
The General–Purpose Register Set

A schematic of the general–purpose registers of the Boz–5 is shown below.

Connection of these registers to the CPU data busses is controlled as follows:

Signal Field Comment
R  B1 B1S When R  B1 is asserted, the three–bit field B1S

selects the register to be connected to bus B1.

R  B2 B2S When R  B2 is asserted, the three–bit field B2S
selects the register to be connected to bus B2.

B3  R B3D When B3  R is asserted, the three–bit field B3D
selects the register to receive the contents of bus B3.



How to Generate the Register Selector Fields?

The question for this lecture concerns the generation of each of these three–bit fields
B1S, B2S, and B3D.

Obviously, these will be based on bit fields in the Instruction Register.

The actual circuitry for generating each of these fields depends on the
structure of the binary machine instructions.

Outline for this lecture:

1. Determine the register usage for each class of assembly language instructions.

2. Discuss one simple microarchitecture with a very simple structure.
Mention why that one was not selected.

3. Discuss the part of the Boz–5 microarchitecture that actually
generates the fields B1S, B2S, and B3D.

In determining the register usage, we shall consider:

First, the simple register operations, and

then, the memory reference operations that complicate the situation.



Register Use Survey: Dyadic Register Operations

These operations involve two source registers and one destination register.

The generic machine code template for these instructions is as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0

Op–Code Destination
Register

Source
Register 2

Source
Register 1

Not used

This “reverse numbering” of Source Register 2 and Source Register 1 was
made in order to make the design of the control unit hardware easier to read.

The operations in this class are ADD DR  (SR2) + (SR1)

SUB DR  (SR2) – (SR1)

AND DR  (SR2)  (SR1)

OR DR  (SR2)  (SR1)

XOR DR  (SR2)  (SR1)

Here the generation of the fields is obvious: B3D = IR25–23

B2S = IR22–20

B1S = IR19–17



Register Use Survey: Monadic Register Operations

These operations involve one source register and one destination register.

The generic machine code template for these instructions is as follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0

Op–Code Destination
Register

Source
Register

Shift Count Not
Used

The operations in this class are LLS DR  Left logical shift of SR

LCS DR  Left circular shift of SR

RLS DR  Right logical shift of SR

RAS DR  Right arithmetic shift of SR

NOT DR  One’s complement of SR

The destination register is fed by bus B3, so one choice is simple: B3D = IR25–23.

We now ask which bus will the source register feed?

The simple answer comes from the fact that the source register is specified in IR22–20, so
we allocate this source register to bus B2 and again let B2S = IR22–20.



Register Use Survey: Register Load and Store

The register–to–register instructions seem to suggest and simple, almost trivial, way to
generate the fields B1S, B2S, and B3D.

The only problem with this occurs with the Store Register to Memory instruction.

Consider the two instructions LDR and STR.

LDR (Load Register from Memory)

This requires two registers: a destination register for the load, and

an index register for use in computing the address.

STR (Store Register into Memory)

This requires two registers: a source register for the data to go into memory, and

an index register for use in computing the address.

We can place the index register on either bus B1 or bus B2, using either B1S or B2S to
identify it as appropriate.

Note: LDR has a destination register

STR has a source register.



Memory Reference Operations: Option 1

Here we shall present a design decision that lead to the current microarchitecture.

The simplest option is to have each instruction have fields for three registers;
call them DR, SR2, and SR1. Arbitrarily let SR1 indicate the Index Register.

Here is what the situation for LDR would be.

Op–Code I–bit DR SR2 SR1 Address

01100 Destination
Register

Not Used Index Register Address Field

Here is what the situation for STR would be

Op–Code I–bit DR SR2 SR1 Address

01101 Not Used Source
Register

Index Register Address Field

The advantage of this design is extremely simple logic for generating B1S, B2S, & B3D.

The disadvantage of this design is either fewer registers or a smaller address space.
(More on this later).



Memory Reference Operations: Option 2

The next option is to have a single field, called “Source / Destination”, that contains the
destination register for LDR and the source register for STR.

Here is what the situation for LDR would be.

Op–Code I–bit Source / Destination SR2 Address

01100 Destination Register Index Register Address Field

Here is what the situation for STR would be

Op–Code I–bit Source / Destination SR2 Address

01101 Source Register Index Register Address Field

This design allows more bits for the address field, but leads to a slight increase
in the complexity of the control circuitry for B1S and B3D.

We now consider each design option in turn. The one given is easily stated:

1. We have a 32–bit instruction word

2. We have allocated five bits for the op–codes and one bit for the I–bit.

3. This leaves us 26 bits to specify the registers and address field.



More on Instruction Format 1

Here is the first option considered, in which each instruction contains fields for
all three register selector fields: B1S, B2S, and B3D.

