Chapter 9 — An Overview of Computer Architecture

We now begin an overview of the architecture of a typical stored program computer. It
should be noted that this architecture is common to almost all computers running today, from
the smallest industrial controller to the largest supercomputer. What sets the larger
computers, such as the IBM ASCII Blue (a supercomputer capable of 10*° floating point
operations per second), apart from the typical PC is that many larger computers are built
from a large number of processor and memory modules that communicate and work
cooperatively on a problem. The basic architecture is the same.

Stored program computers have four major components: the CPU (Central Processing Unit),
the memory, 1/0O devices, and one or more bus structures to allow the other three components
to communicate. The figure below illustrates a typical architecture.

System Level Bus
CPU M vo
emory Devices
/C entral Prucessinﬂk
ALT —b ALTU = Arithmetic Logic Unit
CPU Bus
Registers f—
Control Unit [

Figure: Top-Level Structure of a Computer

The functions of the three top-level components of a computer seem to be obvious. The 1/0
devices allow for communication of data to other devices and the users. The memory stores
both program data and executable code in the form of binary machine language. The CPU
comprises components that execute the machine language of the computer. Within the CPU,
it is the function of the control unit to interpret the machine language and cause the CPU to
execute the instructions as written. The Arithmetic Logic Unit (ALU) is that component of
the CPU that does the arithmetic operations and the logical comparisons that are necessary
for program execution. The ALU uses a number of local storage units, called registers, to
hold results of its operations. The set of registers is sometimes called the register file.

Page 296 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Fetch-Execute Cycle

As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program
computer. The CPU fetches each instruction from the memory unit, then executes that
instruction, and fetches the next instruction. An exception to the “fetch next instruction” rule
comes when the equivalent of a Jump or Go To instruction is executed, in which case the
instruction at the indicated address is fetched and executed.

Registers vs. Memory

Registers and memory are similar in that both store data. The difference between the two is
somewhat an artifact of the history of computation, which has become solidified in all
current architectures. The basic difference between devices used as registers and devices
used for memory storage is that registers are usually faster and more expensive (see below
for a discussion of registers and Level-1 Cache).

The origin of the register vs. memory distinction can be traced to two computers, each of
which was built in the 1940’s: the ENIAC (Electronic Numerical Integrator and Calculator —
becoming operational in 1945) and the EDSAC (Electronic Delay Storage Automatic
Calculator — becoming operational in 1949). Each of the two computers could have been
built with registers and memory implemented with vacuum tubes — a technology current and
well-understood in the 1940°s. The difficulty is that such a design would require a very large
number of vacuum tubes, with the associated cost and reliability problems. The ENIAC
solution was to use vacuum tubes in design of the registers (each of which required 550
vacuum tubes) and not to have a memory at all. The EDSAC solution was to use vacuum
tubes in the design of the registers and mercury delay lines for the memory unit.

In each of the designs above, the goal was the same — to reduce the number of “storage units”
that required the expensive and hard-to-maintain vacuum tubes. This small number of
storage units became the register file associated with the central processing unit (CPU). It
was not until the MIT Whirlwind in 1952 that magnetic core memory was introduced.

In modern computers, the CPU is usually implemented on a single chip. Within this context,
the difference between registers and memory is that the registers are on the CPU chip while
most memory is on a different chip. Now that L1 (level 1) caches are appearing on CPU
chips (all Pentium™ computers have a 32 KB L1 cache), the main difference between the
two is the method used by the assembly language to access each. Memory is accessed by
address as if it were in the main memory that is not on the chip and the memory management
unit will map the access to the cache memory as appropriate. Register memory is accessed
directly by specific instructions. One of the current issues in computer design is dividing the
CPU chip space between registers and L1 cache: do we have more registers or more L1
cache? The current answer is that it does not seem to make a difference.

Both memory and registers can be viewed as collections of D flip-flops, as discussed in a
previous chapter. The main difference is that registers (as static memory) may actually be
built from these flip-flops, while computer memory is fabricated from a different technology
called dynamic memory. We often describe main memory as if it were fabricated from flip-
flops as this leads to a model that is logically correct.

Page 297 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

A flip-flop stores one bit of data. An N-bit register is a collection of N flip-flops; thus a
32-bit register is built from 32 flip-flops. The CPU contains two types of registers, called
special purpose registers and general purpose registers. The general purpose registers
contain data used in computations and can be accessed directly by the computer program.
The special purpose registers are used by the control unit to hold temporary results, access
memory, and sequence the program execution. Normally, with one now-obsolete exception,
these registers cannot be accessed by the program.

