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Chapter 3 – Data Representation 
 

The focus of this chapter is the representation of data in a digital computer.  We begin with a  

review of several number systems (decimal, binary, octal, and hexadecimal) and a discussion  

of methods for conversion between the systems.  The two most important methods are  

conversion from decimal to binary and binary to decimal.  The conversions between binary  

and each of octal and hexadecimal are quite simple.  Other conversions, such as conversion  

to and from base–5 are of interest only to teachers with a bad sense of humor. 

 

After discussion of conversion between bases, we discuss the methods used to store integers  

in a digital computer: one’s complement and two’s complement arithmetic.  This includes a  

characterization of the range of integers that can be stored given the number of bits allocated  

to store an integer.  The most common integer storage formats are 16 and 32 bits.   

 

The next topic for this chapter is the storage of real (floating point) numbers.  This discussion  

will focus on the standard put forward by the Institute of Electrical and Electronic Engineers,  

the IEEE Standard 754 for floating point numbers.  The chapter closes with a discussion of  

codes for storing characters: ASCII, EBCDIC, and Unicode. 

 

General Remark on Data Storage in a Computer 

Data (numeric, character, and more complex structures) are all stored in the computer and  

on disk in binary form.  Each common storage medium supports only two values, either two  

distinct voltages or two distinct magnetic states, or some other two–state system.  The most  

common way to denote these two states is based on the binary number system. 

Consider what happens when a data value is read from computer memory.  Each value is  

encoded as a number of bits (binary values: 0 or 1) and stored in the same number of memory  

cells, which we shall discuss later.  When a value is read, each cell returns a voltage to the  

reading circuitry: either a positive voltage (say 1.5 volts), interpreted as a logic 1, or a zero  

voltage, interpreted as a logic 0.  It is important to note that the actual value of the positive  

voltage is so dependent on technology that we can say little about its actual value. 

A stored–program computer (that is, almost any computer or digital device now in use) stores  

both data and program instructions in memory.  Each item stored in memory is best viewed  

as nothing more than a collection of binary bits.  What that item signifies depends on how  

that item is used by the computer.  An item may be used as an instruction, as an address of  

another item, or as data in one of many formats. 

When we study some modern memory architectures, we shall discover several mechanisms  

that make it less likely that an item of one type will be used in an incorrect context.  While  

these mechanisms are widespread, they are additions to the basic computer design and not  

fundamental to it.  As an example, an unfortunate programming error by the author of these  

notes caused the stored representation of the real number 2.5 to be executed as if it were a  

valid instruction.  The problem with that was that it executed properly and redirected the  

program to another area, where the program abruptly ceased execution. 
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Number Systems 

There are four number systems of possible interest to the computer programmer: decimal,  

binary, octal, and hexadecimal.  Each system is characterized by its base or radix, always  

given in decimal, and the set of permissible digits.  For small sets, such as each of these,  

we specify the set by listing all of its members; for example the set of ten decimal digits. 

Sets specified by listing all items belonging to the set often present the items in some  

sort of order, but that is not necessary, as sets are by definition unordered collections. 

Note that the hexadecimal numbering system calls for more than ten digits, so we use the  

first six letters of the alphabet.  It is preferable to use upper case letters for these “digits”. 

Decimal Base = 10 

 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

Binary Base = 2 

 Digit Set = {0, 1} 

Octal Base = 8 = 23 

 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} 

Hexadecimal Base = 16 = 24 

 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 

While we are more accustomed to decimal notation for writing numeric values, we find that  

they can be written in any base.  Here are the binary, octal, and hexadecimal equivalents of  

the first seventeen non–negative decimal integers 

 Decimal Binary Octal Hexadecimal 

  (base 2) (base 8) (base 16) 

 0 0000 00 0 

 1 0001 01 1 Note that conversions from hexadecimal  

 2 0010 02 2 to binary can be done one digit at a time, 

 3 0011 03 3 thus DE = 11011110, as D = 1101 and 

 4 0100 04 4 E = 1110.  We shall normally denote 

 5 0101 05 5 this as DE = 1101 1110 with a space 

 6 0110 06 6 to facilitate reading the binary. 

