
The Microprogrammed Control Unit

Up to this point, we have studied:

1. The microoperation sequence associated with each assembly language instruction

2. The control signals associated with those microoperations.

3. The use of combinational logic in the form of a signal generation tree
to generate these control signals.

We now consider another option for generating the control signals.

This is the microprogramming option, in which representations of the control signals

are stored in a micro–memory and read into a MBR (micro–memory buffer register)
from whence they are issued.

Consider the control signal PC  B1. When this is asserted, the contents of the Program
Counter are copied onto bus B1. The method of generating this signal has no effect on
the action it takes.

We have two options for generating each control signal:

Hardwired: The signal is output from an AND gate

Microprogrammed: The signal is output from a D flip–flop.



Survey of Bus Usage and Other Control Signals

In order to structure the micro–memory properly, we must tabulate the control signals
used and arrange them by use: bus transfer, ALU operation, memory operation, etc.

Option Bus 1 Bus 2 Bus 3 ALU Other
0
1 PC  B1 1  B2 B3 PC tra1 L / R’

2 MAR  B1 – 1  B2 B3  MAR tra2 A

3 R  B1 R  B2 B3  R shift C

4 IR  B1 MBR  B2 B3  IR not READ

5 SP  B1 IOD  B2 B3  SP add WRITE

6 B3  MBR sub extend

7 B3  IOD and 0  RUN
8 B3  IOA or

9 xor

Note the important option 0.

We must have the following options: Place nothing on bus B1, leaving it undefined.

Place nothing on bus B2, leaving it undefined.

Do not transfer bus B3 to any destination register.

The ALU is not active.



Microprogramming Example

In a microprogrammed control unit, binary encodings of the microoperations
are stored in a micro–memory, one microoperation per micro–memory word.

The control signals are generated when the micro–memory word is read

into a micro–memory buffer register (MBR).

The structure of micro–memory is independent of that for the main memory.

Consider a section of micro–memory associated with bus B1.

The microoperation at address 105 corresponds to MAR  B1.
The microoperation at address 106 corresponds to R  B1.



Horizontal and Vertical Microcoding

In horizontal microcoding, each control signal is represented by a single bit
in each micro–memory word. The signal is asserted if and only if that bit is 1.

Horizontal microcoding demands a “wide micro–memory”, with each word having
a large number of bits. In earlier designs this was a problem.

In horizontal microcoding, there would be five bits in each micro–memory word
corresponding to actions on bus B1; one for each possible data source.

In vertical microcoding, each control signal is assigned a binary code, and
it is that binary code that is stored in the micro–memory word.

There are six options for bus B1: five data sources and the undefined option.
This requires three binary bits to encode. Here are the encodings for B1.

Code Signal
000
001 PC  B1
010 MAR  B1
011 R  B1
100 IR  B1
101 SP  B1



Advantages of Vertical Microcoding

There are a number of advantages to the use of vertical microcoding,
not all of which are important today.

One advantage is that it allows a “narrower micro–memory”,
fewer bits per word in the micro–memory.

The major advantage is that it prevents the assertion of two or more
data sources on a given bus or two or more simultaneous ALU operations.

For bus B1, each data source is assigned a binary code.
At most one data source can be placed on this bus for any microoperation.

For the ALU, each action is assigned a binary code.
At most one ALU action can be invoked by any microoperation.



Bus B1: Horizontal vs. Vertical Microcoding

Here is the horizontal microcode design for 105: MAR  B1, 106: R  B1.

Here is the vertical microcode design for 105: MAR  B1, 106: R  B1.



Structure of the Boz–5 Microcode

The Boz–5 microprogrammed control unit will be implemented using a mix of vertical
and horizontal microcode.

The fields that specify the source register for busses B1 and B2, the destination register
for bus B3 and the ALU function will be encoded to disallow two or more functions.
Thus vertical microcoding is used for these fields.

The seven control signals, labeled as “Other” and associated with a field of that name,
can each be issued simultaneously with the others. For these bits, no encoding is
necessary and horizontal microcoding is used.

The following table shows the allocation of bits in the microcode to these fields.

Field Bits Required Bits Allocated
B1 3 4
B2 3 4
B3 4 4

ALU 4 4
Other 7 8

The reason for allocating multiples of 4 bits to each field is purely for teaching purposes.