The program status register (PSR), also called the program status word (PSW), is one of
the special purpose registers found on most computers. The PSR contains a number of bits to
reflect the state of the CPU as well as the result of the most recent computation. Some of the
common bits are

the carry-out from the last arithmetic computation

Set to 1 if the last arithmetic operation resulted in an overflow

Set to 1 if the last arithmetic operation resulted in a negative number

Set to 1 if the last arithmetic operation resulted in a zero

Interrupts enabled (Interrupts are discussed later)

- NZZO

More on the CPU (Central Processing Unit)
The central processing unit contains four major elements
1) The ALU (Arithmetic Logic Unit), and
2) The control unit, and
3) The register file (including user registers and special-purpose registers), and
4) A set of buses used for communications within the CPU.

The next figure shows a better top-level view of the CPU, showing three data buses and an
ALU optimized for standard arithmetic. Most arithmetic (consider addition: C = A + B) is
based on production of a result from two arguments. To facilitate such operations, the ALU
is designed with two inputs and a single output. As each input and output must be connected
to a bus internal to the CPU, this dictates at least three internal CPU buses.

)
Register

File

|Cﬂ'r1ﬁi°' ALU
!

Other
Devices

The register file contains a number of general-purpose registers accessible to the assembly
language operations (often numbered 0 through some positive integer) and a number of
special-purpose registers not directly accessed by the program. With numbered registers (say
RO through R7) it is often convenient to have RO be identically 0. Such a constant register
greatly simplifies the construction of the control unit.

Page 298 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Some of the special purpose registers used by the central processing unit are listed next.

PC the program counter contains the address of the assembly language instruction
to be executed next.

IR the instruction register contains the binary word corresponding to the machine
language version of the instruction currently being executed.

MAR the memory address register contains the address of the word in main memory
that is being accessed. The word being addressed contains either data or
a machine language instruction to be executed.

MBR the memory buffer register (also called MDR for memory data register) is the
register used to communicate data to and from the memory.

We may now sketch some of the operation of a typical stored program computer.
Reading Memory First place an address in the MAR.
Assert a READ control signal to command memory to be read.
Wait for memory to produce the result.
Copy the contents of the MBR to a register in the CPU.

Writing Memory First place and address in the MAR
Copy the contents of a register in the CPU to the MBR.
Assert a WRITE control signal to command the memory.

We have mentioned the fetch-execute cycle that is common to all stored program computers.
We may now sketch the operation of that cycle
Copy the contents of the PC into the MAR.
Assert a READ control signal to the memory.
While waiting on the memory, increment the PC to point to the next instruction
Copy the MBR into the IR.
Decode the bits found in the IR to determine what the instruction says to do.

The control unit issues control signals that cause the CPU (and other components of the
computer) to fetch the instruction to the IR (Instruction Register) and then execute the actions
dictated by the machine language instruction that has been stored there. One might imagine
the following sequence of control signals corresponding to the instruction fetch.

TO: PC to Busl, Transfer Busl to Bus3, Bus3 to MAR, READ.
T1: PCtoBusl, +1 to Bus2, Add, Bus3 to PC.
T2: MBR to Bus2, Transfer Bus2 to Bus3, Bus3 to IR.

This simple sequence introduces a number of concepts that will be used later.
1. The internal buses of the CPU are named Bus1, Bus2, and Bus3.
2. All registers can transfer data to either Busl or Bus2.
3. Only Bus3 can transfer data into a register.
4. Only the ALU can transfer data from either Busl to Bus3 or Bus2 to Bus3.
It does this by a specific transfer operation.
5. Control signals are named for the action that they cause to take place.

Page 299 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Operation of the Control Unit

We now examine very briefly the two most common methods for building a control unit.
Recall that the only function of the control unit is to emit control signals, so that the design of
a control unit is just an investigation of how to generate control signals. There are two major
classes of control units: hardwired and microprogrammed (or microcoded). In order to
see the difference, let’s write the above control signals for the common fetch sequence in a
more compact notation.

TO: PC — Busl, TRA1L, Bus3 - MAR, READ.
T1: PC — Busl, +1 —» Bus2, ADD, Bus3 — PC.
T2: MBR — Bus2, TRA2, Bus3 — IR.

Here we have used ten control signals. Remember that the ALU has two inputs, one from
Busl, one from Bus2, and outputs its results on Bus3. The control signals used are:

PC — Busl Copy the contents of the PC (Program Counter) onto Busl
+1 — Bus2 Copy the contents of the constant register +1 onto Bus2.
MBR — Bus2 Copy the contents of the MBR (Memory Buffer Register) onto Bus2
TRA1 Causes the ALU to copy the contents of Busl onto Bus3
TRA2 Causes the ALU to copy the contents of Bus2 onto Bus3
ADD Causes the ALU to add the contents of Busl and Bus2,
placing the sum onto Bus3.
READ Causes the memory to be read and place the results in the MBR
Bus3 - MAR Copy the contents of Bus3 to the MAR (Memory Address Register)
Bus3 — PC Copy the contents of Bus3 to the PC (Program Counter)
Bus3 —» IR Copy the contents of Bus3 to the IR (Instruction Register)

All control units have a number of important inputs, including the system clock, the IR, the
PSR (program status register) and other status and control signals. A hardwired control
unit uses combinational logic to produce the output. The following shows how the above
signals would be generated by a hardwired control unit.