 7 0111 07 7 

 8 1000 10 8 Conversion from binary to hexadecimal 

 9 1001 11 9 is also quite easy.  Group the bits four at 

 10 1010 12 A a time and convert each set of four. 

 11 1011 13 B Thus 10111101, written 1011 1101 for 

 12 1100 14 C clarity is BD because 1011 = B and  

 13 1101 15 D 1101 = D. 

 14 1110 16 E 

 15 1111 17 F 

 16 10000 20 10 
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Notation for Constants 
Given the choice of at least four possible values for the base of the numbering system  

(2, 8, 10, and 16), how do we indicate which base is to be used to interpret a constant  

value, such as 011?  This is a valid number in each of the bases, though its value  

depends on which base is being used. 

Pure binary numbers will rarely be used in these notes.  When they are, they will be  

almost obvious, having only 0 or 1 as digits.  These constants will be noted by a small  

subscript 2, as in 0112, the binary equivalent of decimal 3. 

For values written in octal, decimal, and hexadecimal notation, these notes, along with  

most other textbooks, use the notation of Java and C/C++ to indicate the choice of base  

values.  Decimal values are written simply as one would expect.  Octal constants are  

prefixed by a leading “0” (zero), while hexadecimal constants are prefixed by “0x”. 

For example: 

 value = 77 // This is the decimal value 77.  No special notation is used. 

 value = 077 // This is the octal value 077, equal to 78 + 7 = 62 decimal. 

 value = 0x77 // This is hexadecimal 77, equal to 716 + 7 = 119 decimal. 

Positional Notation and Decimal Numbers 

Before discussing number bases other than decimal, it would be helpful to use the decimal  

system to review positional notation, as always used to write integer values. 

Positional notation is formed using powers of the base.  These powers are denoted by  

exponents, written as superscripts.  For integer representations, all exponents are taken  

from the set of non–negative integers.  We review this notation. 

Any non–zero number raised to the zero power has value 1: N0 = 1, for N ≠ 0. 

Here are some powers of the various bases.   

 100 = 1 20 = 1 160 = 1 

 101 = 10 21 = 2 161 = 24 = 16 

 102 = 1010 = 100 22 = 22 = 4 162 = 28 = 256 

 103 = 10100 = 1000 23 = 24 = 8 163 = 212 = 4,096 

 104 = 10103 = 10,000 24 = 223 = 16 164 = 216 = 65,536 

Consider the value1453, commonly understood as “one thousand four hundred fifty three”.   

Specifically 1453 = 1000 + 400 + 50 + 3.  Written in terms of powers of ten, we see that  

1453 = 1103 + 4102 + 5101 + 3100.  Similarly, the larger number 322,583,006 which  

represents 3108 + 2107 + 2106 + 5105 + 8104 + 3103 + 0102 + 0101 + 6100. 

Positional Notation and Other Base Values 

We are now in a position to generalize the idea of positional notation.  Consider 1453. 

We have already seen the decimal evaluation of 1453.   

If read as octal notation 01453 = 183 + 482 + 581 + 380 = 811 decimal. 

If read as hexadecimal notation 0x1453 = 1163 + 4162 + 5161 + 3160 = 5,203 decimal. 

The value 1453 cannot be read as binary, because it has digits other than 0 and 1. 
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Which Base to Use? 

The choice of the base to use is made solely for the convenience of the person who must  

examine or otherwise use the information.  In many courses, this person is the instructor  

who must grade the homework and who prefers a more compact notation. 

Almost always, decimal notation is preferable when writing a computer program in any  

language, such as COBOL, Java, C/C++, or even IBM assembler.  The examples below,  

which illustrate proper usage of other bases, are given without explanation. 

1. Sometimes it is preferable to use hexadecimal notation when writing software, known as  

 a device driver, used to control external devices, such as printers and disks. 

 For example, one might write: device_mask = 0xC040. 

