system events, such as context swaps and
blocking on semaphores, to be recorded while a set of applications was running.

The Hydra kernel was originally designed based on some common assumptions. When
experimentation showed these to be false, the Hydra kernel was redesigned.



The C.mmp: Lessons Learned

The researchers were able to implement the C.mmp as “a cost–effective, symmetric
multiprocessor” and distribute the Hydra kernel over all of the processors.

The use of two variants of the PDP–11 was considered as a mistake, as it complicated the
process of making the necessary processor and operating system modifications. The
authors had used newer variants of the PDP–11 in order to gain speed, but concluded that
“It would have been better to have had a single processor model, regardless of speed”.

The critical component was expected to be the crossbar switch. Experience showed the
switch to be “very reliable, and fast enough”. Early expectations that the “raw speed” of
the switch would be important were not supported by experience.

The authors concluded that “most applications are sped up by decomposing their
algorithms to use the multiprocessor structure, not by executing on processors with short
memory access times”.

The simplicity of the Hydra kernel, with much system software built on top of it, yielded
benefits, such as few software errors caused by inadequate synchronization.



The C.mmp: More Lessons Learned

Here I quote from Wulf & Harbison [Ref. 6], arranging their comments in an order not
found in their original. The PDP–11 was a memory–mapped architecture with a single
bus, called the UNIBUS, that connected the CPU to both memory and I/O devices.

1. “Hardware (un)reliability was our largest day–to–day disappointment … The
aggregate mean–time–between–failure (MTBF) of C.mmp/Hydra fluctuated
between two to six hours.”

2. “About two–thirds of the failures were directly attributable to hardware problems.
There is insufficient fault detection built into the hardware.”

3. “We found the PDP–11 UNIBUS to be especially noisy and error–prone.”

4. “The crosspoint [crossbar] switch is too trusting of other components; it can be
hung by malfunctioning memories or processors.”

My favorite lesson learned is summarized in the following two paragraphs in the report.

“We made a serious error in not writing good diagnostics for the hardware. The
software developers should have written such programs for the hardware.”

“In our experience, diagnostics written by the hardware group often did not test
components under the type of load generated by Hydra, resulting in much finger–
pointing between groups.”



Task Management in Multicomputers

The basic idea behind both multicomputers and multiprocessors is to run multiple tasks
or multiple task threads at the same time. This goal leads to a number of requirements,
especially since it is commonly assumed that any user program will be able to spawn a
number of independently executing tasks or processes or threads.

According to Baron and Higbie [Ref. 5], any multicomputer or multiprocessor system
must provide facilities for these five task–management capabilities.

1. Initiation A process must be able to spawn another process;
that is, generate another process and activate it.

2. Synchronization A process must be able to suspend itself or another process
until some sort of external synchronizing event occurs.

3. Exclusion A process must be able to monopolize a shared resource,
such as data or code, to prevent “lost updates”.

4. Communication A process must be able to exchange messages with any
other active process that is executing on the system.

5. Termination A process must be able to terminate itself and release
all resources being used, without any memory leaks.

These facilities are more efficiently provided if there is sufficient hardware support.



Hardware Support for Multitasking

Any processor or group of processors that supports multitasking will do so more
efficiently if the hardware provides an appropriate primitive operation.

A test–and–set operation with a binary semaphore (also called a “lock variable”) can
be used for both mutual exclusion and process synchronization. This is best implemented
as an atomic operation, which in this context is one that cannot be interrupted until it
completes execution. It either executes completely or fails.

The MIPS provides another set of instructions to support synchronization. In this design,
synchronization is achieved by using a pair of instructions, issued in sequence.

After the first instruction in the sequence is executed, the second is execute and returns a
value from which it can be deduced whether or not the instruction pair was executed as if
it were a single atomic instruction.

The MIPS instruction pair is load linked and store conditional.

These are often used in a spin lock scenario, in which a processor executes in a tight loop
awaiting the availability of the shared resource that has been locked by another processor.

In fact, this is not a necessary part of the design, but just its most common use.



Clusters, Grids, and the Like

There are many applications amenable to an even looser grouping of multicomputers.
These often use collections of commercially available computers, rather than just
connecting a number of processors together in a special network.

In the past there have been problems of administering large clusters of computers; the
cost of administration scaling as a linear function of the number of processors. Recent
developments in automated tools for remote management are likely to help here.

It appears that blade servers are one of the more recent adaptations of the cluster
concept. The major advance represented by blade servers is the ease of mounting and
interconnecting the individual computers, called “blades”, in the cluster.

In this aspect, the blade server hearkens back to the 1970’s and the innovation in
instrumentation called “CAMAC”, which was a rack with a standard bus structure for
interconnecting instruments. This replaced the jungle of interconnecting wires, so
complex that it often took a technician dedicated to keeping the communications intact.

Clusters can be placed in physical proximity, as in the case of blade servers, or at some
distance and communicate via established networks, such as the Internet. When a
network is used for communication, it is often designed using TCP/IP on top of Ethernet
simply due to the wealth of experience with this combination.
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