TRA1

FETCH
BUS3—MAR
READ

To— —D‘f'
PC—BUS1
D_" 1—BUS2
1 ADD
BUS3—PC
——

MBR— BUS2
TRA2
BUS3—IR
Here we assume that we have the discrete signal FETCH, which is asserted during the fetch
phase of the instruction processing, and discrete time signals TO, T1, and T2, which would be
generated by a counter within the control unit. Note here that we already have a naming
problem: there will be a distinct phase of the Fetch/Execute cycle called “FETCH”. During
that cycle, the discrete signal FETCH will be active. This discrete signal is best viewed as a
Boolean value, having only two values: Logic 1 (+5 volts) and Logic 0 (0 volts).

Page 300 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

We next consider how a microprogrammed unit would generate the above signals. In this
discussion, we shall present a simplified picture of such a control with a number of design
options assumed; these will be explained later in the text.

The central part of a microprogrammed control unit is the micro-memory, which is used to
store the microprogram (or microcode). The microprogram essentially interprets the
machine language instructions in that it causes the correct control signals to be emitted in the
correct sequence. The microprogram, written in microcode, is stored in a read-only memory
(ROM, PROM, or EPROM), which is often called the control store.

A microprogrammed control unit functions by reading a sequence of control words into a
microinstruction buffer that is used to convert the binary bits in the microprogram into
control signals for use by the CPU. To do this, there are several other components

the UAMAR the micro-address of the next control word to read
the uAMBR this holds the last control word read from the micro-memory
the sequencer this computes the next value of the address for the LMAR.

The figure below shows the structure of a sample microprogrammed control unit.

ILMAR >
+ ILMemo
ry
PSR— Sequencer
IR —H
etc.
PIMBR
PC—BUS1 READ
1—-BUS2 — TRA1
MBR—BUS2 — T TRA2
BUS3—FMAR —— ADD
BUS3—PC BUSI—IR
The microprogram for the three steps in fetch would be
10010 00011
11001 01000
00100 10100
Page 301 CPSC 5155 Last Revised on September 28, 2008

Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Structure of a Typical External Bus

A typical computer contains a number of bus structures. We have already mentioned the
system bus and a bus internal to the CPU. Some computer designs include high-speed point-
to-point busses, used for such tasks as communication to the graphics card. In this section,
we consider the structure of the system bus. The system bus is a multi-point bus that allows
communication between a number of devices that are attached to the bus. There are two
classes of devices that can be connected to the bus

Master Device a device that can initiate action on the bus.
The CPU is always a bus master.

Slave Device a device that responds to requests by a bus master.
Memory is an excellent example of a slave device.

Devices connected to a bus are often accessed by address. System memory is a primary
example of an addressable device; in a byte-addressable machine (more later on this),
memory can be considered as an array of bytes, accessed in the same way as an array as seen
in a typical programming language. 1/0 devices are often accessed by address; it is up to the
operating system to know the address used to access each such device.

A typical bus can be considered as a number of wires (called lines) that act as a common path
to connect the devices. The lines fall into a number of major classes
Data lines used to transfer the data between the two devices
Address lines used to identify the device or memory location to which the
data are written or from which the data are read
Control lines used to indicate what operation is to be done
Power & Ground used to provide a common power and common ground.
We ignore these in the logical model, but they are necessary.

Structure of a PDP-11 UNIBUS
For a foray into the real world (or the world that once was real), we quote from two
publications describing the UNIBUS™ on a PDP-11, a minicomputer marketed by the
Digital Equipment Corporation (DEC — now a part of Hewlett-Packard). We quote from
three manuals published by DEC.
“CROSSTALK
The unwanted transfer of energy from one circuit, called the disturbing circuit, to
another circuit, called the disturbed circuit.”[R12]

“UNIBUS
The single, asynchronous, high-speed bus structure shared by the PDP-11
processor, its memory, and all of its peripherals [Input/Output Units]” [R12]

“UNIBUS Cable BC11A
The BC11A is a 120-conductor cable ... The 120 signals include all 56 UNIBUS
lines plus 64 grounds. Signals and grounds alternate to minimize
crosstalk.”[R13]

Page 302 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9

The following table is adapted from the PDP-11 Peripherals Handbook [R-3].

