Design of the 11011 Sequence Detector

A sequence detector accepts as input a string of bits: either 0 or 1.

Its output goes to 1 when a target sequence has been detected.

There are two basic types: **overlap** and **non-overlap**.

In an sequence detector that allows overlap, the final bits of one sequence can be the start of another sequence.

11011 detector with overlap	Х	11011011011
	Ζ	0000100 <mark>1</mark> 001
11011 detector with no overlap	Ζ	00001000001

Problem: Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 1 – Derive the State Diagram and State Table for the Problem

Step 1a – <u>Determine the Number of States</u>

We are designing a sequence detector for a 5-bit sequence, so we need 5 states. We label these states A, B, C, D, and E. State A is the initial state.

Step 1b - Characterize Each State by What has been Input and What is Expected

State	Has	Awaiting
А		11011
В	1	1011
С	11	011
D	110	11
E	1101	1

Step 1c – <u>Do the Transitions for the Expected Sequence</u>

Here is a partial drawing of the state diagram. It has only the sequence expected. Note that the diagram returns to state C after a successful detection; the final 11 are used again.

Note the labeling of the transitions: X / Z. Thus the expected transition from A to B has an input of 1 and an output of 0.

The transition from E to C has an output of 1 denoting that the desired sequence has been detected.

The sequence is $1 \ 1 \ 0 \ 1 \ 1$.

Step 1d – <u>Insert the Inputs That Break the Sequence</u> The sequence is 1 1 0 1 1.

Each state has two lines out of it – one line for a 1 and another line for a 0. The notes below explain how to handle the bits that break the sequence.

State A in the 11011 Sequence Detector

A State A is the initial state. It is waiting on a 1.

If it gets a 0, the machine remains in state A and continues to remain there while 0's are input.

If it gets a 1, the machine moves to state B, but with output 0.

State B in the 11011 Sequence Detector

B If state B gets a 0, the last two bits input were "10".

This does not begin the sequence, so the machine goes back to state A and waits on the next 1.

If state B gets a 1, the last two bits input were "11". Go to state C.

State C in the 11011 Sequence Detector

C If state C gets a 1, the last three bits input were "111".It can use the last two to be the first two 1's of the sequence 11011, so the machine stays in state C awaiting a 0.

If state C gets a 0, the last three bits input were "110". Move to state D.

State D in the 11011 Sequence Detector

D If state D gets a 0, the last four bits input were "1100". These 4 bits are not part of the sequence, so we start over.

If state D gets a 1, the last four bits input were "1101". Go to state E.

State E in the 11011 Sequence Detector

E If state E gets a 0, the last five bits input were "11010". These five bits are not part of the sequence, so start over.

If state E gets a 1, the last five bits input were "11011", the target sequence. If overlap is allowed, go to state C and reuse the last two "11". If overlap is not allowed, go to state A, and start over.

Prefixes and Suffixes: State C

When breaking the input, we look for the largest suffix of the actual input that is an equal-length prefix of the desired pattern.

State C, with the last input = 1.

The last three bits input were "111".

	Input "111"	Desired Sequence "11011"	ce.		
1 bit	"1"	``1''	Good match	11 <mark>1</mark>	1 1011
2 bit	"11"	"11"	Good match	1 11	11 011
3 bit	"111"	"110"	No match.	111	110 11

The last two 1's at this state can form a 2-bit prefix useable at state C.

Chapter 7 Appendix

Prefixes and Suffixes: State E

State E, with last input = 0.

The last five bits were "11010". No suffix of this is a prefix of the target.

	Input "11010"	Desired Sequence. "11011"	
1 bit	"0"	``1` '	No match.
2 bit	"10"	"11"	No match.
3 bit	"010"	"110"	No match.
4 bit	"1010"	"1101"	No match.
5 bit	"11010"	"11011"	No match.

Step 1e –	Generate	the State	Table with	Output
------------------	----------	-----------	-------------------	--------

Present State	Next State / Output				
	$\mathbf{X} = 0$	X = 1			
A	A / 0	B / 0			
В	A / 0	C / 0			
С	D / 0	C / 0			
D	A / 0	E / 0			
E	A / 0	C / 1			

Step 2 – <u>Determine the Number of Flip-Flops Required</u>

We have 5 states, so N = 5. We solve the equation $2^{P-1} < 5 \le 2^{P}$ by inspection, noting that it is solved by P = 3. So we need three flip-flops.

Step 3 – <u>Assign a unique P-bit binary number (state vector) to each state</u>.

The simplest way is to make the following assignments

A = 000 B = 001 C = 010 D = 011E = 100

Here is a more interesting assignment.

