Structure of the Arithmetic–Logic Unit

We begin by again listing the major functions of the ALU and matching the inputs required by each of these functions to the input bus structure.

The functions are

add Need to perform addition. Supports the ADD instruction. Updates the PC.

tra1 Transfer bus B1 contents to bus B3

tra2 Transfer bus B2 contents to bus B3.

shift Needed to activate the barrel shifter

not Needed to support the assembly language instruction NOT.

sub Needed to support the subtract instruction SUB.

or Needed to support the assembly language instruction OR.

and Needed to support the assembly language instruction AND.

xor Needed to support the assembly language instruction XOR.

The allocation of source busses for each operation is shown below.

Source	tra1	tra2	shift	not	add	sub	or	and	xor
B1	X				X	X	X	X	X
B2		X	X	X	X	X	X	X	X

Major Functional Units of the ALU

Here is the top-level structure of the ALU.

It has four major functional units, each labeled by the function that the unit performs.

The TRA/NOT unit handles transfers from B1 to B3, B2 to B3, and the logical NOT function.

The logical unit handles the dyadic Boolean functions.

The Add/Sub unit handles addition and subtraction, using a single adder that is modified to handle subtraction. This design calls for a ripple–carry adder, which is extremely inefficient.

The barrel shifter unit handles all shifts.

The TRA/NOT Unit

This is very simple. It contains the following circuit, replicated 32 times, once for each of the 32 bits.

The Logical Unit

This is also very simple. It contains the following circuit, replicated 32 times, once for each of the 32 bits.

The Add/Subtract Unit

Any reasonable design would use more advanced adders, with carry-lookahead circuitry. Our extremely simple design uses a ripple–carry adder.

The Barrel Shifter

The barrel shifter is called a logarithmic unit in that it has $log_2 32 = 5$ stages, one for shifts by 1 bit, one for shifts by 2, one for shifts by 4, etc.

Each bit in the shift count activates one of the shift levels.