Overview of Computer Architecture

Name Mnemonic Lines | Function Asserted

DATA

Address A<17:00> 18 Selects device or memory | Low

Data D<15:00> 16 Data for transfer Low

Control Co0, C1 2 Type of data transfer Low

Master Sync MSYN 1 Timing controls for data Low

Slave Sync SSYN 1 transfer Low

Parity PA, PB 2 Device parity error Low

Interrupt INTR 1 Device interrupt Low
41

PRIORITY

Bus Request BR4, BR5, 4 Requests use of bus Low

BR6, BR7
Bus Grant BG4, BG5, 4 Grants use of bus High
BG6, BG7

Non-Processor Request NPR 1 Requests use of bus Low

Non-Processor Grant NPG 1 Grants use of bus High

Selection Acknowledge SACK 1 Acknowledges grant Low

Bus Busy BBSY 1 Data section in use Low
12

INITIALIZATION

Initialize INIT 1 System Reset Low

AC Low ACLO 1 Monitor power Low

DC Low DCLO 1 Monitor power Low
3

Figure: PDP-11 UNIBUS CONTROL SIGNALS

In the above figure, we see provision for five priority levels for 1/0 devices — levels 4, 5, 6,
and 7 and also a level called NPR for Non-Processor Request, a high-priority interrupt for
access to memory not involving the processor; this is now called DMA.

Memory Mapped vs. Isolated 1/0

The PDP-11 is an example of a computer with memory-mapped Input/Output. What this
name implies is that all devices, both the memory and the I/O devices share a common bus
(on the original PDP-11 it was the UNIBUS™). Some addresses on the bus would refer to
1/0 devices and some to memory. On the early PDP-11 specifications, octal addresses
760 000 through 777 777 referred to 1/0 devices and all other addresses were memory.

A computer with isolated 1/O has at least two buses — one for memory references and one for
access to the 1/0 devices. The advantage of the isolated I/O design is that all of the addresses

are available for memory references, thus allowing more memory. It is the assembly

language instruction that indicates that the address given is to refer to an 1/O device. The
disadvantage of this scheme is that there must be explicit I/O instructions, leading to a design

that is “less elegant”.

Page 303

CPSC 5155 Last Revised on September 28, 2008

Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

One should be serious about the design issue of explicit I/O instructions. A typical computer
design will allocate a fixed number of bits to specify the instruction to be executed; this
limits the number of instructions possible. If N bits are allocated to specify the instruction,
there is a maximum of 2" instructions. For a small value of N, this can become a serious
constraint on the design and the elimination of two 1/O instructions (Read from Device and
Write to Device) becomes an appealing option.

Synchronous and Asynchronous Buses

Older bus designs and Input/Output bus designs tend to be asynchronous. Such a bus, called
an asynchronous bus, operates without a clock to synchronize data transfers and thus must
use control signals to coordinate the operations; these must conform to a bus protocol. A
typical protocol for an asynchronous bus includes the following signals

Bus Request the device is requesting use of the bus to transfer data
Bus Grant the device is granted use of the bus
Bus Busy asserted by a device granted the bus to prevent collisions

A synchronous bus uses a clock line to synchronize operations. Note that the bus clock rate
is almost never the same of the system clock, but a fraction of it. For example, a computer
with a 3.08 GHz CPU might have a 133 MHz memory bus. It is almost always the case that
the CPU is the fastest component of the computer, due to the fact that it is the smallest
component. In modern designs, the memory bus (connecting the CPU to the random access
memory) tends to be synchronous. This is due to the fact that memory timings can be known
in advance — thus we can rely on the speed at which data can be transferred to and from
memory. Older designs transferred one memory word per clock pulse; newer synchronous
designs, called DDR (double data rate) transfer data on both the rising and falling edges of
the clock — hence doubling the data transfer rate. This subject will be discussed more in a
later chapter, when the issue of interfacing memory to the CPU will be discussed.

A recent (10/20/2004) search the Dell Computer Internet web site (http://www.dell.com/)
included a claim that the computer had “next generation dual channel DDR2 memory — up to
16 GB of 400MHz registered ECC memory”. This implies that the main bus connecting the
CPU to memory operated at 400 MHZ (with a clock cycle of 2.5 nanoseconds) and could
make transfers at a rate of 800 million per second — that is 400 million times 2 as the bus is a
second generation Double Data Rate device. It can be inferred from this web site that the
memory bus is actually 64-bits wide, allowing for the parallel transfer of eight bytes at a
time, giving a data transfer rate of 6,400 million per second or 6.4GB/sec.

The reader should note that the figure 6.4GB/sec and the figures leading up to that result are
the work of the author of these notes and might not be exactly correct.

Page 304 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Levels of Machines and Virtual Machines

As with any system, a computer can be viewed from a number of perspectives or levels of
detail. Each level corresponds to a virtual machine — one able to execute directly a specific
language. For example, many people view computers as virtual machines that directly
execute e-mail programs, spread sheets, or word processors. These people do not care about
the lower level instructions that actually cause the machine to function, nor should they.

Put another way, many people consider the computer as just another appliance — that is,
something that does its job with little human interaction. In this author’s opinion, this fact is
one of the major achievements of the computer industry.

“Levels” of Automobiles

In order to motivate the idea of levels of machines, let us consider what might be called
“levels of automobiles” or more precisely, the level of detail at which a particular user
chooses to understand an automobile. As an example, let us think about the Rolls Royce
Phantom (the 2004 model is priced at only $470,000, in case you want to buy one). There
are a number of levels at which to view this automobile.

