Real Numbers

We have been studying integer arithmetic up to this point.

We have discovered that a standard computer can represent a finite subset of the infinite
set of integers. The range is determined by the number of bits used for the integers.

For example, the range for 16-bit two’s complement arithmetic is-32,768 to 32,767.

We now turn our attention to real numbers, focusing on their representation
as floating point numbers.

The floating point representation of decimal numbers is often called Scientific Notation.

Most of us who use real numbers are more comfortable with fixed point numbers,
those with a fixed number of digits after the decimal point.

For example, normal U.S. money usage calls for two digits after the decimal: $123.45

Most banks use a variant of fixed point numbers to store cash balances and similar
accounting data. Thisis due to the round-off issues with floating point numbers.

It might be possible to use 32-hit two’s complement integers to represent the money in
pennies. We could represent —$ 21,474,836.48 to $ 21,474,836.47



Floating Point Numbers

Floating point notation allows any number of digits to the right of the decimal point.

In considering decimal floating point notation, we focus on a standard representation,
often called “ scientific notation”, in which the number is represented as a product.

(-1)° e X @ 10", where 1.0 < X < 10.0

Therestriction that 1.0 < X < 10.0 insures a unigue representation.

Examples:  0.09375 = (-1)° e 9.375 ¢ 10*
—23.375 =(-1)* ¢ 2.3375 ¢ 10"
1453.0 =(-1)% e 1.453 ¢ 10°

6.022142 « 10  Avogadro’s Number, already in the standard form.

Avogadro’ s number, an experimentally determined value, shows 2 uses of the notation.
1. Without it, the number would require 24 digits to write.
2. It shows the precision with which the value of the constant is known. This
says that the number is between 6.0221415 ¢ 10* and 6.0221425 e 10%,

QUESTION: What common number cannot be represented in this form?
HINT: Consider the constraint 1.0 < X < 10.0.



Zero Cannot Be Represented

In standard scientific notation, a zero is simply represented as 0.0.

One can a so see numbers written as 0.0 e 107, for some power P, but thisis usually
the result of some computation and is usually rewritten as ssimply 0.0 or 0.00.

The constrained notation (-1)° e X e 107 (1.0 < X < 10.0), not normally a part of
scientific notation, is the cause of the inability to represent the number O.

Argument:  Solve X 10" = 0. Since X > 0, we can divide both sides by X.
We get: 10" = 0. But thereis no value P such that 10" = 0.

Admittedly, 107%°°% js so small asto be unimaginable, but it is not zero.

Having considered this non-standard variant of scientific notation, we move on and
discuss normalized binary numbers.

Our discussion of floating point numbers will focus on a standard called
| EEE Floating—Point Standard 754, Single Precision



Normalized Binary Number s

Normalized binary numbers are represented in the form.
(-1)° e X  2°, where 1.0< X < 2.0

Again, the constraint on X insures a unique representation. It also allows a protocol
based on the fact that the first digit of the number X isalways“1”.

In other words, X = 1.Y. Here are some examples.
1.0 =1.0e2° thusP=0,X =1.0and, Y =0.
1.5 =15 2% thusP=0,X =15and, Y =5.
20 =1.0e 2" thusP=1,X=1.0and, Y =0.
0.25=1.0e 27 thusP=-2, X =1.0and, Y = 0.
70 =175 2% thusP=2,X =1.75and, Y = 75.
0.75=15e 2" thusP=-1, X =15and, Y = 5.
The unusual representation of Y will be explained later.

The standard calls for representing a floating—point number with the triple (S, P, Y).



Representing the Exponent

The exponent is an integer. It can be either negative, zero, or positive.

In the IEEE Single Precision format, the exponent is stored as an 8-bit number
In excess-127 format.

Let P be the exponent. Thisformat calls for storing the number (P + 127)
as an unsigned 8-hit integer.

The range of 8-bit unsigned integersis 0 to 255 inclusive. Thisleads to the following
limits on the exponent that can be stored in this format.
0<(P+127) <255
—127<P<128

Here are come examples.
=-5;, -5+127=122. Decima 122 = 0111 1010 binary, the answer.
P=-1, -1+127=126. Decima 126 =0111 1110 binary, the answer.
P=0;, 0+127=127. Decimal 127 = 0111 1111 binary, the answer.
P=4, 4+127=131 Decimal 131 = 1000 0011 binary, the answer.
P=33; 33+127=160 Decimal 160 = 1010 0000 binary, the answer.



| EEE Floating Point Standard 754 (Single Precision)

The standard calls for a 32-bit representation. From left to right, we have
One sign bit: 1 for a negative number and O for a non—negative number.
Eight exponent bits, storing the exponent in excess—-127 notation.

