
Chapter 9 – An Overview of Computer Architecture 
 
We now begin an overview of the architecture of a typical stored program computer.  It 
should be noted that this architecture is common to almost all computers running today, from 
the smallest industrial controller to the largest supercomputer.  What sets the larger 
computers, such as the IBM ASCII Blue (a supercomputer capable of 1015 floating point 
operations per second), apart from the typical PC is that many larger computers are built 
from a large number of processor and memory modules that communicate and work 
cooperatively on a problem.  The basic architecture is the same. 
 
Stored program computers have four major components: the CPU (Central Processing Unit), 
the memory, I/O devices, and one or more bus structures to allow the other three components 
to communicate.  The figure below illustrates a typical architecture. 
 

 
Figure: Top-Level Structure of a Computer 

 
The functions of the three top-level components of a computer seem to be obvious.  The I/O 
devices allow for communication of data to other devices and the users.  The memory stores 
both program data and executable code in the form of binary machine language.  The CPU 
comprises components that execute the machine language of the computer.  Within the CPU, 
it is the function of the control unit to interpret the machine language and cause the CPU to 
execute the instructions as written.  The Arithmetic Logic Unit (ALU) is that component of 
the CPU that does the arithmetic operations and the logical comparisons that are necessary 
for program execution.  The ALU uses a number of local storage units, called registers, to 
hold results of its operations.  The set of registers is sometimes called the register file. 
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Fetch-Execute Cycle 
As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program 
computer.  The CPU fetches each instruction from the memory unit, then executes that 
instruction, and fetches the next instruction.  An exception to the “fetch next instruction” rule 
comes when the equivalent of a Jump or Go To instruction is executed, in which case the 
instruction at the indicated address is fetched and executed. 
 
Registers vs. Memory 
Registers and memory are similar in that both store data.  The difference between the two is 
somewhat an artifact of the history of computation, which has become solidified in all 
current architectures.  The basic difference between devices used as registers and devices 
used for memory storage is that registers are usually faster and more expensive (see below 
for a discussion of registers and Level–1 Cache). 
 
The origin of the register vs. memory distinction can be traced to two computers, each of 
which was built in the 1940’s: the ENIAC (Electronic Numerical Integrator and Calculator – 
becoming operational in 1945) and the EDSAC (Electronic Delay Storage Automatic 
Calculator – becoming operational in 1949).  Each of the two computers could have been 
built with registers and memory implemented with vacuum tubes – a technology current and 
well-understood in the 1940’s.  The difficulty is that such a design would require a very large 
number of vacuum tubes, with the associated cost and reliability problems.  The ENIAC 
solution was to use vacuum tubes in design of the registers (each of which required 550 
vacuum tubes) and not to have a memory at all.  The EDSAC solution was to use vacuum 
tubes in the design of the registers and mercury delay lines for the memory unit. 
 
In each of the designs above, the goal was the same – to reduce the number of “storage units” 
that required the expensive and hard-to-maintain vacuum tubes.  This small number of 
storage units became the register file associated with the central processing unit (CPU).  It 
was not until the MIT Whirlwind in 1952 that magnetic core memory was introduced. 
 
In modern computers, the CPU is usually implemented on a single chip.  Within this context, 
the difference between registers and memory is that the registers are on the CPU chip while 
most memory is on a different chip.  Now that L1 (level 1) caches are appearing on CPU 
chips (all Pentium™ computers have a 32 KB L1 cache), the main difference between the 
two is the method used by the assembly language to access each.  Memory is accessed by 
address as if it were in the main memory that is not on the chip and the memory management 
unit will map the access to the cache memory as appropriate.  Register memory is accessed 
directly by specific instructions.  One of the current issues in computer design is dividing the 
CPU chip space between registers and L1 cache: do we have more registers or more L1 
cache?  The current answer is that it does not seem to make a difference. 
 
Both memory and registers can be viewed as collections of D flip-flops, as discussed in a 
previous chapter.  The main difference is that registers (as static memory) may actually be 
built from these flip-flops, while computer memory is fabricated from a different technology 
called dynamic memory.  We often describe main memory as if it were fabricated from flip-
flops as this leads to a model that is logically correct. 
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A flip-flop stores one bit of data.  An N–bit register is a collection of N flip-flops; thus a  
32–bit register is built from 32 flip-flops.  The CPU contains two types of registers, called 
special purpose registers and general purpose registers.  The general purpose registers 
contain data used in computations and can be accessed directly by the computer program.  
The special purpose registers are used by the control unit to hold temporary results, access 
memory, and sequence the program execution.  Normally, with one now-obsolete exception, 
these registers cannot be accessed by the program. 
 