 This line of code will set binary bits in a device control register.  The register is seen to  

 have sixteen bits, with values set as follows: 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Value 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 Of course, one could just as easily write this as device_mask = –16320 using decimal  

 notation, but most programmers would prefer the hexadecimal.  One might note here that,  

 with the exception of classroom exercises, very few programmers write device drivers. 

2. Some time it is necessary to examine the raw contents of memory.  Thankfully, this is 

 rarely necessary as high–grade debuggers do the job for us.  Again, the most common use  

 for this these days is the assignment of vexing problems by overly zealous professors. 

 As an example (to be explained later), here is the binary representation of the real number  

 –0.75: 1011 1111 0100 0000 0000 0000 0000 0000 

 Note that the 32 binary bits are grouped by fours for ease of reading.  The hexadecimal  

 notation is even easier to read: BF40 0000. 

3. The choice of octal or hexadecimal notation usually depends on the value to be  

 represented.  Octal digits can be considered as short hand for groups of three binary 

 bits, while hexadecimal digits are short hand for groups of four binary bits. 

 Most values to be represented in either binary or a variant of it are best considered as  

 values having 8, 16, 32, or 64 bits.  As each of these lengths is a multiple of four, the  

 most natural choice would be hexadecimal notation.  Consider the example above. 

 Some older, and now obsolete, computers had word lengths that were multiples of 3;  

 for these octal notation might be preferred.  The old PDP–8 used 12–bit words, and  

 the old PDP–9 used 18–bit words, represented as 4 or 6 octal digits respectively. 

Note on History: This author is quite fond of mentioning obsolete computers, among  

 them the PDP–8, PDP–9, PDP–11, VAX–11/780, CDC–6600,  

 CDC–7600, the Cray–1, and Cray–2.  This is done to show that there  

 were actual computers with such–and–such properties. 

 Nothing in this book requires any knowledge of such old favorites. 

Note on Usage: The remainder of this book will usually ignore the octal base. 
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The fact that the bases for octal and hexadecimal are powers of the basis for binary  

facilitates the conversion between the bases 2, 8, and 16.  The conversion can be done  

one digit at a time, remembering that each octal digit corresponds to three binary bits  

and each hexadecimal digit corresponds to four binary bits.  Conversion between decimal  

and one of the other three bases is only a bit more complex. 

As noted above, we shall focus on binary, decimal, and hexadecimal numbers.  As octal  

notation is rarely used these days, we shall not consider it further. 

How to Group the Bits? 

This is a small problem that occurs in translations between binary and hexadecimal notation.   

As each hexadecimal digit stands for four binary bits, these two translations (binary to hex  

and hex to binary) are just matters of grouping bits.  We begin by discussing integers. 

Consider the hexadecimal number BAD.  We translate digit by digit to obtain the binary.   

Hexadecimal B stands for binary 1011, A for 1010, and D for 1101.  The binary value  

represented is 101110101101, better written as 1011 1010 1101. 

Consider conversion of the binary number 111010 to hexadecimal.  If we try to group the  

bits four at a time we get either 11 1010 or 1110 10.  The first option is correct as the  

grouping must be done from the right.  We then add leading zeroes to get groups of four  

binary bits, obtaining 0011 1010, which is converted to 3A as 0011 = 3 and 1010 = A. 

Note that the padding of the leading 11 to the full four–bit 0011 is not strictly necessary,  

as most readers are quite comfortable with interpreting binary 11 as decimal 3. 

We shall have occasion to do conversions involving binary and hexadecimal to the right  

of the decimal point.  Consider the hexadecimal value 0.C8, which is 0.1100 1000 in  

binary.  Here the grouping is not a problem; just represent each hex digit as four bits. 

Consider the binary value 0.111010, which represents the decimal value 0.90625  

(think that 0.111010 stands for 1/2 + 1/4 + 1/8 + 0/16 + 1/32 = 29/32).  When the digits  

are to the right of the decimal, they must be grouped from the left and padded out with  

trailing zeroes so that each collection has four bits.  Thus 0.111010 is converted to 

 0.1110 1000, or 0.C8.  Note that leaving the value as 0.1110 10 might lead  

one to consider the last grouping as decimal 2, which is likely to cause confusion. 