In the microcode, each field will be represented by one or two hexadecimal digits.



The Micro–Opcode

At this point, we use prior experience, including both standard programming and that
gained in design of the hardwired control unit, to postulate the necessity for opcodes in
the microprogram.

Some microinstructions will cause control signals to be emitted.

However, our previous experience leads us to expect that we shall need certain specific
microinstructions to sequence the microprogram.

These specific instructions might be compared to the conditional branch instruction found
in the assembly language and reflected in control structures of higher level languages.

We might ask about the idea of “micro–subroutines”. While these might appear to be a
good solution, they waste too much time and are overly complex.

Here are options for handling the Defer state. Recall that only four instructions use it. In
microcode Defer needs only 3 microinstructions; a micro–return brings that up to 4.

The In–Line microcode option requires 12 microinstructions, 3 for each possible use.

The “micro–subroutine” requires expansion of Defer to 4 microinstructions, but requires
only one additional microoperation per call: 41 + 4 = 8.

For this reason, the design avoids micro–subroutines.



The Microinstruction Format at This Point

While we do not yet know the required number of micro–opcodes, we suspect that it is
probably going to be small.

To facilitate teaching this microarchitecture, the design calls for a 4–bit micro–opcode.
Far fewer will actually be needed.

At this point, the structure of the micro–word has evolved to that shown in the figure.

Micro–Op B1 B2 B3 ALU Other

4 bits 4 bits 4 bits 4 bits 4 bits 8 bits

We shall find it convenient to split the field called “Other” into two distinct 4–bit fields,
tentatively called “M1” and “M2”. Field M1 will hold the shift control signals.

Micro–Op B1 B2 B3 ALU M1 M2

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits

Now each field can be specified by a single hexadecimal digit.
This is done for teaching purposes only.

What else do we need? The requirements come from the Fetch and Defer cycles that
appear explicitly in the hardwired design and implicitly here.



Fetch Reconsidered

Recall the microoperations and control signals associated with the Fetch phase.

F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

F, T3: Do something that is specific to the assembly language instruction

This sequence maps almost effortlessly into a sequence of four microinstructions in the
microprogrammed control unit, except that the latter needs an explicit dispatch.

F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

F, T3: Jump to the microprogram that is specific to this assembly language instruction.



First Try at the Microcode Structure

We start with a preliminary design and evolve it as necessary.

At this point in the design, the microcode will be written as the equivalent control signals.

Assume a micro–memory of 256 words, with addresses 0x00 through 0xFF.
Any addresses used will need to be 8–bit addresses (two hexadecimal digits).

We shall arbitrarily specify that micro–opcode 0 is reserved for emitting control signals.

We shall use the micro–opcode 1 for the dispatch based on the op–code found in the
machine language instruction in the Instruction Register (IR).

Address Micro–Op Control Signals Comment

0x20 0 PC  B1, tra1, B3  MAR, READ. // F, T0

0x21 0 PC  B1, 1  B2, add, B3  PC. // F, T1

0x22 0 MBR  B2, tra2, B3  IR. // F, T2

0x23 1 No control signals. // F, T3
Dispatch based on op–code.



First Trial Implementation

Let’s look at the consequences of this first try.

Assume that the assembly language instruction AND is being executed, and
that the execute microcode for that instruction is at address 0x80.

The structure to this point will play out as follows.

Address Micro–Op Control Signals Comment

0x20 0 PC  B1, tra1, B3  MAR, READ. // F, T0

0x21 0 PC  B1, 1  B2, add, B3  PC. // F, T1

0x22 0 MBR  B2, tra2, B3  IR. // F, T2

0x23 1 No control signals. // F, T3
Dispatch based on op–code.

0x80 0 R  B1, R  B2, and, B3  R

0x81 2 No control signals.
Go to address 0x20 for the next Fetch.

This design has two major problems:
1. It allocates two clock pulses to execute the instruction.
2. It requires some sort of dispatch table to find the microprogram address.



Executing in One Clock Pulse

Note here that our main concern is time efficiency of the microcode execution.

A faster microcode interpretation of the assembly language
yields a faster execution of that assembly language; thus a faster computer.

We are not at all worried about efficient use of micro–memory as it is so small.
Any reasonable design will leave much of a micro–memory unused.