The program status register (PSR), also called the program status word (PSW),  is one of 
the special purpose registers found on most computers.  The PSR contains a number of bits to 
reflect the state of the CPU as well as the result of the most recent computation.  Some of the 
common bits are 
 C the carry-out from the last arithmetic computation 
 V Set to 1 if the last arithmetic operation resulted in an overflow 
 N Set to 1 if the last arithmetic operation resulted in a negative number 
 Z Set to 1 if the last arithmetic operation resulted in a zero 
 I Interrupts enabled (Interrupts are discussed later) 
 
More on the CPU (Central Processing Unit) 
The central processing unit contains four major elements 
 1) The ALU (Arithmetic Logic Unit), and 
 2) The control unit, and 
 3) The register file (including user registers and special-purpose registers), and 
 4) A set of buses used for communications within the CPU. 
 
The next figure shows a better top-level view of the CPU, showing three data buses and an 
ALU optimized for standard arithmetic.  Most arithmetic (consider addition: C = A + B) is 
based on production of a result from two arguments.  To facilitate such operations, the ALU 
is designed with two inputs and a single output.  As each input and output must be connected 
to a bus internal to the CPU, this dictates at least three internal CPU buses. 
 

 
 
The register file contains a number of general-purpose registers accessible to the assembly 
language operations (often numbered 0 through some positive integer) and a number of 
special-purpose registers not directly accessed by the program.  With numbered registers (say 
R0 through R7) it is often convenient to have R0 be identically 0.  Such a constant register 
greatly simplifies the construction of the control unit. 
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Some of the special purpose registers used by the central processing unit are listed next. 
 PC the program counter contains the address of the assembly language instruction 
  to be executed next. 
 IR the instruction register contains the binary word corresponding to the machine 
  language version of the instruction currently being executed. 
 MAR the memory address register contains the address of the word in main memory 
  that is being accessed.  The word being addressed contains either data or 
  a machine language instruction to be executed. 
 MBR the memory buffer register (also called MDR for memory data register) is the 
  register used to communicate data to and from the memory. 
 
We may now sketch some of the operation of a typical stored program computer. 
 Reading Memory  First place an address in the MAR. 
     Assert a READ control signal to command memory to be read. 
     Wait for memory to produce the result. 
     Copy the contents of the MBR to a register in the CPU. 
 
 Writing Memory  First place and address in the MAR 
     Copy the contents of a register in the CPU to the MBR. 
     Assert a WRITE control signal to command the memory. 
 
We have mentioned the fetch-execute cycle that is common to all stored program computers.  
We may now sketch the operation of that cycle 
  Copy the contents of the PC into the MAR. 
  Assert a READ control signal to the memory. 
  While waiting on the memory, increment the PC to point to the next instruction 
  Copy the MBR into the IR. 
  Decode the bits found in the IR to determine what the instruction says to do. 
 
The control unit issues control signals that cause the CPU (and other components of the 
computer) to fetch the instruction to the IR (Instruction Register) and then execute the actions 
dictated by the machine language instruction that has been stored there.  One might imagine 
the following sequence of control signals corresponding to the instruction fetch. 
 
 T0: PC to Bus1, Transfer Bus1 to Bus3, Bus3 to MAR, READ. 
 T1: PC to Bus1, +1 to Bus2, Add, Bus3 to PC. 
 T2: MBR to Bus2, Transfer Bus2 to Bus3, Bus3 to IR. 
 
This simple sequence introduces a number of concepts that will be used later. 
 1. The internal buses of the CPU are named Bus1, Bus2, and Bus3. 
 2. All registers can transfer data to either Bus1 or Bus2. 
 3. Only Bus3 can transfer data into a register. 
 4. Only the ALU can transfer data from either Bus1 to Bus3 or Bus2 to Bus3. 
  It does this by a specific transfer operation. 
 5. Control signals are named for the action that they cause to take place. 
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Operation of the Control Unit 
We now examine very briefly the two most common methods for building a control unit.  
Recall that the only function of the control unit is to emit control signals, so that the design of 
a control unit is just an investigation of how to generate control signals.  There are two major 
classes of control units: hardwired and microprogrammed (or microcoded).  In order to 
see the difference, let’s write the above control signals for the common fetch sequence in a 
more compact notation. 

 T0: PC → Bus1, TRA1, Bus3 → MAR, READ. 
 T1: PC → Bus1, +1 → Bus2, ADD, Bus3 → PC. 
 T2: MBR → Bus2, TRA2, Bus3 → IR. 

Here we have used ten control signals.  Remember that the ALU has two inputs, one from 
Bus1, one from Bus2, and outputs its results on Bus3.  The control signals used are: 
 PC → Bus1 Copy the contents of the PC (Program Counter) onto Bus1 
 +1 → Bus2 Copy the contents of the constant register +1 onto Bus2. 
 MBR → Bus2 Copy the contents of the MBR (Memory Buffer Register) onto Bus2 
 TRA1  Causes the ALU to copy the contents of Bus1 onto Bus3 
 TRA2  Causes the ALU to copy the contents of Bus2 onto Bus3 
 ADD   Causes the ALU to add the contents of Bus1 and Bus2, 
    placing the sum onto Bus3. 
 READ  Causes the memory to be read and place the results in the MBR 
 Bus3 → MAR Copy the contents of Bus3 to the MAR (Memory Address Register) 
 Bus3 → PC Copy the contents of Bus3 to the PC (Program Counter) 
 Bus3 → IR Copy the contents of Bus3 to the IR (Instruction Register) 
 
All control units have a number of important inputs, including the system clock, the IR, the 
PSR (program status register) and other status and control signals.  A hardwired control 
unit uses combinational logic to produce the output.  The following shows how the above 
signals would be generated by a hardwired control unit. 
 