The automobile collector will view the car as a work of art. The possibility that one might
drive the thing might not even occur to him or her.

The VIP (very rich person or diplomat) will view the automobile as something that
transports him or her to the desired destination. Admittedly, the automobile does not drive
itself, but it might as well, given the fact that it almost always has a paid chauffeur.

The casual driver will understand the basics of operating the vehicle — use of the keys,
transmission, steering wheel, and other controls. To this person, the automobile is just a
machine that can be controlled in predictable ways.

The more involved driver will, in addition, understand that the automobile comprises a
number of subsystems, such as the chassis, engine, transmission, and electronic systems. He
or she will understand the necessity of system maintenance without being able to perform it.

The automobile mechanic will understand the details of each of the automobile subsystems
and how to repair them. Note that this is a lower (more detailed) level of understanding than
the involved driver. The mechanic not only understands that the subsystems exist but also
understands how they work and how to fix them.

The automobile engineer will understand one of the subsystems in detail, for example the
detailed kinetics of fuel combustion, metallurgy of the engine block, or dynamics of the
electrical system.

Using this analogy, the goal of this course is to give the student an understanding of a
computer somewhere between that of a mechanic and an engineer.

Page 305 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Levels of Machines in the Computer Hierarchy
A traditional view of the computer (see Tanenbaum [R15] or Murdocca & Heuring [R16])
presents between five and eight levels of machines. Here we construct a typical list.

Application Programs (Appliance level),

High Level (Problem Oriented) Languages,
Assembly language,

Operating system services (such as BIOS calls)
Binary machine language,

Micro-operation level (usually microprogramming),
Functional units (memory, ALU, etc.)

Logic gates, including SSI and MSI components.
Transistors and wires.

PNWhkOo N© O

We skip over level 9 (application programs) and begin our top-down study with level 8 (High
Level Languages). A high-level language programmer may experience the computer as a
machine that directly executes the high-level language, such as C++, Visual Basic, COBOL,
or FORTRAN. In fact, very few machines are designed for direct execution of high-level
languages (there are several LISP machines and a FORTH machine), but one may imagine a
virtual machine that does exactly that. In practice, most virtual machines operating at the
high-level language level achieve their effect by compiling the program into a form suitable
for execution on a lower-level machine. The figure below shows two of the more common
ways in which a high-level language virtual machine functions.

High Level Language
lCumpile
Compile
Assembly Language
lﬁsscmhle
h 4
Operating System/BIOS

Before discussing this figure, it is important to understand the differences between level 6
(the Operating System/BIOS level) and level 5 (the Binary Machine Language level). In
some aspects, levels 5 and 6 are identical. The major difference is that level 6 may be
regarded as providing standard service routines, such as those in the Basic Input-Output
System (BIOS). The operating code for both levels 5 and 6 is binary machine code.

Page 306 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Some compilers (mainly the older ones) compile directly to assembly language, which is then
assembled into calls to level 6 machine language. Some compile directly to level 6 code.

At this point, we see an important part of the separation of levels. Consider modern
languages, such as C++ and Java. At level 8, all computers that execute such code appear to
be almost identical, with slight differences (such as integer sizes) that can be handled by use
of macros and other definitions. At level 7, the computers may appear quite different as each
computer brand seems to have its own particular assembly language.

The transition between levels 6 and 7 (assembly language & O/S services) and level 5 is
often achieved by a linking loader. This transition allows programs to be loaded at any free
part of memory, rather than at fixed locations (as was the case with some earlier machines).
Thus we have two views of machines — the level 6/7 virtual machine in which the program
always loads at a fixed location and the level 5 machine in which the program is relocated.

The split between levels 5 and 4 reflects the fact that there are a number of ways in which to
implement a Central Processing Unit (CPU) to execute a machine language. The two
primary methods for machine language execution are hard-wired and microprogrammed.
This separation between these two levels allows a company to build a series of computers
with widely differing performance levels but with the same assembly/machine language set.
For examples, we look to the IBM 360 series and the DEC (Digital Equipment Corporation —
no longer in business) PDP-11 series.

Here is a quote from an article by C. Gordon Bell in William Stallings []. It discusses two
different implementations of the IBM 360 family, each with the same assembly language.

“The IBM 360, introduced in 1964, was one of the earliest computer families to span
a range of price and performance. Along with the 360, IBM introduced the word
‘architecture’ to refer to the various processing characteristics of a machine as seen
by the programmer and his programs. In the initial 360 product family, the model
91 exceeded the model 20 in performance by a factor of 300, in memory size by a
factor of 512, and in price by a factor of 100.”