Observations

1. Many of the assembly language instructions require only one clock pulse
for the execution itself.

2. Encoding the address of the next microinstruction into each micro–word
can remove the additional instruction to execute a branch.

This design modifies the structure of each micro–word to be as follows.

Micro–Op B1 B2 B3 ALU M1 M2 Next Address

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits



Second Trial Implementation

Let’s look at the consequences of this second try.

Assume that the assembly language instruction AND is being executed, and
that the execute microcode for that instruction is at address 0x80.

The structure to this point will play out as follows.

Address Micro–Op Control Signals Next Address

0x20 0 PC  B1, tra1, B3  MAR, READ. 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC. 0x22

0x22 0 MBR  B2, tra2, B3  IR. 0x23

0x23 1 No control signals. Not used
Dispatch based on op–code.

0x80 0 R  B1, R  B2, and, B3  R 0x20

We have solved the problem associated with the extra microinstruction for the
explicit jump to the beginning of the Fetch sequence.

It turns out that we have also solved the “dispatch table” problem; that is, the
association of an address in micro–memory with the execution of each opcode.



Solution of the Dispatch Problem

At present, microinstructions in addresses 0x20 through 0x22 correspond to (F, T0)
through (F, T2) in determining what assembly language instruction is being executed.

The microinstruction at 0x23 is a dispatch instruction; it jumps to the code appropriate to
execute that assembly language instruction.

With the explicit encoding of the next address in micro–memory, we have a very simple
dispatch mechanism; just place the execute for a given op–code at that address.

In the ISA, we use opcodes 0x00 through 0x1F (0 through 31).

We allocate micro–memory addresses 0x00 through 0x1F to the first step in executing
each instruction. This will correspond to (F, T3).

For the logical AND instruction (Opcode = 10111 = 0x17) we have this situation.

Address 0x17 contains the control signals that were associated with (F, T3)

Address 0x20 contains the control signals that were associated with (F, T0)

Address 0x21 contains the control signals that were associated with (F, T1)

Address 0x22 contains the control signals that were associated with (F, T2)

Address 0x23 contains the dispatch, here equivalent to a Jump to 0x17.



Example: Dispatching the AND
Assembly Language Instruction

Address Micro–Op Control Signals Next Address

0x17 0 R  B1, R  B2, and, B3  R 0x20

0x20 0 PC  B1, tra1, B3  MAR, READ. 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC. 0x22

0x22 0 MBR  B2, tra2, B3  IR. 0x23

0x23 1 No control signals. Not used
Jump to address 0x17

What about the unused opcodes in the ISA?

As an example, the opcode 00100 (0x04) has no assembly language instruction
associated with it. It should just do nothing and return to Fetch. That is what it does.

Address Micro–Op Control Signals Next Address

0x04 0 None issued 0x20



What About the Execute Phase?

This structure works well for instructions that can execute in one clock pulse.

What about those that require two or more clock pulses to execute?
It is for these instructions that we developed the execute phase in the hardwired design.

We use the explicit next address to solve this problem.

Consider the GET instruction, used for input from an I/O device.
We had written the following sequence.

GET Op-Code = 01000 (Hexadecimal 0x08)
F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)
F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1
F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)
F, T3: WAIT.

E, T0: IR  B1, tra1, B3  IOA. // Send out the I/O address
E, T1: WAIT.
E, T2: IOD  B2, tra2, B3  R. // Get the results.
E, T3: WAIT.

What goes at micro–memory location 0x08 and how do we handle the execution?



Microprogramming the GET Assembly Language Operation

We get the desired microprogram structure by first omitting any major state references.

T0: PC  B1, tra1, B3  MAR, READ. // Address = 0x20
T1: PC  B1, 1  B2, add, B3  PC. // Address = 0x21
T2: MBR  B2, tra2, B3  IR. // Address = 0x22
T3: IR  B1, tra1, B3  IOA. // Address = 0x08
T4: IOD  B2, tra2, B3  R. // Where?

We now just start filling the micro–memory addresses that follow the common fetch.

Address Micro–Op Control Signals Next Address

0x08 0 IR  B1, tra1, B3  IOA 0x24

0x20 0 PC  B1, tra1, B3  MAR, READ. 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC. 0x22

0x22 0 MBR  B2, tra2, B3  IR. 0x23

0x23 1 No control signals. Jump to 0x08 Not used

0x24 0 IOD  B2, tra2, B3  R 0x20

This explicit “next address” structure does solve a lot of problems, but not all of them.