 
Here we assume that we have the discrete signal FETCH, which is asserted during the fetch 
phase of the instruction processing, and discrete time signals T0, T1, and T2, which would be 
generated by a counter within the control unit.  Note here that we already have a naming 
problem: there will be a distinct phase of the Fetch/Execute cycle called “FETCH”.  During 
that cycle, the discrete signal FETCH will be active.  This discrete signal is best viewed as a 
Boolean value, having only two values: Logic 1 (+5 volts) and Logic 0 (0 volts). 
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We next consider how a microprogrammed unit would generate the above signals.  In this 
discussion, we shall present a simplified picture of such a control with a number of design 
options assumed; these will be explained later in the text. 
 
The central part of a microprogrammed control unit is the micro-memory, which is used to 
store the microprogram (or microcode).  The microprogram essentially interprets the 
machine language instructions in that it causes the correct control signals to be emitted in the 
correct sequence.  The microprogram, written in microcode, is stored in a read-only memory 
(ROM, PROM, or EPROM), which is often called the control store. 
 
A microprogrammed control unit functions by reading a sequence of control words into a 
microinstruction buffer that is used to convert the binary bits in the microprogram into 
control signals for use by the CPU.  To do this, there are several other components 
 the μMAR the micro-address of the next control word to read 
 the μMBR this holds the last control word read from the micro-memory 
 the sequencer this computes the next value of the address for the μMAR. 
 
The figure below shows the structure of a sample microprogrammed control unit. 
 

 
 
The microprogram for the three steps in fetch would be 

10010 00011 
11001 01000 
00100 10100 
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Structure of a Typical External Bus 
A typical computer contains a number of bus structures.  We have already mentioned the 
system bus and a bus internal to the CPU.  Some computer designs include high-speed point-
to-point busses, used for such tasks as communication to the graphics card.  In this section, 
we consider the structure of the system bus.  The system bus is a multi-point bus that allows 
communication between a number of devices that are attached to the bus.  There are two 
classes of devices that can be connected to the bus 
 
 Master Device a device that can initiate action on the bus. 
    The CPU is always a bus master. 
 
 Slave Device a device that responds to requests by a bus master. 
    Memory is an excellent example of a slave device. 
 
Devices connected to a bus are often accessed by address.  System memory is a primary 
example of an addressable device; in a byte-addressable machine (more later on this), 
memory can be considered as an array of bytes, accessed in the same way as an array as seen 
in a typical programming language.  I/O devices are often accessed by address; it is up to the 
operating system to know the address used to access each such device. 
 
A typical bus can be considered as a number of wires (called lines) that act as a common path 
to connect the devices.  The lines fall into a number of major classes 
 Data lines  used to transfer the data between the two devices 
 Address lines used to identify the device or memory location to which the 
    data are written or from which the data are read 
 Control lines used to indicate what operation is to be done 
 Power & Ground used to provide a common power and common ground. 
    We ignore these in the logical model, but they are necessary. 
 
Structure of a PDP-11 UNIBUS 
For a foray into the real world (or the world that once was real), we quote from two 
publications describing the UNIBUS™ on a PDP-11, a minicomputer marketed by the 
Digital Equipment Corporation (DEC – now a part of Hewlett-Packard).  We quote from 
three manuals published by DEC. 

“CROSSTALK 
The unwanted transfer of energy from one circuit, called the disturbing circuit, to 
another circuit, called the disturbed circuit.”[R12] 

“UNIBUS 
The single, asynchronous, high-speed bus structure shared by the PDP-11 
processor, its memory, and all of its peripherals [Input/Output Units]” [R12] 

“UNIBUS Cable BC11A 
The BC11A is a 120-conductor cable … The 120 signals include all 56 UNIBUS 
lines plus 64 grounds.  Signals and grounds alternate to minimize 
crosstalk.”[R13] 
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The following table is adapted from the PDP-11 Peripherals Handbook [R-3]. 
 
Name Mnemonic Lines Function Asserted
DATA     
Address A<17:00> 18 Selects device or memory Low 
Data D<15:00> 16 Data for transfer Low 
Control C0, C1 2 Type of data transfer Low 
Master Sync MSYN 1 Low 
Slave Sync SSYN 1 

Timing controls for data 
transfer Low 

Parity PA, PB 2 Device parity error Low 
Interrupt INTR 1 Device interrupt Low 
  41   
PRIORITY     
Bus Request BR4, BR5, 

BR6, BR7 
4 Requests use of bus Low 

Bus Grant BG4, BG5, 
BG6, BG7 

4 Grants use of bus High 

Non-Processor Request NPR 1 Requests use of bus Low 
Non-Processor Grant NPG 1 Grants use of bus High 
Selection Acknowledge SACK 1 Acknowledges grant Low 
Bus Busy BBSY 1 Data section in use Low 
  12   
INITIALIZATION     
Initialize INIT 1 System Reset Low 
AC Low AC LO 1 Monitor power Low 
DC Low DC LO 1 Monitor power Low 
  3   

Figure: PDP-11 UNIBUS CONTROL SIGNALS 
 
In the above figure, we see provision for five priority levels for I/O devices – levels 4, 5, 6, 
and 7 and also a level called NPR for Non-Processor Request, a high-priority interrupt for 
access to memory not involving the processor; this is now called DMA. 
 