23 bits for the significand, defined below.

The standard calls for two special patterns in the exponent field.
00000000 (P=-127) Reserved for denormalized numbers (defined below)

11111111 (P=128) Reserved for infinity and NAN (Not a Number)
Each defined below.

The range of exponents for a normalized number is— 127 < P< 128.



Normalized Numbersin |EEE Single Precision

In this standard, a normalized number is represented in the format:
(-1)°e X o 2F, where 1.0< X < 2.0and -126 < P< 127.

The smallest positive number that can be represented as a normalized number in this
format has value 1.0 ¢ 27°, We convert this to decimal.

Logio(2) = 0.301030, so Log;o(27%°) = (-126) e 0.301030 = — 37.92978
= 0.07022 — 38. But 10°°%% ~ 1.2,
We conclude that 27*%° is about 1.2 e« 10°%, the lower limit on this format.

The largest positive number that can be represented as a normalized number in this
format has avalue (2 - 27%°) o 2% minutely lessthan 2 e 212" = 21

Now Log;o(2'%°) = 128 e 0.301030 = 38.53184. Now 10>>3'% ~ 3.4.
We conclude that 2'%° is about 3.4 10, the upper limit on this format.

The range for positive normalized numbersin this format is 1.2 ¢ 10°° to 3.4 ¢ 10%.



Denormalized Numbers

Consider two numbers, one small and one large. Each is a positive number that can be
represented as a normalized number in this format.

Let X =10% and Y = 10%.

Then X /Y = 10, anumber that cannot be represented in normalized form.
Thisleadsto what is called an underflow error.

There are two options. either say that X /Y = 0.0 or store the number in another format.

The designers of the IEEE Floating Point Format devised denor malized number s to
handle this underflow problem. These are numbers with magnitude too small to be
represented as normalized numbers.

The one very important denormalized number that is the exception hereis zer o.
Zero, denoted as “ 0.0, is the only denormalized number that will concern us.
The standard representation of 0.0 isjust thirty two O bits.

0000 0000 0000 0000 0000 00O 0000 0000
0x00000000



Infinity and NAN (Not A Number)

Here we speak loosely, in afashion that would displease most pure mathematicians.

| nfinity
What is the result of dividing a positive number by zero?
Thisisequivalent to solving theequation X /0=Y,or Qe Y =X >0, for somevalue Y.

ThereisnovaueY suchthatOe Y > 0. Loosdy we say that X / 0 = oo.
The |EEE standard has a specific bit pattern for each oo and — oo.

NAN
What is the result of dividing zero by zero?

Thisisequivalent to solving theequation0/0=Y,or0e Y =0.
Thisistruefor every number Y. We say that 0/ 0 isnot a number.

It is easy to show that the mathematical monstrosities oo — oo and oo / 0o
must each be set to NAN. Thisinvolves techniques normally associated with calculus.

An implementation of the standard can also use this “not a number” to represent other
results that do not fit as real numbers. One example would be the square root of — 1.



Normalized Numbers. Producing the Binary Representation

Remember the structure of the single precision floating point number.
One sign bit: 1 for a negative number and O for a non—negative number.
Eight exponent bits, storing the exponent in excess—-127 notation.
23 bits for the significand.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:

Determine the sign bit. Savethisfor later.

Convert the absolute value of the number to normalized form.
Determine the eight—bit exponent field.

Determine the 23-hit significand. There are shortcuts here.
Arrange the fields in order.

Rearrange the bits, grouping by fours from the left.

Write the number as eight hexadecimal digits.

Exception: 0.0 isaways 0x0000 0000. (Space used for legibility only)

Thisisadenormalized number, so the procedure does not apply.



Example: The Negative Number — 0.750

Step1: Thenumber is negative. Thesign bitisS=1.
Step2: 0.750=1.5¢050=15e2". TheexponentisP=- 1.
Step3:. P+ 127=-1+ 127 =126. Asan eight-bit number, thisis (0111 1110.

Step4: Convert 1.5tobinary. 1.5=1+%=1.1,. The significand is 10000.
To get the significand, drop the leading “1.” from the number.
Note that we do not extend the significand to its full 23 bits, but
only place afew zeroes after the last 1 in the string.

Step 5. Arrange the bits: Sign | Exponent | Significand

Si gn Exponent Significand
1 0111 1110 1000 ...00

Step 6:  Rearrange the bits
1011 1111 0100 0000 ...etc.

Step 7. Write as OxBF40. Extend to eight hex digits: OxBF40 0000.

The trick with the significand works because it comprises the bits to the right of the
binary point. So, 10000 is the same as 1000 0000 0000 0000 0000 000.