Bits 31 – 27 26 25 – 0 (Twenty six bits)

Use Op–Code I-Bit DR SR2 SR1 Address Field

The eight–register option

This requires three bits to select each register.

This means nine bits for the register selection, so allows 17 bits for the address field.

The direct address space is 0 through 217 – 1 or 0 through 131, 071.

This leads to an interesting number of registers, but a very small address space.

The four–register option

This requires two bits to select each register.

This means six bits for the register selection, so allows 20 bits for the address field.

The direct address space is 0 through 220 – 1 or 0 through 1, 048, 576.

This preserves the Boz–5 address space, but cuts the number of registers.



Register Selection Fields for Instruction Format 1
(Assuming eight general–purpose registers)

In this arrangement, the generation of the three register select fields is easy.

Here is the diagram for the circuitry.

Here is the RTL description of the generation of these register–select fields.

B3D  IR25–23

B2S  IR22–20

B1S  IR19–17



Register Selection Fields for Instruction Format 1
(Continued)

Here are some register allocations for instructions under this assumption.

Instruction IR25–23 IR22–20 IR19–17 IR16–0

HLT 000 000 000 Not used

LDI Destination Not Used Not Used 17–bit signed integer

ANDI DR SR2 SR1 17–bit mask

ADDI DR SR2 SR1 17–bit signed integer

GET DR Not used Not used 17–bit I/O address

PUT Not used Source Not used 17–bit I/O address

LDR Destination Not used Index Register 17–bit address field

STR Not used Source Index Register 17–bit address field

JSR Not used Not used Index Register 17–bit address field

BR Branch Not used Index Register 17–bit address field
Condition

Monadic Destination Source Shift Count Not used

Dyadic Destination SR2 SR1 Not used



Register Selection Fields for Instruction Format 2
(Assuming eight general–purpose registers)

We return to the option of having a single field, called “Source / Destination”.

Here is what the situation for LDR would be.

Op–Code I–bit Source / Destination SR2 Address
01100 Destination Register Index Register Address Field

Here is what the situation for STR would be

Op–Code I–bit Source / Destination SR2 Address
01101 Source Register Index Register Address Field

Assuming eight general–purpose registers, the IR layout becomes

Bits 31 – 27 26 25 – 23 22 – 20 19 – 0
Use Op–Code I–bit Source / Destination Index Address

This is the basic structure of the machine language instructions in the present design.

The additional complexity in the control unit is due to the necessity of interpreting
IR25–23 as a source register for exactly one instruction – STR.



Register Selection Fields for the Boz–5

We now work our way through the instruction set and see how the structure of the
machine language for each instruction will dictate the generation of the three
fields used to select the general–purpose registers: B1S, B2S, and B3D.

Immediate Addressing

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0
Op–Code Destination

Register
Source

Register
Immediate Argument

Here are the four immediate–mode instructions

Op–Code 00000 HLT Halt (Actually, this has no operands)
00001 LDI Load Immediate (Does not use Source Register)
00010 ANDI Immediate logical AND
00011 ADDI Add Immediate

For each of these, we have B3D = IR25–23

The last two instructions, ANDI and ADDI, use a source register designated by bits
IR22–20 in the Instruction Register. We have two possible source busses, so that this could
indicate either bus B1 or B2.

For compatibility with the register–to–register instructions, we say B2S = IR22–20.



Register Selection Fields for the Boz–5 (Part 2)

Input/Output Instructions
This design calls for isolated I/O, so it has dedicated input and output instructions.
Input
Op-Code 01000 GETGet a 32–bit word into a destination register from an input.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 – 0
0 1 0 0 0 Destination

Register
Not Used Not Used I/O

Address

Use B3D = IR25–23

Output
Op-Code 01001 PUTPut a 32–bit word from a source register to an output register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 – 0
0 1 0 0 1 Not Used Source

Register
Not Used I/O

Address

Use B2S = IR22–20



Register Selection Fields for the Boz–5 (Part 3)

We now examine the register instructions that reference memory.

Load Register

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0
0 1 1 0 0 I bit Destination

Register
Index Register Address

The obvious option for the destination register field is to set B3D = IR25–23.

If we place the index register contents onto bus B2, we can retain B2S = IR22–20.

Store Register

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0
0 1 1 0 1 I bit Source

Register
Index Register Address

Here we also retain the choice of bus B2 for the index register, so B2S = IR22–20.

Note that bits IR25–23 specify a source register. We have only one more source bus,
so we must say that B1S = IR25–23.



Register Selection Fields for the Boz–5 (Part 4)

We now consider the subroutine call and branch instructions.

Subroutine Call

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0
0 1 1 1 0 I bit Not Used Index

Register
Address

This is rather easy to handle, as there is no source or destination register.

The index register transfer is easily handled by setting B2S = IR22–20.