Memory Mapped vs. Isolated I/O 
The PDP-11 is an example of a computer with memory-mapped Input/Output.  What this 
name implies is that all devices, both the memory and the I/O devices share a common bus 
(on the original PDP-11 it was the UNIBUS™).  Some addresses on the bus would refer to 
I/O devices and some to memory.  On the early PDP-11 specifications, octal addresses 
760 000 through 777 777 referred to I/O devices and all other addresses were memory. 
 
A computer with isolated I/O has at least two buses – one for memory references and one for 
access to the I/O devices.  The advantage of the isolated I/O design is that all of the addresses 
are available for memory references, thus allowing more memory.  It is the assembly 
language instruction that indicates that the address given is to refer to an I/O device.  The 
disadvantage of this scheme is that there must be explicit I/O instructions, leading to a design 
that is “less elegant”. 
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One should be serious about the design issue of explicit I/O instructions.  A typical computer 
design will allocate a fixed number of bits to specify the instruction to be executed; this 
limits the number of instructions possible.  If N bits are allocated to specify the instruction, 
there is a maximum of 2N instructions.  For a small value of N, this can become a serious 
constraint on the design and the elimination of two I/O instructions (Read from Device and 
Write to Device) becomes an appealing option. 
 
Synchronous and Asynchronous Buses 
Older bus designs and Input/Output bus designs tend to be asynchronous.  Such a bus, called 
an asynchronous bus, operates without a clock to synchronize data transfers and thus must 
use control signals to coordinate the operations; these must conform to a bus protocol.  A 
typical protocol for an asynchronous bus includes the following signals 
 
 Bus Request the device is requesting use of the bus to transfer data 
 Bus Grant  the device is granted use of the bus 
 Bus Busy  asserted by a device granted the bus to prevent collisions 
 
A synchronous bus uses a clock line to synchronize operations.  Note that the bus clock rate 
is almost never the same of the system clock, but a fraction of it.  For example, a computer 
with a 3.08 GHz CPU might have a 133 MHz memory bus.  It is almost always the case that 
the CPU is the fastest component of the computer, due to the fact that it is the smallest 
component.  In modern designs, the memory bus (connecting the CPU to the random access 
memory) tends to be synchronous.  This is due to the fact that memory timings can be known 
in advance – thus we can rely on the speed at which data can be transferred to and from 
memory.  Older designs transferred one memory word per clock pulse; newer synchronous 
designs, called  DDR (double data rate) transfer data on both the rising and falling edges of 
the clock – hence doubling the data transfer rate.  This subject will be discussed more in a 
later chapter, when the issue of interfacing memory to the CPU will be discussed. 
 
A recent (10/20/2004) search the Dell Computer Internet web site ( http://www.dell.com/ ) 
included a claim that the computer had “next generation dual channel DDR2 memory – up to 
16 GB of 400MHz registered ECC memory”.  This implies that the main bus connecting the 
CPU to memory operated at 400 MHZ (with a clock cycle of 2.5 nanoseconds) and could 
make transfers at a rate of 800 million per second – that is 400 million times 2 as the bus is a 
second generation Double Data Rate device.  It can be inferred from this web site that the 
memory bus is actually 64-bits wide, allowing for the parallel transfer of eight bytes at a 
time, giving a data transfer rate of 6,400 million per second or 6.4GB/sec. 
 
The reader should note that the figure 6.4GB/sec and the figures leading up to that result are 
the work of the author of these notes and might not be exactly correct. 
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Levels of Machines and Virtual Machines 
As with any system, a computer can be viewed from a number of perspectives or levels of 
detail.  Each level corresponds to a virtual machine – one able to execute directly a specific 
language.  For example, many people view computers as virtual machines that directly 
execute e-mail programs, spread sheets, or word processors.  These people do not care about 
the lower level instructions that actually cause the machine to function, nor should they. 
 
Put another way, many people consider the computer as just another appliance – that is, 
something that does its job with little human interaction.  In this author’s opinion, this fact is 
one of the major achievements of the computer industry. 
 
“Levels” of Automobiles 
In order to motivate the idea of levels of machines, let us consider what might be called 
“levels of automobiles” or more precisely, the level of detail at which a particular user 
chooses to understand an automobile.  As an example, let us think about the Rolls Royce 
Phantom (the 2004 model is priced at only $470,000, in case you want to buy one).  There 
are a number of levels at which to view this automobile. 
 