The next three layers form the basis for the hardware implementation of the computer. As
technology improves, we see two trends in implementation at this level: more powerful units
for the same price and equally powerful units for a lesser price. One very early example of
this was the IBM 709/7090 series, both of which implemented the same machine language
and used the same hardwired control design. The difference is that the IBM 709 used
vacuum tubes as the basic circuit elements, while the IBM 7090 used transistors.

Probably the major revolution in computer design occurred at these low levels with the
introduction to the integrated circuit to replace circuits built from discrete transistors. The
transition from vacuum tubes to transistors resulted in considerable gains in reliability and
reductions in power usage. The transition from transistors to integrated circuits, especially
VLSI (Very Large Scale Integration) chips allowed the introduction of the modern micro-
computer and all that has gone with it.

Page 307 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

RISC vs. CISC Computers
One of the recent developments in computer architecture is called by the acronym RISC.
Under this classification, a design is either RISC or CISC, with the following definitions.
RISC Reduced Instruction Set Computer
CISC Complex Instruction Set Computer.

The definition of CISC architecture is very simple — it is any design that does not implement
RISC architecture. We now define RISC architecture and give some history of its evolution.
The source for these notes is the book Computer Systems Design and Architecture, by
Vincent P. Heuring and Harry F. Jordan.

One should note that while the name “RISC” is of fairly recent origin (dating to the late
1970’s) the concept can be traced to the work of Seymour Cray, then of Control Data
Corporation, on the CDC-6600 and related machines. Mr. Cray did not think in terms of a
reduced instruction set, but in terms of a very fast computer with a well-defined purpose — to
solve complex mathematical simulations. The resulting design supported only two basic data
types (integers and real numbers) and had a very simple, but powerful, instruction set.
Looking back at the design of this computer, we see that the CDC-6600 could have been
called a RISC design.

As we shall see just below, the entire RISC vs. CISC evolution is driven by the desire to
obtain maximum performance from a computer at a reasonable price. Mr. Cray’s machines
maximized performance by limiting the domain of the problems they would solve.

The general characteristic of a CISC architecture is the emphasis on doing more with each
instruction. This may involve complex instructions and complex addressing modes; for
example the MC68020 processor supports 25 addressing modes.

The ability to do more with each instruction allows more operations to be compressed into
the same program size, something very desirable if memory costs are high. Some historical
data will illustrate the memory issue.

Time Cost of memory Cost of disk drive
Introduction of MC6800 | $500 for 16KB RAM $55,000 for 40 MB
Introduction of MC68000 | $200 for 64 KB RAM | $5,000 for 10 MB
Now (Micron 4/10/2002) | $49 for 128 MB RAM | $149 for 20 GB

Another justification for the CISC architectures was the “semantic gap”, the difference
between the structure of the assembly language and the structure of the high level languages
(COBOL, C++, Visual Basic, FORTRAN, etc.) that we want the computer to support. It was
expected that a more complicated instruction set (more complicated assembly language)
would more closely resemble the high level language to be supported and thus facilitate the
creation of a compiler for the assembly language.

Page 308 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

One of the first motivations for the RISC architecture came from a careful study of the
implications of the semantic gap. Experimental studies conducted in 1971 by Donald Knuth
and 1982 by David Patterson showed that nearly 85% of a programs statements were simple
assignment, conditional, or procedure calls. None of these required a complicated instruction
set. It was further notes that typical compilers translated complex high level language
constructs into simpler assembly language statements, not the complicated assembly
language instructions that seemed more likely to be used.

The results of this study are quoted from an IEEE Tutorial on RISC architecture [R05]. This
table shows the percentages of program statements that fall into five broad classifications.

Language Pascal FORTRAN | Pascal C SAL
Workload Scientific | Student System | System | System
Assignment | 74 67 45 38 42
Loop 4 3 5 3 4

Call 1 3 15 12 12

If 20 11 29 43 36
GOTO 2 9 -- 3 --
Other 7 6 1 6

The authors of this study made the following comments on the results.

“There is quite good agreement in the results of this mixture of languages and
applications. Assignment statements predominate, suggesting that the simple
movement of data is of high importance. There is also a preponderance of
conditional statements (If, Loop). These statements are implemented in machine
language with some sort of compare and branch instruction. This suggests that the
sequence control mechanism is important.”

The “bottom line” for the above results can be summarized as follows.
1) As time progresses, more and more programs will be written in a compiled high-
level language, with much fewer written directly in assembly language.
2) The compilers for these languages do not make use of the complex instruction
sets provided by the architecture in an attempt to close the semantic gap.

In 1979, the author of these notes attended a lecture by a senior design engineer from IBM.
He was discussing a feature of an architecture that he designed: he had put about 6 months of
highly skilled labor into implementing a particular assembly language instruction and then
found that it was used less than 1/10,000 of a percent of the time by any compiler.

So the “semantic gap” — the desire to provide a robust architecture for support of high-level
language programming turned out to lead to a waste of time and resources. Were there any
other justifications for the CISC design philosophy?

