Multiplexers and Demultiplexers: Description and Design Issues

Edward L. Bosworth, Ph.D. TSYS School of Computer Science Columbus State University Columbus, GA 31907

Multiplexers and Demultiplexers

Multiplexer – MUX

Associates One of Many Inputs to a Single Output

Demultiplexer – DEMUX

Associates One Input with One of Many Outputs

Circuit	Inputs	Control	Outputs
		Signals	
Multiplexer	2^{N}	N	1
Demultiplexer	1	Ν	2^{N}

My Notation: X for Input C for Control Signals Y for Output

The Multiplexer Equation Illustrated for a 4–to–1 MUX

Truth table

Denote the multiplexer output by **M**

C ₁	C ₀	М
0	0	X_0
0	1	X_1
1	0	X_2
1	1	X ₃

Equation Form

$$\mathbf{M} = \overline{\mathbf{C}}_1 \cdot \overline{\mathbf{C}}_0 \cdot \mathbf{X}_0 + \overline{\mathbf{C}}_1 \cdot \mathbf{C}_0 \cdot \mathbf{X}_1 + \mathbf{C}_1 \cdot \overline{\mathbf{C}}_0 \cdot \mathbf{X}_2 + \mathbf{C}_1 \cdot \mathbf{C}_0 \cdot \mathbf{X}_3$$

Here is another form of the equation that is better when X is used as an input.

$$\mathbf{M} = \overline{\mathbf{C}_0} \bullet \overline{\mathbf{C}_1} \bullet \mathbf{I}_0 + \overline{\mathbf{C}_0} \bullet \mathbf{C_1} \bullet \mathbf{I}_1 + \mathbf{C}_0 \bullet \overline{\mathbf{C}_1} \bullet \mathbf{I}_2 + \mathbf{C}_0 \bullet \mathbf{C_1} \bullet \mathbf{I}_3$$

Slide 4 of 21 slides

Build a 4-to-1 MUX

But what about an enable input for a multiplexer? What does it mean for the output of the MUX to be 0?

Slide 5 of 21 slides

Multiplexer Attached to a Bus Line

To control a multiplexer's connection to a common bus, we use a tri–state buffer and not an enable input to the MUX. Here I use "E" as the tri–state control.

When E = 1, the selected MUX input is placed on the bus. When E = 0, the MUX is detached from the bus; another source feeds the bus.

Slide 6 of 21 slides

A 1-to-4 DEMUX

C ₁	C ₀	Selected Output
0	0	$\mathbf{Y}_0 = \mathbf{X}$
		Other outputs 0
0	1	$\mathbf{Y}_1 = \mathbf{X}$
		Other outputs 0
1	0	$Y_2 = X$
		Other outputs 0
1	1	$Y_3 = X$
		Other outputs 0

Build a 1–to–4 DEMUX With an Enable

If Enable = 0, all outputs are 0.

Slide 8 of 21 slides

Using A 2^N-to-1 MUX for a Boolean Function of N Boolean Variables

- **Theorem 1:** Any Boolean function of N Boolean variables, N > 0, can be constructed by a multiplexer with 2^N inputs (usually labeled I_K , I_{K-1} , ... I_1 , I_0) and N control lines, labeled C_{N-1} ... C_0 .
- Method: Express the Boolean function of N Boolean variables in Canonical Sum of Products and then match the desired function to the Multiplexer Equation for a 2^{N} -to-1 MUX.
- **Example:** $F2(X, Y, Z) = X \bullet Y + X \bullet Z + Y \bullet Z$
- **Step 1:** This is a function of three Boolean variables. We must use a 2^{3} -to-1 MUX, also called a 8-to-1 MUX.

Using A 2^N-to-1 MUX (page 2)

Step 2: Convert $F2(X, Y, Z) = X \cdot Y + X \cdot Z + Y \cdot Z$ to Canonical SOP. Every product term must have a literal for each variable. A literal is either the variable or its complement.

$$F2 = X*Y + X*Z + Y*Z$$

= X*Y*(\overline{Z} + Z) + X*(\overline{Y} + Y)*Z + (\overline{X} + X)*Y*Z
= X*Y* \overline{Z} + X*Y*Z + X* $\overline{Y}*Z$ + X*Y*Z + $\overline{X}*Y*Z$ + X*Y*Z
= $\overline{X}*Y*Z$ + X* $\overline{Y}*Z$ + X*Y* \overline{Z} + X*Y*Z

Note that all four terms have a literal for each of the three variables X, Y, and Z.

Using A 2^N-to-1 MUX (page 3)

Step 3: Convert the function to a form with all 2^N product terms. Here we convert F2 to have all eight possible product terms.

 $F(X, Y, Z) = \overline{X} \cdot Y \cdot Z + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z} + X \cdot Y \cdot Z$ $= \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot 0 + \overline{X} \cdot \overline{Y} \cdot Z \cdot 0 + \overline{X} \cdot Y \cdot \overline{Z} \cdot 0 + \overline{X} \cdot Y \cdot Z \cdot 1$ $+ X \cdot \overline{Y} \cdot \overline{Z} \cdot 0 + X \cdot \overline{Y} \cdot Z \cdot 1 + X \cdot Y \cdot \overline{Z} \cdot 1 + X \cdot Y \cdot Z \cdot 1$

Using A 2^N-to-1 MUX (page 4)

Step 4: Write the Multiplexer Equation for an 8–to–1 MUX.