The automobile collector will view the car as a work of art.  The possibility that one might 
drive the thing might not even occur to him or her. 
 
The VIP (very rich person or diplomat) will view the automobile as something that 
transports him or her to the desired destination.  Admittedly, the automobile does not drive 
itself, but it might as well, given the fact that it almost always has a paid chauffeur. 
 
The casual driver will understand the basics of operating the vehicle – use of the keys, 
transmission, steering wheel, and other controls.  To this person, the automobile is just a 
machine that can be controlled in predictable ways. 
 
The more involved driver will, in addition, understand that the automobile comprises a 
number of subsystems, such as the chassis, engine, transmission, and electronic systems.  He 
or she will understand the necessity of system maintenance without being able to perform it. 
 
The automobile mechanic will understand the details of each of the automobile subsystems 
and how to repair them.  Note that this is a lower (more detailed) level of understanding than 
the involved driver.  The mechanic not only understands that the subsystems exist but also 
understands how they work and how to fix them. 
 
The automobile engineer will understand one of the subsystems in detail, for example the 
detailed kinetics of fuel combustion, metallurgy of the engine block, or dynamics of the 
electrical system. 
 
Using this analogy, the goal of this course is to give the student an understanding of a 
computer somewhere between that of a mechanic and an engineer. 
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Levels of Machines in the Computer Hierarchy 
A traditional view of the computer (see Tanenbaum [R15] or Murdocca & Heuring [R16]) 
presents between five and eight levels of machines.  Here we construct a typical list. 
 
 9. Application Programs (Appliance level), 
 8. High Level (Problem Oriented) Languages,  
 7. Assembly language, 
 6. Operating system services (such as BIOS calls) 
 5. Binary machine language, 
 4. Micro-operation level (usually microprogramming),  
 3. Functional units (memory, ALU, etc.) 
 2. Logic gates, including SSI and MSI components. 
 1. Transistors and wires. 
 
We skip over level 9 (application programs) and begin our top-down study with level 8 (High 
Level Languages).  A high-level language programmer may experience the computer as a 
machine that directly executes the high-level language, such as C++, Visual Basic, COBOL, 
or FORTRAN.   In fact, very few machines are designed for direct execution of high-level 
languages (there are several LISP machines and a FORTH machine), but one may imagine a 
virtual machine that does exactly that.  In practice, most virtual machines operating at the 
high-level language level achieve their effect by compiling the program into a form suitable 
for execution on a lower-level machine.  The figure below shows two of the more common 
ways in which a high-level language virtual machine functions. 
 

 
 
Before discussing this figure, it is important to understand the differences between level 6 
(the Operating System/BIOS level) and level 5 (the Binary Machine Language level).  In 
some aspects, levels 5 and 6 are identical.  The major difference is that level 6 may be 
regarded as providing standard service routines, such as those in the Basic Input-Output 
System (BIOS).  The operating code for both levels 5 and 6 is binary machine code. 
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Some compilers (mainly the older ones) compile directly to assembly language, which is then 
assembled into calls to level 6 machine language.  Some compile directly to level 6 code. 
At this point, we see an important part of the separation of levels.  Consider modern 
languages, such as C++ and Java.  At level 8, all computers that execute such code appear to 
be almost identical, with slight differences (such as integer sizes) that can be handled by use 
of macros and other definitions.  At level 7, the computers may appear quite different as each 
computer brand seems to have its own particular assembly language. 
 
The transition between levels 6 and 7 (assembly language & O/S services) and level 5 is 
often achieved by a linking loader.  This transition allows programs to be loaded at any free 
part of memory, rather than at fixed locations (as was the case with some earlier machines).  
Thus we have two views of machines – the level 6/7 virtual machine in which the program 
always loads at a fixed location and the level 5 machine in which the program is relocated. 
 
The split between levels 5 and 4 reflects the fact that there are a number of ways in which to 
implement a Central Processing Unit (CPU) to execute a machine language.  The two 
primary methods for machine language execution are hard-wired and microprogrammed.  
This separation between these two levels allows a company to build a series of computers 
with widely differing performance levels but with the same assembly/machine language set.  
For examples, we look to the IBM 360 series and the DEC (Digital Equipment Corporation – 
no longer in business) PDP–11 series.   
 
Here is a quote from an article by C. Gordon Bell in William Stallings [].  It discusses two 
different implementations of the IBM 360 family, each with the same assembly language. 
 

“The IBM 360, introduced in 1964, was one of the earliest computer families to span 
a range of price and performance.  Along with the 360, IBM introduced the word 
‘architecture’ to refer to the various processing characteristics of a machine as seen 
by the programmer and his programs.  In the initial 360 product family, the model 
91 exceeded the model 20 in performance by a factor of 300, in memory size by a 
factor of 512, and in price by a factor of 100.” 

 
 
The next three layers form the basis for the hardware implementation of the computer.  As 
technology improves, we see two trends in implementation at this level: more powerful units 
for the same price and equally powerful units for a lesser price.  One very early example of 
this was the IBM 709/7090 series, both of which implemented the same machine language 
and used the same hardwired control design.  The difference is that the IBM 709 used 
vacuum tubes as the basic circuit elements, while the IBM 7090 used transistors. 
 