Example: The Number 80.09375

This example will be worked in more detail, using methods that are more standard.
Step 1. Thenumber is not negative. Thesign bitisS=0.

Step 2. We shall work this out in quite some detail, mostly to review the techniques.
Note that 2° < 80.09375 < 27, so the exponent ought to be 6.

Convert 80. 80/2 =40 remainder O
40/ 2 =20 remainder O
20/ 2 =10 remainder O
10/ 2 =5 remainder O

5/2 =2 remainder 1
22 =1 remainder O
1/2 =0 remainder 1 101 0000 in binary.

Convert 0.09375 0.90375¢2 =0.187/5
0.1875 e 2 =0.375

0.375e 2 =0.75
0.75e 2 =150 (Drop theleading 1)
0.50e2 =1.00

The binary value is 101 0000.00011



Example: The Number 80.09375 (Continued)

Step 2 (Continued): We continue to convert the binary number 101 0000.00011.

To get anumber inthe form 1.Y, we move the binary point six placesto the left. This
moving six places to the left indicates that the exponent isP = 6.

101 0000.00011 = 1.0100 0000 0112°
Step3: P+ 127=6+127=133=128+ 5. In binary we have 1000 0101.

Step 4:  Thesignificand is 0100 0000 011 or 0100 0000 0110 000O0.
Again, we just take the number 1.0100 0000 011 and drop the “1.”.

Step 5:  Arrange the bits: Sign | Exponent | Significand

Si gn Exponent Significand
0 1000 0101 0100 0000 0110 0000

Step 6: Rearrange the bits
0100 0010 1010 0000 0011 00000...etc.

Step 7. Write as 0x42A030. Extend to eight hex digits: 0x42A0 3000.



Examplein Reverse: 0x42E8 0000

Given the 32-bit number 0x42E8 0000, determine the value of the floating point number
represented if the format is |EEE-754 Single Precision. Just do the steps backwards.

Step 1. From left to right, convert all non—zero hexadecimal digits to binary.
If necessary, pad out with trailing zeroes to get at least ten binary bits.

4 2 E 8
0100 0010 1110 1000

Step 2. Rearrange the bitsas 1 bit | 8 bits | the rest

Sign Exponent Significand
0 1000 0101 1101000

Step 3. Interpret thesign bit. S = 0; the number is non—-negative.

Step 4. Interpret the exponent field. 1000 0101,=128+4 + 1 = 133.
P+ 127=133, P=6.

Step 5:  Extend and interpret the significand. Extend to 1.1101,. Drop thetrailing O’s.
1.1101,=1+21/2+ 14+ 1/16=113/16 = 1.8125



Examplein Rever se: 0x42E8 0000 (continued)

Step 6: Evaluate the number.
| show three ways to compute the magnitude.

6a Just do the multiplication.
We have 1.8125 ¢ 2° = 1.8125 ¢ 64 = 116.0

6b Consider the fractional powersof 2. 1.1101, =1+ 1/2 + 1/4 + 1/16, so
wehave (1+1/2+1/4+1/16)e64=64+32+ 16+ 4 =116.0

6¢c The“binary” representationis 1.1101, e 2°. Move the binary point
six places to the right to remove the exponent.
But first pad the right hand side of the significand to six hits.

The “binary” representation is 1.110100, e 2°.
Thisequals 111 0100.0 =64+ 32+ 16+ 4 =116.0

REMARK:  Whenever the instructor gives more than one method to solve a problem,
the student should feel free to select one and ignore the others.



Examplein Rever se: 0xC2E8 0000

Thisisaexample rigged to make a particular point.

Step 1:  From left to right, convert all non-zero hexadecimal digits to binary.
If necessary, pad out with trailing zeroes to get at least ten binary bits.
C 2 E 8
1100 0010 1110 1000
Step 2. Rearrange the bitsas 1 bit | 8 bits | the rest

Sign Exponent Significand
1 1000 0101 1101000

Here, we take a shortcut that should be obvious. Compare this bit pattern with
that of the previous example, which evaluated to 116.0.

Thispattern 1 10000101 1101000
116.0 0 10000101 1101000

Thisisthe same number, just with adifferent sign bit. The answer is
the negative number — 116.0.



A Final Example: 0xC000 0000

Step 1. From left to right, convert all non—zero hexadecimal digits to binary.
C
1100

If necessary, pad out with trailing zeroes to get at least ten binary bits.
Just to be thorough, | pad the number out to twelve binary bits.

C 0 0
1100 0000 0000

Step 2:  Rearrangethe bitsas 1 bit | 8 bits | the rest

Sign Exponent Significand
1 1000 0000 0000

Step 3. Interpret thesign bit.  S=1; the number is negative.