Page 309 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

The other motivation for the RISC architecture is that a complex instruction set implies a
slower computer. It is not just the fact that the more complex instructions execute more

slowly than the simpler instructions. There is also the fact that making a CPU capable of
handling more complex instructions causes it to execute simple instructions more slowly.

Thus we are facing the facts that the more complex instruction sets are not necessary and that
dropping the ability to support them will yield a faster CPU. There are other factors that
favor the RISC architecture, specifically the fact that speed-up techniques such as instruction
pre-fetching and instruction pipelining are more easily achieved for simple instructions.

The name RISC, Reduced Instruction Set Computer, focuses on reducing the number and
complexity of instructions in the machine. A number of common strategies are:
1) Fixed instruction length, generally one word. This simplifies instruction fetch.
2) Simplified addressing modes.
3) Fewer and simpler instructions in the instruction set.
4) Only load and store instructions access memory; no add memory to register, etc.
5) Let the compiler do it. Use a good compiler to break complex high-level language
statements into a number of simple assembly language statements.

The philosophy behind the RISC approach is well described in the IEEE tutorial. Here we
pick up on a narrative by a design engineer who worked on the IBM 801 project.

“About this point, several people, including those who had been working on
microprogramming tools, began to rethink the architectural design principles of the
1970’s. In trying to close the *semantic gap’, these principles had actually
introduced a ’performance gap’. The attempt to bridge the gap with WCS’s
[Writable Control Stores — microprogrammed control units] was unsuccessful.”

“A new computer design philosophy evolved: Optimizing compilers could be used to
compile “‘normal’ programming languages down to instructions that were as
unencumbered as microinstructions in a large virtual address space, and to make the
instruction cycle time as fast as the technology would allow. These machines would
have fewer instructions — a reduced set — and the remaining instructions would be
simple and would generally execute in one cycle — reduced instructions — hence the
name reduced instruction set computers (RISC’s). RISC’s inaugurated a new set of
architectural design principles.

1. Functions should be kept simple unless there is a very good reason to do
otherwise.

2. Microinstructions should not be faster than simple instructions.

3. Microcode is not magic.

4. Simple decoding and pipelined execution are more important than
program size.

5. Compiler technology should be used to simplify instructions rather

than to generate complex instructions.”

Page 310 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

The narrative from the tutorial continues with remarks on the RISC architectures developed
at the University of California at Berkeley.

“Although each project [the Berkeley RISC | and RISC Il and the IBM 801] had
different constraints and goals, the machines they eventually created have a great
deal in common.

1. Operations are register-to-register, with only LOAD and STORE
accessing memory.
2. The operations and addressing modes are reduced. Operations between

registers complete in one cycle, permitting a simpler, hardwired control for each
RISC, instead of microcode. Multiple-cycle instructions such as floating-point
arithmetic are either executed in software or in a special-purpose processor.
(Without a coprocessor, RISC’s have mediocre floating-point performance.) Only
two simple addressing modes, indexed and PC-relative, are provided. More
complicated addressing modes can be synthesized from the simple ones.

3. Instruction formats are simple and do not cross word boundaries. This
restriction allows RISC’s to remove instruction decoding time from the critical
execution path. ... RISC register operands are always in the same place in the
32-bit word, so register access can take place simultaneously with opcode decoding.
This removes the instruction decoding stage from the pipelined execution, making it
more effective by shortening the pipeline.”

There are a number of other advantages to the RISC architecture. We list a few

Better Access to Memory Better Support of Compilers
According to the IEEE Tutorial
“Register-oriented architectures have significantly lower data memory bandwidth.
Lower data memory bandwidth is highly desirable since data access is less
predictable than instruction access and can cause more performance problems.”

We note that, even at 6.4 GB/second data transfer rates, access to memory is still a bottleneck
in modern computer design, so any design that reduces the requirement for memory access
(here called reducing the memory bandwidth) would be advantageous.

Better Support of Compilers
According to the IEEE Tutorial
“The load/store nature of these [existing RISC] architectures is very suitable for
effective register allocation by the compiler; furthermore, each eliminated memory
reference results in saving an entire instruction.”

We note here that more effective register allocation by a compiler will usually result in
faster-running code. We see this as another advantage of the RISC design.

Page 311 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Instruction Pre-Fetching
One advantage of the RISC architecture is seen in the process referred to as
instruction pre-fetching. In this process, we view the fetch-execute process as a pipeline.

Memory . Fetch ::> Execute

In a traditional fetch-execute machine, the instruction is first fetched from memory and then
executed. Very early in CPU design, it was recognized that the fetch unit should be doing
something during the time interval for executing the instruction. The logical thing for the
fetch unit to do was to fetch the instruction in the next memory location on the chance that it
would be the instruction that would be executed next. This process has been shown to
improve computer performance significantly. The logic to pre-fetch instructions is facilitated
by the RISC design philosophy that all instructions are the same size, so in a machine based
on 32-bit words the pre-fetch unit just grabs the next four bytes.