Probably the major revolution in computer design occurred at these low levels with the 
introduction to the integrated circuit to replace circuits built from discrete transistors.    The 
transition from vacuum tubes to transistors resulted in considerable gains in reliability and 
reductions in power usage.  The transition from transistors to integrated circuits, especially 
VLSI (Very Large Scale Integration) chips allowed the introduction of the modern micro-
computer and all that has gone with it. 
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RISC vs. CISC Computers 
One of the recent developments in computer architecture is called by the acronym RISC.  
Under this classification, a design is either RISC or CISC, with the following definitions. 
 RISC  Reduced Instruction Set Computer 
 CISC  Complex Instruction Set Computer. 
 
The definition of CISC architecture is very simple – it is any design that does not implement 
RISC architecture.  We now define RISC architecture and give some history of its evolution. 
The source for these notes is the book Computer Systems Design and Architecture, by 
Vincent P. Heuring and Harry F. Jordan. 
 
One should note that while the name “RISC” is of fairly recent origin (dating to the late 
1970’s) the concept can be traced to the work of Seymour Cray, then of Control Data 
Corporation,  on the CDC–6600 and related machines.  Mr. Cray did not think in terms of a 
reduced instruction set, but in terms of a very fast computer with a well-defined purpose – to 
solve complex mathematical simulations.  The resulting design supported only two basic data 
types (integers and real numbers) and had a very simple, but powerful, instruction set.  
Looking back at the design of this computer, we see that the CDC–6600 could have been 
called a RISC design. 
 
As we shall see just below, the entire RISC vs. CISC evolution is driven by the desire to 
obtain maximum performance from a computer at a reasonable price.  Mr. Cray’s machines 
maximized performance by limiting the domain of the problems they would solve. 
 
The general characteristic of a CISC architecture is the emphasis on doing more with each 
instruction.  This may involve complex instructions and complex addressing modes; for 
example the MC68020 processor supports 25 addressing modes. 
 
The ability to do more with each instruction allows more operations to be compressed into 
the same program size, something very desirable if memory costs are high.  Some historical 
data will illustrate the memory issue. 
 

Time Cost of memory Cost of disk drive 
Introduction of MC6800 $500 for 16KB RAM $55,000 for 40 MB 
Introduction of MC68000 $200 for 64 KB RAM $5,000 for 10 MB 
Now (Micron 4/10/2002) $49 for 128 MB RAM $149 for 20 GB 

 
Another justification for the CISC architectures was the “semantic gap”, the difference 
between the structure of the assembly language and the structure of the high level languages 
(COBOL, C++, Visual Basic, FORTRAN, etc.) that we want the computer to support.  It was 
expected that a more complicated instruction set (more complicated assembly language) 
would more closely resemble the high level language to be supported and thus facilitate the 
creation of a compiler for the assembly language. 
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One of the first motivations for the RISC architecture came from a careful study of the 
implications of the semantic gap.  Experimental studies conducted in 1971 by Donald Knuth 
and 1982 by David Patterson showed that nearly 85% of a programs statements were simple 
assignment, conditional, or procedure calls.  None of these required a complicated instruction 
set.  It was further notes that typical compilers translated complex high level language 
constructs into simpler assembly language statements, not the complicated assembly 
language instructions that seemed more likely to be used. 
 
The results of this study are quoted from an IEEE Tutorial on RISC architecture [R05].  This 
table shows the percentages of program statements that fall into five broad classifications. 
 

Language Pascal FORTRAN Pascal C SAL 
Workload Scientific Student System System System 
Assignment 74 67 45 38 42 
Loop 4 3 5 3 4 
Call 1 3 15 12 12 
If 20 11 29 43 36 
GOTO 2 9 -- 3 -- 
Other  7 6 1 6 

 
The authors of this study made the following comments on the results. 
 

“There is quite good agreement in the results of this mixture of languages and 
applications.  Assignment statements predominate, suggesting that the simple 
movement of data is of high importance.  There is also a preponderance of 
conditional statements (If, Loop).  These statements are implemented in machine 
language with some sort of compare and branch instruction.  This suggests that the 
sequence control mechanism is important.” 

 
The “bottom line” for the above results can be summarized as follows. 
 1) As time progresses, more and more programs will be written in a compiled high- 
  level language, with much fewer written directly in assembly language. 
 2) The compilers for these languages do not make use of the complex instruction 
  sets provided by the architecture in an attempt to close the semantic gap. 
 
In 1979, the author of these notes attended a lecture by a senior design engineer from IBM.  
He was discussing a feature of an architecture that he designed: he had put about 6 months of 
highly skilled labor into implementing a particular assembly language instruction and then 
found that it was used less than 1/10,000 of a percent of the time by any compiler. 
 