What About the Defer Phase?

Consider the fetch sequence for LDR (Load Register) completely written out
with explicit reference to what the major state register does.

LDR Op-Code = 01100 (Hexadecimal 0x0C)
F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)
F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1
F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)
F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

Here the major state register takes control.
1) If the I–bit (bit 26) is 1, then the Defer state is entered.
2) If the I–bit is 0, then the E state is entered.

The current microprogram solution calls for the following.

Address Micro–Op Control Signals Next Address

0x0C 0 IR  B1, R  B2, add, B3  MAR Depends on I26.

Suddenly we need two “next instruction” addresses; one for D = 0 and another for D = 1.



Selection Problem for the Next Address

This need for encoding two possible addresses leads to the final
format of the microinstruction.

Micro–Op B1 B2 B3 ALU M1 M2 No Yes

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

We now have two address fields that are used for conditional branching:

No the address for the next microinstruction if the condition is not met,

Yes the address for the next microinstruction if the condition is met.

The width of the micro–memory word is 44 bits.

For the case we are examining, we have the following association.

No the address for the next microinstruction when IR26 = 0.

Yes the address for the next microinstruction when IR26 = 1.

We keep the generic names, because there is another condition to be considered.

Before we complete the microprogramming for LDR, we need to return to two control
signals that were called S1 and S2 in the hardwired control unit.



The Signals S1 and S2

These are related to the signals S1 and S2 designed for the hardwired control unit.

While these two new signals serve much the same purpose as those for the hardwired
control unit, their definition is slightly different.

S2

We now define this signal as S2 = IRIR 3031  IR29  IR26.

This is the original definition for signal S2 in the hardwired control unit.
S2 = 1 if and only if the instruction can enter defer and has the indirect bit set.

S1

We now define this signal as S1 = 1 if and only if the instruction is to be dispatched
by the microinstruction at address 0x23.

The only instruction that should not be dispatched is the branch instruction, BR, when the
branch condition is 0. Dispatch under one of two conditions; either

1. IR31IR30IR29IR28IR27  01111, or

2. IR31IR30IR29IR28IR27 = 01111 and branch = 1.

Our circuit design sets S1 = 0 if and only if
IR31IR30IR29IR28IR27 = 01111 and branch = 0.



Generating Signals S1 and S2

We still use hardwired logic to generate signals used by the microprogram.

S2 = 1 if and only if the next microinstruction should implement defer.



Newly Labeled “Type 0” Microinstruction

By the label “type 0” we mean instructions with micro–opcode = 0
that exist only to emit control signals. Here is the format with the new labels.

Micro–Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

A little thought will lead to the conclusion that most microinstructions do not test this
S2 bit, which is used only to test for entering the Defer phase.

Despite being unused, the bit S2 will always have a value; either S2 = 0 or S2 = 1.

For these microinstructions, the address of the next microinstruction will not depend on
the value of S2. In these cases the address for S2 = 0 will duplicate that for S2 = 1.

As an example, we show the microinstructions for the first four instructions.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x00 0 0 0 0 0 0 1 0x20 0x20
0x01 0 4 0 3 1 0 2 0x20 0x20
0x02 0 4 3 3 7 0 0 0x20 0x20
0x03 0 1 3 3 5 0 2 0x20 0x20



Instruction Fetch and Dispatch

Here is what we have so far on the “common fetch” microprogram segment.

Next Address
Address Micro–Op Control Signals S2 = 0 S2 = 1

0x20 0 PC  B1, tra1, B3  MAR, READ. 0x21 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC. 0x22 0x22

0x22 0 MBR  B2, tra2, B3  IR. 0x23 0x23

0x23 1 Dispatch based on the opcode. 0x20 0x20

The instruction in address 0x23 is the only “type 1” microinstruction in the whole design.

More than that, it is the only microinstruction that is not a “type 0”.

The micro–control unit will be designed to execute this type of instruction as follows.

If S1 = 1 the next address is the opcode, found in the IR (Instruction Register)

If S1 = 0 the next address will be found in the NA 0 field.

This will be the first address of the fetch sequence. We leave this

as a field in the microcode to allow for flexibility in design.



The Micro–Control Unit

The function of the micro–control unit is to sequence the execution of the microprogram.