Instruction pre-fetching appears rather simple, except in the presence of program jumps, such
as occur in the case of conditional branches and the end of program loops. A lot of work has
gone into prediction of the next instruction in such cases, where there are two instructions
that could be executed next depending on some condition. It may be possible to execute both
candidate instructions and discard the result of the instruction not in the true execution path.

Implications for the Control Unit

The complex instructions in a CISC computer tend to require more support in the execution
than can conveniently be provided by a hardwired control unit. For this reason, most CISC
computers are microprogrammed to handle the complexity of each of the instructions. For
this reason, most CISC instructions require a number of system clock cycles to execute. The
RISC approach emphasizes use of a simpler instruction set that can easily be supported by a
hardwired control unit. As a side effect, most RISC instructions can be executed in one clock
cycle. A given computer program will compile into more RISC instructions than CISC
instructions, but the CISC instructions execute more slowly than the RISC instructions. The
overall effect on the computer program may be hard to predict.

According to the IEEE tutorial

“Reducing the instruction set further reduces the work a RISC processor has to do.
Since RISC has fewer types of instructions than CISC, a RISC instruction requires
less processing logic to interpret than a CISC instruction. The effect of such
simplification is to speed up the execution rate for RISC instructions. Ina RISC
implementation it is theoretically possible to execute an instruction each time the
computer’s logic clock ticks. In practice the clock rate of a RISC processor is
usually three times that of the instruction rate.”

Page 312 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

We close this section by giving a comparison of some RISC and CISC computers and
quoting some of the experience of the Digital Equipment Corporation when it tried to
manufacture a RISC version of its Micro-VAX (a follow-on to the PDP-11).

Here is the table, taken from the IEEE tutorial on RISC architecture.

CISC Type Computers RISC Type
IBM 370/168 | VAX-11/780 | Intel 8086 | RISC I IBM 801

Developed 1973 1978 1978 1981 1980
Instructions | 208 303 133 31 120
Instruction 16 - 48 16 — 456 8-32 32 32
size (bits)
Addressing 4 22 6 3 3
Modes
General 16 16 4 138 32
Registers
Control 420 Kb 480 Kb Not given |0 0
Memory Size
Cache Size 64 Kb 64 Kb Not given | 0 Not given

Note the control memory size on the two RISC type computers — each has no control
memory. This implies that the control unit is purely hardwired. Experience in the 1980°s
and early 1990’s suggested that microprogrammed control units were preferable, even if they
were a bit slower than hardwired units. It was argued that the speed of the control unit was
not the limiting factor in performance, and it probably was not. The plain fact, however, was
that implementing a hardwired control unit for some of the complex instruction sets was a
daunting challenge not willingly faced by the computer designers. Rather than spend a great
fortune on designing, building, and debugging such a unit, they elected to create control units
that could be managed — these were microprogrammed.

With the development of RISC architecture, hardwired control units again became feasible.

Another Look at Microprogrammed Control Units

In considering the RISC design, we should recognize the fact that it is not equivalent to use
of a hardwired control unit; only more compatible with such a unit. Many modern control
units might be considered as hybrid, with mostly hardwired control and provisions for the use
of micro-routines (in microcode) to handle useful, but complex, instructions.

It has been hinted above that microprogramming has been used as a tool to allow feasible and
cost-effective implementations of complex instruction sets. It is profitable to consider the
correlation between complex instructions and the use of a microprogrammed control unit;
specifically asking the question of the allocation of lines of microcode to assembly language
instructions.

Page 313 CPSC 5155 Last Revised on September 28, 2008

Copyright © 2008 by Ed Bosworth

Chapter 9 Overview of Computer Architecture

Digital Equipment Corporation (DEC) undertook an experiment to investigate this
correlation and produced a design yielding interesting, but not surprising, results, which are
again quoted from the IEEE tutorial on RISC architecture.

“DEC reported a subsetting experiment on two implementations of the VAX
architecture in VLSI. The VLSI VAX has nine custom VLSI chips and
implements the complete VAX-11 instruction set. DEC found that 20.0 percent
of the instructions are responsible for 60.0 percent of the microcode and yet are
only 0.2 percent of all instructions executed. By trapping to software to execute
these instructions, the MicroVAX 32 was able to fit the subset architecture onto
only one chip, with an optional floating-point processor on another chip. .. The
VLSI VAX uses five to ten times the resources of the MicroVAX 32 to
implement the full instruction set, yet is only 20 percent faster.”

VLSI VAX MicroVAX 32
VLSI Chips 9 2
Microcode 480K 64K
Transistors 1250K 101K

The result is obvious — a simple and cheaper computer will do most of what you want. The
rest can be better done in software.

Page 314 CPSC 5155 Last Revised on September 28, 2008
Copyright © 2008 by Ed Bosworth

	RISC vs. CISC Computers
	Implications for the Control Unit