So the “semantic gap” – the desire to provide a robust architecture for support of high-level 
language programming turned out to lead to a waste of time and resources.  Were there any 
other justifications for the CISC design philosophy? 
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The other motivation for the RISC architecture is that a complex instruction set implies a 
slower computer.  It is not just the fact that the more complex instructions execute more 
slowly than the simpler instructions.  There is also the fact that making a CPU capable of 
handling more complex instructions causes it to execute simple instructions more slowly. 
 
Thus we are facing the facts that the more complex instruction sets are not necessary and that 
dropping the ability to support them will yield a faster CPU.  There are other factors that 
favor the RISC architecture, specifically the fact that speed-up techniques such as instruction 
pre-fetching and instruction pipelining are more easily achieved for simple instructions. 
 
The name RISC, Reduced Instruction Set Computer, focuses on reducing the number and 
complexity of instructions in the machine.  A number of common strategies are: 
 1) Fixed instruction length, generally one word.  This simplifies instruction fetch. 
 2) Simplified addressing modes. 
 3) Fewer and simpler instructions in the instruction set. 
 4) Only load and store instructions access memory; no add memory to register, etc. 
 5) Let the compiler do it.  Use a good compiler to break complex high-level language 
  statements into a number of simple assembly language statements. 
 
The philosophy behind the RISC approach is well described in the IEEE tutorial.  Here we 
pick up on a narrative by a design engineer who worked on the IBM 801 project. 
 

“About this point, several people, including those who had been working on 
microprogramming tools, began to rethink the architectural design principles of the 
1970’s.  In trying to close the ‘semantic gap’, these principles had actually 
introduced a ’performance gap’.  The attempt to bridge the gap with WCS’s 
[Writable Control Stores – microprogrammed control units] was unsuccessful.” 

 
“A new computer design philosophy evolved: Optimizing compilers could be used to 

compile ‘normal’ programming languages down to instructions that were as 
unencumbered as microinstructions in a large virtual address space, and to make the 
instruction cycle time as fast as the technology would allow.  These machines would 
have fewer instructions – a reduced set – and the remaining instructions would be 
simple and would generally execute in one cycle – reduced instructions – hence the 
name reduced instruction set computers (RISC’s).  RISC’s inaugurated a new set of 
architectural design principles. 
1. Functions should be kept simple unless there is a very good reason to do 
  otherwise. 
2. Microinstructions should not be faster than simple instructions. 
3. Microcode is not magic. 
4. Simple decoding and pipelined execution are more important than 
  program size. 
5. Compiler technology should be used to simplify instructions rather 
  than to generate complex instructions.” 
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The narrative from the tutorial continues with remarks on the RISC architectures developed 
at the University of California at Berkeley. 
 

“Although each project [the Berkeley RISC I and RISC II and the IBM 801] had 
different constraints and goals, the machines they eventually created have a great 
deal in common. 
1. Operations are register-to-register, with only LOAD and STORE 
  accessing memory. 
2. The operations and addressing modes are reduced.  Operations between 
registers complete in one cycle, permitting a simpler, hardwired control for each 
RISC, instead of microcode.  Multiple-cycle instructions such as floating-point 
arithmetic are either executed in software or in a special-purpose processor.  
(Without a coprocessor, RISC’s have mediocre floating-point performance.)   Only 
two simple addressing modes, indexed and PC-relative, are provided.  More 
complicated addressing modes can be synthesized from the simple ones. 
3. Instruction formats are simple and do not cross word boundaries.  This 
restriction allows RISC’s to remove instruction decoding time from the critical 
execution path.  … RISC register operands are always in the same place in the 
32-bit word, so register access can take place simultaneously with opcode decoding.  
This removes the instruction decoding stage from the pipelined execution, making it 
more effective by shortening the pipeline.” 

 
There are a number of other advantages to the RISC architecture.  We list a few 
 
Better Access to Memory Better Support of Compilers 
According to the IEEE Tutorial 

“Register-oriented architectures have significantly lower data memory bandwidth.  
Lower data memory bandwidth is highly desirable since data access is less 
predictable than instruction access and can cause more performance problems.” 

 
We note that, even at 6.4 GB/second data transfer rates, access to memory is still a bottleneck 
in modern computer design, so any design that reduces the requirement for memory access 
(here called reducing the memory bandwidth) would be advantageous. 
 
 
Better Support of Compilers 
According to the IEEE Tutorial 

“The load/store nature of these [existing RISC] architectures is very suitable for 
effective register allocation by the compiler; furthermore, each eliminated memory 
reference results in saving an entire instruction.” 

 
We note here that more effective register allocation by a compiler will usually result in 
faster-running code.  We see this as another advantage of the RISC design. 
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Instruction Pre-Fetching 
One advantage of the RISC architecture is seen in the process referred to as 
instruction pre-fetching.  In this process, we view the fetch-execute process as a pipeline. 
 

 
 
In a traditional fetch-execute machine, the instruction is first fetched from memory and then 
executed.  Very early in CPU design, it was recognized that the fetch unit should be doing 
something during the time interval for executing the instruction.  The logical thing for the 
fetch unit to do was to fetch the instruction in the next memory location on the chance that it 
would be the instruction that would be executed next.  This process has been shown to 
improve computer performance significantly.  The logic to pre-fetch instructions is facilitated 
by the RISC design philosophy that all instructions are the same size, so in a machine based 
on 32-bit words the pre-fetch unit just grabs the next four bytes. 
 