Step 4. Interpret the exponent field. 1000 0000, = 128.
P+127=128; P=1.

Step 5:  Extend and interpret the significand. Extend to 1.0000,. Thisisexactly 1.0
Step 6:  Evaluate the number: 1.0 ¢ 21 =2.0.



Precision
How accurate is this floating point format?

Recall again the bit counts for the various fields of the number.
One sign bit: 1 for a negative number and O for a non—negative number.
Eight exponent bits, storing the exponent in excess—127 notation.
23 bits for the significand.

It isthe 23 bits for the significand that give rise to the precision.
With the leading 1 (that is not stored), we have 24 bits, thus accuracy to 1 part in 2.
2 =2"e2°=16 e 2°°=16, 777, 216.

1 part in 10, 000, 000 would imply seven significant digits. Thisis slightly better, so we
can claim seven significant digits.

The |EEE double precision format extends the accuracy to more digits.

Bankers and other financial types prefer exact arithmetic, so use another format (BCD)
for al of their real number (money) calculations.



IBM S/370 Floating Point Data

We now discuss the representation used by IBM on its mainframe computers:
the Sytem/360, System/370, and subsequent mainframes.

All floating point formats are of the form (S, E, F) representing (—1)eBFeF.
It isthetriple (S, E, F) that is stored in memory.

S the sign bit, 1 for negative and O for non—-negative.
B the base of the number system; one of 2, 10, or 16.
E the exponent.

F the fraction.

The IEEE-754 standard calls for a binary base.
The IBM 370 format uses base 16.
Each of the formats represents the numbers in normalized form.

For IBM 370 format, thisimpliesthat 0.0625 < F < 1.0. Note (1/16) = 0.0625.



S/370 Floating Point: Storing the Exponent

The exponent is stored in excess—64 format as a 7-bit unsigned number.

This alows for both positive and negative exponents.

A 7-bit unsigned binary number can store values in the range [0, 127] inclusive.

The range of exponentsis given by O0<(E+64) <127, 0or
- 64 <E<63.

The leftmost byte of the format stores both the sign and exponent.

Bits 0 1 2 3 4 3) 6 /

Feld | Sign Exponent in Excess—64 format
Examples
Negative number, Exponent = -8 E+64=56=48+8=X"'38 =B’011 1000'.
0 1 2 3 4 5 6 7
Sign 3 8
1 0 1 1 1 0 0 0

The value stored in the leftmost byte is 1011 1000 or BS.




Converting Decimal to Hexadecimal

Thefirst step in producing the IBM 370 floating point representation
of areal number isto convert that number into hexadecimal format.

The process for conversion has two steps,
one each for the integer and fractional part.

Example: Represent 123.90625 to hexadecimal.

Conversion of the integer part is achieved by repeated division with remainders.
123/16 =7 with remainder 11 X'B’
7116 =0 with remainder 7 XT.

Read bottomto topas X' 7B’. Indeed 123 =716 + 11 =112 + 11.

Conversion of the fractional part is achieved by repeated multiplication.
0.90625¢ 16 =145 Remove the 14 (hexadecimal E)

0.5e 16 =8.0 Remove the 8.

The answer is read top to bottom as ES.

The answer isthat 123.90625 in decimal is represented by X’ 7B.ES’.



Converting Decimal to IBM 370 Floating Point For mat

The decimal number is 123.90625.

Its hexadecimal representation is 7B.ES.

Normalize this by moving the decimal point two places to the left.

The number is now 16° ¢ 0.7BES.

The sign is 0, as the number is not negative.

The exponentis2, E+ 64 =66=X42". The leftmost byteis X' 42’.
Thefraction is 7BES.

The left part of the floating point datais 427BES.

In single precision, this would be represented in four bytes as 42 78 E8 0OO0.



S/370: Available Floating Point For mats

There are three available formats for representing floating point numbers.
Single precision 4 bytes 32 bits: 0- 31

Double precision 8 bytes 64 bits. 0 - 63

Extended precision 16 bytes 128 bits;, 0 — 127.

The standard representation of the fieldsis as follows.

For mat Sign bit | Exponent bits Fraction bits
Single 0 1-7 8-31
Double 0 1-7 8 — 63

Extended 0 1-7 8- 127

NOTE: Unlikethe IEEE-754 format, greater precision is not
accompanied by a greater range of exponents.

The precision of the format depends on the number of bits used for the fraction.
Single precision 24 bit fraction 1partin2®* 7 digits precision *
Double precision 56 bit fraction 1partin2>® 16 digits precision **

*2%=16,777,216 ** 2%~ (10°%1%)56 ~ 10"°% ~ 7¢10%.