Its only function is to select the address to be placed into the MAR, the address for the
micro–memory. All of the logic is contained in a Select unit, a modified multiplexer.

If S1 = 1 then 000¢IR31–27 is placed into the MAR.

If S1 = 0 and S2 = 0 then the address associated with field S2 = 0 is used.

If S1 = 0 and S2 = 1 then the address associated with field S2 = 1 is used.

All that is missing is a provision to jam 0x20 into the MAR upon system startup.



Summary of the Microinstruction Format

Here is the format of the microinstruction.

Micro–Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

Here are the bus and ALU assignments

Code Bus 1 Bus 2 Bus 3 ALU
0
1 PC  B1 1  B2 B3 PC tra1
2 MAR  B1 – 1 B2 B3  MAR tra2

3 R  B1 R  B2 B3 R shift

4 IR  B1 B3  IR not

5 SP  B1 B3  SP add

6 MBR  B2 B3  MBR sub

7 IOD B2 B3  IOD and

8 B3  IOA or

9 xor
A



Summary of the Microinstruction Format (Part 2)

Here again is the format of the microinstruction.

Micro–Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

The bits associated with the M1 field are those specifying the shift parameters

Bit 3 L / R (1 for a left shift, 0 for a right shift)
Bit 2 A (1 for an arithmetic shift)
Bit 1 C (1 for circular shift)
Bit 0 Not used

The bits associated with the M2 field are
Bit 3 READ (Indicates a memory reference)
Bit 2 WRITE (Unless READ = 1)
Bit 1 extend (Sign–extend contents of IR when copying to B1)
Bit 0 0  RUN (Stop the computer)



Microprogram Example 1: Instructions 0x00 – 0x07

HLT Op-Code = 00000 0  RUN.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x00 0 0 0 0 0 0 1 0x20 0x20

LDI Op-Code = 00001 IR  B1, extend, tra1, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 B = 0 B = 1
0x01 0 4 0 3 1 0 2 0x20 0x20

ANDI Op-Code = 00010 IR  B1, R  B2, and, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 B = 0 B = 1
0x02 0 4 3 3 7 0 0 0x20 0x20

ADDI Op-Code = 00011 IR  B1, R  B2, extend, add, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 B = 0 B = 1
0x03 0 1 3 3 5 0 2 0x20 0x20

Opcodes 00100 through 00111

Address Micro-Op B1 B2 B3 ALU M1 M2 B = 0 B = 1
0 0 0 0 0 0 0 0x20 0x20



Micro–memory Layout: Instructions 0x00 – 0x07

Based on the tables above, we state the contents of the first eight micro–words.

Address Contents
0x00 0x 000 0001 2020
0x01 0x 040 3102 2020
0x02 0x 043 3700 2020
0x03 0x 013 3502 2020
0x04 0x 000 0000 2020
0x05 0x 000 0000 2020
0x06 0x 000 0000 2020
0x07 0x 000 0000 2020

Each micro–memory word contains 44 bits, expressed as 11 hexadecimal digits.

This design allows for future definition of assembly language instructions for
the opcodes 0x04 through 0x07.

The current design calls for each of these four opcodes to be a NOP, doing nothing.



Microprogram for LDR (Load Register)
IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x0C 0 4 3 2 5 0 0 0x2F 0x2C

Defer Begins: READ
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2C 0 0 0 0 0 0 8 0x2D 0x2D

WAIT
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2D 0 0 0 0 0 0 0 0x2E 0x2E

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2E 0 0 6 2 2 0 0 0x2F 0x2F

Execute Begins: READ.
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2F 0 0 0 0 0 0 8 0x30 0x30

WAIT.
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x30 0 0 0 0 0 0 0 0x31 0x31

MBR  B2, tra2, B3  R
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x31 0 0 6 3 2 0 0 0x20 0x20



Structure of the Microprogram for LDR (Part 1)
We now show the entire sequence, beginning at the common fetch.

The common fetch with the new dispatch instruction is shown first.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x20 0 1 0 2 1 0 8 0x21 0x21
0x21 0 1 1 1 5 0 0 0x22 0x22
0x22 0 0 6 4 2 0 0 0x23 0x23
0x23 1 0 0 0 0 0 0 0x20 0x20

The Dispatch Instruction, at address 0x023, represents a design change from the original
Boz–5. In the new design, the next address depends on the discrete signal S1.