Instruction pre-fetching appears rather simple, except in the presence of program jumps, such 
as occur in the case of conditional branches and the end of program loops.  A lot of work has 
gone into prediction of the next instruction in such cases, where there are two instructions 
that could be executed next depending on some condition.  It may be possible to execute both 
candidate instructions and discard the result of the instruction not in the true execution path. 
 
 
Implications for the Control Unit 
The complex instructions in a CISC computer tend to require more support in the execution 
than can conveniently be provided by a hardwired control unit.  For this reason, most CISC 
computers are microprogrammed to handle the complexity of each of the instructions.  For 
this reason, most CISC instructions require a number of system clock cycles to execute.  The 
RISC approach emphasizes use of a simpler instruction set that can easily be supported by a 
hardwired control unit.  As a side effect, most RISC instructions can be executed in one clock 
cycle.  A given computer program will compile into more RISC instructions than CISC 
instructions, but the CISC instructions execute more slowly than the RISC instructions.  The 
overall effect on the computer program may be hard to predict. 
 
According to the IEEE tutorial 

“Reducing the instruction set further reduces the work a RISC processor has to do.  
Since RISC has fewer types of instructions than CISC, a RISC instruction requires 
less processing logic to interpret than a CISC instruction.  The effect of such 
simplification is to speed up the execution rate for RISC instructions.  In a RISC 
implementation it is theoretically possible to execute an instruction each time the 
computer’s logic clock ticks.  In practice the clock rate of a RISC processor is 
usually three times that of the instruction rate.” 
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We close this section by giving a comparison of some RISC and CISC computers and 
quoting some of the experience of the Digital Equipment Corporation when it tried to 
manufacture a RISC version of its Micro-VAX (a follow-on to the PDP-11). 
 
Here is the table, taken from the IEEE tutorial on RISC architecture. 
 

 CISC Type Computers RISC Type 
 IBM 370/168 VAX-11/780 Intel 8086 RISC I IBM 801 
Developed 1973 1978 1978 1981 1980 
Instructions 208 303 133 31 120 
Instruction 
size (bits) 

16 – 48 16 – 456 8 – 32 32 32 

Addressing 
Modes 

4 22 6 3 3 

General 
Registers 

16 16 4 138 32 

Control 
Memory Size 

420 Kb 480 Kb Not given 0 0 

Cache Size 64 Kb 64 Kb Not given 0 Not given 
 
Note the control memory size on the two RISC type computers – each has no control 
memory.  This implies that the control unit is purely hardwired.  Experience in the 1980’s 
and early 1990’s suggested that microprogrammed control units were preferable, even if they 
were a bit slower than hardwired units.  It was argued that the speed of the control unit was 
not the limiting factor in performance, and it probably was not.  The plain fact, however, was 
that implementing a hardwired control unit for some of the complex instruction sets was a 
daunting challenge not willingly faced by the computer designers.  Rather than spend a great 
fortune on designing, building, and debugging such a unit, they elected to create control units 
that could be managed – these were microprogrammed. 
 
With the development of RISC architecture, hardwired control units again became feasible. 
 
 
Another Look at Microprogrammed Control Units 
In considering the RISC design, we should recognize the fact that it is not equivalent to use 
of a hardwired control unit; only more compatible with such a unit.  Many modern control 
units might be considered as hybrid, with mostly hardwired control and provisions for the use 
of micro-routines (in microcode) to handle useful, but complex, instructions. 
 
It has been hinted above that microprogramming has been used as a tool to allow feasible and 
cost-effective implementations of complex instruction sets.  It is profitable to consider the 
correlation between complex instructions and the use of a microprogrammed control unit; 
specifically asking the question of the allocation of lines of microcode to assembly language 
instructions. 
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Digital Equipment Corporation (DEC) undertook an experiment to investigate this 
correlation and produced a design yielding interesting, but not surprising, results, which are 
again quoted from the IEEE tutorial on RISC architecture. 
 

“DEC reported a subsetting experiment on two implementations of the VAX 
architecture in VLSI.  The VLSI VAX has nine custom VLSI chips and 
implements the complete VAX-11 instruction set.  DEC found that 20.0 percent 
of the instructions are responsible for 60.0 percent of the microcode and yet are 
only 0.2 percent of all instructions executed.  By trapping to software to execute 
these instructions, the MicroVAX 32 was able to fit the subset architecture onto 
only one chip, with an optional floating-point processor on another chip.  .. The 
VLSI VAX uses five to ten times the resources of the MicroVAX 32 to 
implement the full instruction set, yet is only 20 percent faster.” 

 
 VLSI VAX MicroVAX 32 
VLSI Chips 9 2 
Microcode 480K 64K 
Transistors 1250K 101K 

 
The result is obvious – a simple and cheaper computer will do most of what you want.  The 
rest can be better done in software. 
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