
Multiplexers and Demultiplexers:
Description and Design Issues

Edward L. Bosworth, Ph.D.
TSYS School of Computer Science

Columbus State University
Columbus, GA 31907

Slide 1 of 21 slides Revised August 13, 2010

Multiplexers and Demultiplexers

Multiplexer – MUX
Associates One of Many Inputs to a Single Output

Demultiplexer – DEMUX
Associates One Input with One of Many Outputs

 Circuit Inputs Control Outputs
 Signals
Multiplexer 2N N 1
Demultiplexer 1 N 2N

Slide 2 of 21 slides Revised August 13, 2010

Sample: 4–to–1 MUX and 1–to–4 DEMUX

My Notation: X for Input
 C for Control Signals
 Y for Output

Slide 3 of 21 slides Revised August 13, 2010

The Multiplexer Equation
Illustrated for a 4–to–1 MUX

Truth table Denote the multiplexer output by M

C1 C0 M
0 0 X0
0 1 X1
1 0 X2
1 1 X3

Equation Form

Here is another form of the equation that is better when X is used as an input.

Slide 4 of 21 slides Revised August 13, 2010

Build a 4–to–1 MUX

But what about an enable input for a multiplexer?
What does it mean for the output of the MUX to be 0?

Slide 5 of 21 slides Revised August 13, 2010

Multiplexer Attached to a Bus Line
To control a multiplexer’s connection to a common bus, we use a tri–state buffer
and not an enable input to the MUX. Here I use “E” as the tri–state control.

When E = 1, the selected MUX input is placed on the bus.
When E = 0, the MUX is detached from the bus; another source feeds the bus.

Slide 6 of 21 slides Revised August 13, 2010

A 1–to–4 DEMUX

C1 C0 Selected Output
0 0 Y0 = X

Other outputs 0
0 1 Y1 = X

Other outputs 0
1 0 Y2 = X

Other outputs 0
1 1 Y3 = X

Other outputs 0

Slide 7 of 21 slides Revised August 13, 2010

Build a 1–to–4 DEMUX
With an Enable

If Enable = 0, all outputs are 0.

Slide 8 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
for a Boolean Function of N Boolean Variables

Theorem 1: Any Boolean function of N Boolean variables, N > 0, can be
 constructed by a multiplexer with 2N inputs (usually labeled
 IK, IK-1, … I1, I0) and N control lines, labeled CN-1 … C0.

Method: Express the Boolean function of N Boolean variables in Canonical
 Sum of Products and then match the desired function to the
 Multiplexer Equation for a 2N–to–1 MUX.

Example: F2(X, Y, Z) = X•Y + X•Z + Y•Z

Step 1: This is a function of three Boolean variables. We must use a
 23–to–1 MUX, also called a 8–to–1 MUX.

Slide 9 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
(page 2)

Step 2: Convert F2(X, Y, Z) = X•Y + X•Z + Y•Z to Canonical SOP.
 Every product term must have a literal for each variable.
 A literal is either the variable or its complement.

Note that all four terms have a literal for each of the three variables X, Y, and Z.

Slide 10 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
(page 3)

Step 3: Convert the function to a form with all 2N product terms.
 Here we convert F2 to have all eight possible product terms.

Slide 11 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
(page 4)

Step 4: Write the Multiplexer Equation for an 8–to–1 MUX.

Step 5: Rewrite the equation with C2 = X, C1 = Y, and C0 = Z.

NOTE: Here I use I0, I1, …, I7 as the MUX inputs because I am using X
 to denote one of the Boolean variables.

Slide 12 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
(page 5)

Step 6: Match the two expressions

I0 = 0 I1 = 0 I2 = 0 I3 = 1
I4 = 0 I5 = 1 I6 = 1 I7 = 1

with C2 = X, C1 = Y, and C0 = Z.

Slide 13 of 21 slides Revised August 13, 2010

Using A 2N–to–1 MUX
(Using either a Σ list or a Π list)

For a Σ list, connect the listed inputs to 1 and the others to 0.

For a Π list, connect the listed inputs to 0 and the others to 1.

F(X, Y, Z) = Σ(3, 5, 6, 7) = Π(0, 1, 2, 4)

We try this with a common circuit emulator, such as Multi–Media Logic,
and find that we need to think a bit more.

Slide 14 of 21 slides Revised August 13, 2010

An Eight–to–One MUX in Multi–Media

Here is the circuit element selected in the Multi–Media Logic tool.

This is an 8–to–1 MUX with inputs labeled 7 through 0, or
equivalently X7 through X0. This is expected.

The selector (control) lines are as expected; 2 through 0.

In my notes, I use M for the output of the Multiplexer. This
figure uses the symbol Y (not a problem) and notes that real
multiplexers also output the complement.

The only issue here is the enable. Note that the MUX is
enabled low; this signal must be set to ground in order for
the multiplexer to function as advertised.

Slide 15 of 21 slides Revised August 13, 2010

Commercial Multiplexer: Enabled and Not Enabled

At top, the output is X3. At bottom, the output is 0.

Slide 16 of 21 slides Revised August 13, 2010

Carry–Out of a Full Adder

Here is a screen shot of my implementation of F(X, Y, Z) = Σ(3, 5, 6, 7).

NOTE: Show simulation here.

Slide 17 of 21 slides Revised August 13, 2010

Gray Codes: Minimal Effort Testing

Consider the above circuit with three basic inputs S2, S1, S0.
How can one test all possible inputs with minimum switching?

One good answer is to use Gray Codes for input. Here are the 2–bit and 3–bit codes.
 00 000
 01 001
 11 011
 10 010
 110
 111
 101
 100
To generate an (N + 1)–bit code set from an N–bit code set.
 1. Write out the N–bit codes with 0 as a prefix, then
 2. Write out the N–bit codes in reverse with 1 as a prefix.
00, 01, 11, 10 becomes 000, 001, 011, 010, 110, 111, 101, and 100

Slide 18 of 21 slides Revised August 13, 2010

Testing the Carry–Out Circuit

If the Enable switch is set to 1, the output is always 0. Y’ = 1.
Set the Enable switch to 0 and generate the following sequence.

Start with S2 = 0, S1 = 0, S0 = 0. 0 0 0
Click S0 to get 0 0 1
Click S1 to get 0 1 1
Click S0 to get 0 1 0
Click S2 to get 1 1 0
Click S0 to get 1 1 1
Click S1 to get 1 0 1
Click S0 to get 1 0 0

Slide 19 of 21 slides Revised August 13, 2010

Where are the Decoders?

One will note that the Multi–Media Logic tool does not provide a decoder circuit.

Fortunately, a 1–to–2N demultiplexer can be made into an N–to–2N decoder.

Look at the circuit to the left. The control signals C1,C0 select the output to receive the
input X. This is exactly equivalent to a decoder.

In the circuit at right, the selected output gets the input, now called “Enable”.
For the demultiplexers we use, the other outputs get a logic 1.

We can fabricate an active low decoder.

Slide 20 of 21 slides Revised August 13, 2010

The MUX as an Active–Low Decoder

Here is the 2–to–4 Demultiplexer as an 2–to–4 active low decoder.

Here is an answer to one of the homework problems: use a 2–to–4 decoder for XOR.
The function is either Σ(1, 2) or Π(0, 3).

Slide 21 of 21 slides Revised August 13, 2010