Branch

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0
0 1 1 1 1 I bit Branch

Condition
Index

Register
Address

Again, we set B2S = IR22–20 to handle the indexing.

The three–bit branch condition, stored in IR25–23, is sent directly to the control unit.



More on the Branch Conditions

The branch condition codes for the design are as follows.

Code Action Code Action
000 Branch Always 100 Branch if carry–out is 0

001 Branch on negative result 101 Branch if result not negative

010 Branch on zero result 110 Branch if result is not zero

011 Branch if result not positive 111 Branch on positive result

Note that the conditions are arranged in pairs. With the exception of the first row
(for codes 000 and 100) each row contains opposite conditions.

This “opposite structure” is a result of an attempt to simplify the logic in the control unit.

The control unit operates based on a signal, called “Branch”, that is output from an
8–to–1 multiplexer with selector input from IR25–23.

When the output of the MUX is Branch = 1, the branch is taken.



Implementation of the Branch Condition

The branch instruction is implemented using a multiplexer in the control unit.

The input to this multiplexer includes the following:

+1 this is always true, used for unconditional branches,

N the negative bit from the ALU, set if the last ALU result was negative,

Z the zero bit from the ALU, set if the last ALU result was zero,

C the carry bit from the ALU, set if there was a carry–out from the ALU



Register Selection Fields for the Boz–5 (Part 5)

Unary Register-To-Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0

Op–Code Destination
Register

Source
Register

Shift Count Not
Used

Here we have B3D = IR25-23 and B2S = IR22-20.

Opcode = 10000 LLS Logical Left Shift
10001 LCS Circular Left Shift
10010 RLS Logical Right Shift
10011 RAS Arithmetic Right Shift
10100 NOT Logical NOT (Shift count ignored)



Register Selection Fields for the Boz–5 (Part 6)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0

Op–Code Destination
Register

Source
Register 2

Source
Register 1

Not used

Opcode =10101 ADD Addition
10110 SUB Subtraction
10111 AND Logical AND
11000 OR Logical OR
11001 XOR Logical Exclusive OR

This uses the complete set of register selection fields.

B3D = IR25–23

B2S = IR22–20

B1S = IR19–17



Summary of the Register Selector Fields

The following table summarizes the requirements levied by the instructions on the
generation of the control signals B1S, B2S, and B3D.

B1S B2S B3D
HLT
LDI IR25-23

ANDI IR22-20 IR25-23

ADDI IR22-20 IR25-23

GET IR25-2

PUT IR22-20

LDR IR22-20 IR25-23

STR IR25-23 IR22-20

BR IR22-20

JSR IR22-20

RET
RTI

Monadic Register IR22-20 IR25-23

Dyadic Register IR19-17 IR22-20 IR25-23

The only design issue is that B1S = IR25–23 for the STR instruction,
and B1S = IR19–17 for every other instruction, even it if is not used.



Generating the Register Selector Fields

Here is the complete circuit.

It is rather busy, so we show two simplifications.

For some instructions, the logic generates values for a field that is not used by the control
logic. If the field is not used, it does not matter if its value is nonsensical.



Generating the Register Selector Fields (Part 2)

STR Op–Code = 01101
Here is the effective circuit when IR31-27 = 01101.
The selector B3D is not used as the control signal B3  R is not asserted.

Note: The field B3D is generated here, but is not used.



Generating the Register Selector Fields (Part 3)

Other Op–Codes
Here is the effective circuit for other instructions.



Two Addressing Modes: Direct and Indexed

Remember that register R0 is defined to be exactly 0; %R0  0.

Consider direct addressing and indexed addressing. The syntax of the assembly language
calls for indexed addressing to be used when the index field is not 0.

Put one way: If IR22IR21IR20 = 000, then direct addressing is used, and

if IR22IR21IR20  000, then indexed addressing is used.

Put another way, we have

IR22IR21IR20 = 000 MAR  IR19–0 + 0
IR22IR21IR20 = 001 MAR  IR19–0 + (%R1)
IR22IR21IR20 = 010 MAR  IR19–0 + (%R2)
IR22IR21IR20 = 011 MAR  IR19–0 + (%R3)
IR22IR21IR20 = 100 MAR  IR19–0 + (%R4)
IR22IR21IR20 = 101 MAR  IR19–0 + (%R5)
IR22IR21IR20 = 110 MAR  IR19–0 + (%R6)
IR22IR21IR20 = 111 MAR  IR19–0 + (%R7)



Summary of the Reduction in Addressing Modes

Using the %R0  0 trick, the four addressing modes collapse into two modes.

Indexed by %R0 Indexed by another register

Indirection Not
Used, IR26 = 0

Direct Indexed

Indirection Used,
IR26 = 1

Indirect Indexed-Indirect