States A and D are given even numbers. States B, C, and E are given odd numbers. The assignment is as follows.

A = 000	
B = 001	
C = 011	States 010, 110, and 111 are not used.
D = 100	
E = 101	

Step 4 – <u>Generate the Transition Table With Output</u>

Prese	ent State	Next Sta	te / Output
		X = 0	X = 1
	$\mathbf{Y}_{2}\mathbf{Y}_{1}\mathbf{Y}_{0}$	$Y_2Y_1Y_0$ / Z	Y ₂ Y ₁ Y ₀ / Z
Α	0 0 0	0 0 0 / 0	0 0 1 / 0
В	001	0 0 0 / 0	0 1 1 / 0
С	0 1 1	1 0 0 / 0	0 1 1 / 0
D	100	0 0 0 / 0	1 0 1 / 0
E	101	0 0 0 / 0	011/1

Note that bit 0 can clearly be represented by a D flip–flop with $D_0 = X$.

Step 4a – <u>Generate the Output Table and Equation</u>

The output table is generated by copying from the table just completed.

	ese ate	ent	X = 0	X = 1
Y ₂	Y ₁	Y ₀	0	0
0	0	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1

The output equation can be obtained from inspection. As is the case with most sequence detectors, the output Z is 1 for only one combination of present state and input. Thus we get $Z = X \bullet Y_2 \bullet Y_1' \bullet Y_0$.

This can be simplified by noting that the state 111 does not occur, so the answer is $Z = X \bullet Y_2 \bullet Y_0$.

Step 5 – <u>Separate the Transition Table into 3 Tables</u>, One for Each Flip-Flop

We shall generate a present state / next state table for each of the three flipflops; labeled Y_2 , Y_1 , and Y_0 . It is important to note that each of the tables must include the complete present state, labeled by the three bit vector $Y_2Y_1Y_0$.

Y2			Y1			Y0		
PS	Next Sta	ate	PS	Next St	ate	PS	Next Sta	ite
$Y_2Y_1Y_0$	$\mathbf{X} = 0$	X = 1	$Y_2Y_1Y_0$	$\mathbf{X} = 0$	X = 1	$Y_2Y_1Y_0$	X = 0	X = 1
000	0	0	000	0	0	000	0	1
001	0	0	001	0	1	001	0	1
011	1	0	011	0	1	011	0	1
100	0	1	100	0	0	100	0	1
101	0	0	101	0	1	101	0	1
Match	\mathbf{Y}_1	$Y_2 \bullet Y_0$ '		0	\mathbf{Y}_{0}		0	1

$$D_2 = X' \bullet Y_1 + X \bullet Y_2 \bullet Y_0'$$
$$D_1 = X \bullet Y_0$$
$$D_0 = X$$

Slide 16 of 23 slides Revised 9/28/2009 Copyright © 2009 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 6 – <u>Decide on the type of flip-flops to be used</u>.

The problem stipulates JK flip-flops, so we use them.

Q(T)	Q(T + 1)	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Steps 7 and 8 are skipped in this lecture.

Step 9 – <u>Summarize the Equations</u>

The purpose of this step is to place all of the equations into one location and facilitate grading by the instructor. Basically we already have all of the answers.

 $Z = X \bullet Y_2 \bullet Y_0$ $J_2 = X' \bullet Y_1 \text{ and } K_2 = X' + Y_0$ $J_1 = X \bullet Y_0 \text{ and } K_1 = X'$ $J_0 = X \text{ and } K_0 = X'$

Step 10 – <u>Draw the Circuit</u>

Here is the same design implemented with D flip-flops.

More on Overlap – What it is and What it is not

At this point, we need to focus more precisely on the idea of overlap in a sequence detector. For an extended example here, we shall use a 1011 sequence detector.

The next figure shows a partial state diagram for the sequence detector. The final transitions from state D are not specified; this is intentional.

1011 Sequence Detector Partial Design - Lacking Final Transition

Here we focus on state C and the X=0 transition coming out of state D. By definition of the system states,

State C – the last two bits were 10

State D – the last three bits were 101.

If the system is in state D and gets a 0 then the last four bits were 1010, not the desired sequence. If the last four bits were 1010, the last two were 10 - go to state C. The design must reuse as many bits as possible.

Note that this decision to go to state C when given a 0 is state D is **totally independent** of whether or not we are allowing overlap. The question of **overlap concerns what to do when the sequence is detected**, not what to do when we have input that breaks the sequence.

Just to be complete, we give the state diagrams for the two implementations of the sequence detector – one allowing overlap and one not allowing overlap.

The student should note that the decision on overlap does not affect designs for handling partial results – only what to do when the final 1 in the sequence 1011 is detected.