If S1 = 0, the address of the next instruction will be 0x20 (the contents of S2 = 0)

This causes an immediate fetch of the next instruction when the conditions
for a branch are not met.

If S1 = 1, the address of the next instruction will be the 5–bit opcode,
extended to eight bits by prefixing it with “000”.

The opcode for LDR is 01100, or 0x0C.



Structure of the Microprogram for LDR (Part 2)
The instruction at address 0x0C (the opcode for LDR) completes the indexing and does a
conditional branch, depending on the value of the flag S2.

If S2 = 1, indirect addressing is used, and the Defer State is entered.

If S2 = 0, indirect addressing is not used, and the Defer State is not entered.

IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x0C 0 4 3 2 5 0 0 0x2F 0x2C

Earlier designs of the Boz–5 performed the “branch test” at this point.

The “branch test”, in which it is determined if the instruction is a conditional branch for
which the condition has not been met, is now assigned to the dispatch instruction (0x23).

For all “type 0” instructions, the two addresses determine the next instruction whenever
indirect addressing is used and whenever it is not used.

The Defer microcode for LDR begins at address 0x2C.

The Execute microcode for LDR begins at address 0x2F.

Note that the Defer microprogram always “falls through” into the Execute microprogram,
as the Defer phase is always followed by the Execute phase.



Structure of the Microprogram for LDR (Part 3)
Defer Begins:
READ

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x2C 0 0 0 0 0 0 8 0x2D 0x2D

WAIT
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2D 0 0 0 0 0 0 0 0x2E 0x2E

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2E 0 0 6 2 2 0 0 0x2F 0x2F

Execute Begins:
READ.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1
0x2F 0 0 0 0 0 0 8 0x30 0x30

WAIT.
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x30 0 0 0 0 0 0 0 0x31 0x31

MBR  B2, tra2, B3  R
Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x31 0 0 6 3 2 0 0 0x20 0x20



Upgraded Handling of the Defer Phase

The textbook design focuses on the proper handling of the BR (Branch) instruction but
did not place that decision in the proper context. Only the dispatch microinstruction at
address 0x23 needs to handle this condition. The new design reflects this.

The structure of the textbook microprogram reflects a much older design that had to use
explicit branching instructions to handle the Defer state. This structure predates your
instructor’s introduction to explicit inclusion of the next micro–address.

Your instructor discovered this newer design while reading the textbook Structured
Computer Organization by Andrew S. Tanenbaum (ISBN 0–13–148521–0).

The older design called for coding such as the following for the LDR.

0x0C 0 IR  B1, R  B2, add, B3  MAR; Go to 0x2C
0x2C 2 If D = 0 Go to 0x30. If D = 1 Go to 0x2D.
0x2D 0 The defer state begins here. Execute begins at 0x30.

The newer design eliminates the explicit conditional branch and its associated wasted
time by using the two–next–address structure that is now part of the design.

0x0C 0 IR  B1, R  B2, add, B3  MAR;
Go to 0x2C if D = 1, else go to 0x2F.

Note that Execute for LDR in the new design begins at address 0x2F.



Two Different Handlings of LDR

Older Version (as in the textbook)

Address Micro–Op Instruction
0x0C 0 IR  B1, R  B2, add, B3  MAR; Go to 0x2C
0x2C 2 If D = 0 Go to 0x30. If D = 1 Go to 0x2D.
0x2D 0 READ; Go to 0x2E
0x2E 0 WAIT; Go to 0x2F
0x2F 0 MBR  B2, tra2, B3  MAR; Go to 0x30
0x30 0 READ; Go to 0x31
0x31 0 WAIT; Go to 0x32
0x32 0 MBR  B2, tra2, B3  R; Go to 0x20

Newer Version

Address Micro–Op Instruction
0x0C 0 IR  B1, R  B2, add, B3  MAR;

If D = 0 Go to 0x2F. If D = 1 Go to 0x2C.
0x2C 0 READ; Go to 0x2D
0x2D 0 WAIT; Go to 0x2E
0x2E 0 MBR  B2, tra2, B3  MAR; Go to 0x2F
0x2F 0 READ; Go to 0x30
0x30 0 WAIT; Go to 0x31
0x31 0 MBR  B2, tra2, B3  R; Go to 0x20