 $M = \overline{C}_{2} \cdot \overline{C}_{1} \cdot \overline{C}_{0} \cdot I_{0} + \overline{C}_{2} \cdot \overline{C}_{1} \cdot C_{0} \cdot I_{1} + \overline{C}_{2} \cdot C_{1} \cdot \overline{C}_{0} \cdot I_{2} + \overline{C}_{2} \cdot C_{1} \cdot C_{0} \cdot I_{3}$ $+ C_{2} \cdot \overline{C}_{1} \cdot \overline{C}_{0} \cdot I_{4} + C_{2} \cdot \overline{C}_{1} \cdot C_{0} \cdot I_{5} + C_{2} \cdot C_{1} \cdot \overline{C}_{0} \cdot I_{6} + C_{2} \cdot C_{1} \cdot C_{0} \cdot I_{7}$

Step 5: Rewrite the equation with $C_2 = X$, $C_1 = Y$, and $C_0 = Z$.

$\mathbf{M} = \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}} \cdot \mathbf{I}_{0} + \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}} \cdot \mathbf{Z} \cdot \mathbf{I}_{1} + \overline{\mathbf{X}} \cdot \mathbf{Y} \cdot \overline{\mathbf{Z}} \cdot \mathbf{I}_{2} + \overline{\mathbf{X}} \cdot \mathbf{Y} \cdot \mathbf{Z} \cdot \mathbf{I}_{3}$ $+ \mathbf{X} \cdot \overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}} \cdot \mathbf{I}_{4} + \mathbf{X} \cdot \overline{\mathbf{Y}} \cdot \mathbf{Z} \cdot \mathbf{I}_{5} + \mathbf{X} \cdot \mathbf{Y} \cdot \overline{\mathbf{Z}} \cdot \mathbf{I}_{6} + \mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z} \cdot \mathbf{I}_{7}$

NOTE: Here I use $I_0, I_1, ..., I_7$ as the MUX inputs because I am using X to denote one of the Boolean variables.

Slide 12 of 21 slides

Using A 2^N-to-1 MUX (page 5)

Step 6: Match the two expressions

 $F(X, Y, Z) = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot 0 + \overline{X} \cdot \overline{Y} \cdot Z \cdot 0 + \overline{X} \cdot Y \cdot \overline{Z} \cdot 0 + \overline{X} \cdot Y \cdot Z \cdot 1 + X \cdot Y \cdot \overline{Z} \cdot 0 + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot 0 + X \cdot \overline{Y} \cdot \overline{Z} \cdot 1 + X \cdot Y \cdot \overline{Z} \cdot 1 + X \cdot \overline{Y} \cdot \overline{Z} \cdot 1 + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{Z} \cdot 1 - \overline{X} + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{Z} \cdot 1 - \overline{X} + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{Z} \cdot 1 - \overline{X} + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \overline{Z} \cdot \overline{Z} \cdot 1 - \overline{X} + \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot$

Using A 2^{N} -to-1 MUX (Using either a Σ list or a Π list)

For a Σ list, connect the listed inputs to 1 and the others to 0. For a Π list, connect the listed inputs to 0 and the others to 1. F(X, Y, Z) = $\Sigma(3, 5, 6, 7) = \Pi(0, 1, 2, 4)$

We try this with a common circuit emulator, such as Multi–Media Logic, and find that we need to think a bit more.

An Eight-to-One MUX in Multi-Media

Here is the circuit element selected in the Multi–Media Logic tool.

This is an 8–to–1 MUX with inputs labeled 7 through 0, or equivalently X_7 through X_0 . This is expected.

The selector (control) lines are as expected; 2 through 0.

In my notes, I use M for the output of the Multiplexer. This figure uses the symbol Y (not a problem) and notes that real multiplexers also output the complement.

The only issue here is the enable. Note that the MUX is enabled low; this signal must be set to ground in order for the multiplexer to function as advertised.

Commercial Multiplexer: Enabled and Not Enabled

At top, the output is X_3 . At bottom, the output is 0.

Slide 16 of 21 slides

Carry–Out of a Full Adder

Here is a screen shot of my implementation of $F(X, Y, Z) = \Sigma(3, 5, 6, 7)$.

NOTE: Show simulation here.

Slide 17 of 21 slides

Gray Codes: Minimal Effort Testing

Consider the above circuit with three basic inputs S_2 , S_1 , S_0 . How can one test all possible inputs with minimum switching?

One good answer is to use Gray Codes for input. Here are the 2-bit and 3-bit codes.

00	000
01	001
11	011
10	010
	110
	111
	101
	100

To generate an (N + 1)-bit code set from an N-bit code set.

- 1. Write out the N–bit codes with 0 as a prefix, then
- 2. Write out the N–bit codes in reverse with 1 as a prefix.

00, 01, 11, 10 becomes 000, 001, 011, 010, 110, 111, 101, and 100

Testing the Carry–Out Circuit

If the Enable switch is set to 1, the output is always 0. Y' = 1. Set the Enable switch to 0 and generate the following sequence.

Start with $S_2 = 0$, $S_1 = 0$, $S_0 = 0$.	000
Click S ₀ to get	001
Click S ₁ to get	011
Click S ₀ to get	010
Click S ₂ to get	110
Click S ₀ to get	111
Click S ₁ to get	101
Click S_0 to get	$1 \ 0 \ 0$

Where are the Decoders?

One will note that the Multi–Media Logic tool does not provide a decoder circuit. Fortunately, a $1-to-2^{N}$ demultiplexer can be made into an N-to- 2^{N} decoder.

Look at the circuit to the left. The control signals C_1, C_0 select the output to receive the input X. This is exactly equivalent to a decoder.

In the circuit at right, the selected output gets the input, now called "Enable". For the demultiplexers we use, the other outputs get a logic 1.

We can fabricate an active low decoder.

Slide 20 of 21 slides

The MUX as an Active–Low Decoder

Here is an answer to one of the homework problems: use a 2–to–4 decoder for XOR. The function is either $\Sigma(1, 2)$ or $\Pi(0, 3)$.