Unsigned Binary Integers 

There are two common methods to store unsigned integers in a computer: binary numbers  

(which we discuss now) and Packed Decimal (which we discuss later).  From a theoretical  

point of view, it is important to note that no computer really stores the set of integers in  

that it can represent in native form an arbitrary member of that infinite set.   

For each of the standard formats (short, integer, long, etc.) there is a largest positive value  

that can be stored and a smallest non–positive value that can be stored.  More on this later. 

There is a common data type, usually called “bignum”, which allows storage of integers of  

any size.  You want a 10,000–digit integer, you got one.  However, this data type is mostly  

implemented in software with hardware assists, and is not a native type of a standard CPU. 
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The standard integer types are stored as collections of a number of binary bits; thus an  

N–bit integer is represented by N binary bits.  1110 1000 would be an 8–bit integer. 

It is easy to show that an N–bit binary integer can represent one of 2N possible integer values.   

Here is the proof by induction. 

 1. A one–bit integer can store 2 values: 0 or 1.  This is the base for induction. 

 2. Suppose an N–bit integer, unconventionally written as BN–1 … B3B2B1B0. 

  By the inductive hypothesis, this can represent one of 2N possible values. 

 3. We now consider an (N+1)–bit integer, written as BNBN–1 … B3B2B1B0,  

  where either BN = 0 or BN = 1.  By the inductive hypothesis, there are  

   2N values of the form 0BN–1 … B3B2B1B0, 

  and 2N values of the form 1BN–1 … B3B2B1B0. 

 4. The total number of (N+1)–bit values is 2N + 2N = 2N+1.  The claim is proved. 

By inspection of the above table, we see that there are 16 possible values for a four–bit  

unsigned integer.  These range from decimal 0 through decimal 15 and are easily represented  

by a single hexadecimal digit.  Each hexadecimal digit is shorthand for four binary bits. 

In the standard interpretation, always used in this course, an N–bit unsigned integer will  

represent 2N integer values in the range 0 through 2N – 1, inclusive.  Sample ranges include: 

 N = 4 0 through 24 – 1 0 through 15 

 N = 8 0 through 28 – 1 0 through 255 

 N = 12 0 through 212 – 1 0 through 4095 

 N = 16 0 through 216 – 1 0 through 65535 

 N = 20 0 through 220 – 1 0 through 1,048,575 

 N = 32 0 through 232 – 1 0 through 4,294,967,295 

For most applications, the most important representations are 8 bit, 16 bit, and 32 bit.  To this  

mix, we add 12–bit unsigned integers as they are used in the base register and offset scheme  

of addressing used by the IBM Mainframe computers.  Recalling that a hexadecimal digit is  

best seen as a convenient way to write four binary bits, we have the following. 

 8 bit numbers 2 hexadecimal digits 0 through 255, 

 12 bit numbers 3 hexadecimal digits 0 through 4095, 

 16 bit numbers 4 hexadecimal digits 0 through 65535, and 

 32 bit numbers 8 hexadecimal digits 0 through 4,294,967,295. 

Conversions between Decimal and Binary 

We now consider methods for conversion from decimal to binary and binary to decimal. We  

consider not only whole numbers (integers), but numbers with decimal fractions.  To convert  

such a number, one must convert the integer and fractional parts separately. 

At this point in the text, we have yet to consider signed integers.  The reason for the focus on  

unsigned values is that all conversions between decimal and the other two formats (binary  

and hexadecimal) are best learned using unsigned values. 
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Consider the conversion of the number 23.375.  The method used to convert the integer part  

(23) is different from the method used to convert the fractional part (.375).  We shall discuss  

two distinct methods for conversion of each part and leave the student to choose his/her  

favorite.  After this discussion we note some puzzling facts about exact representation of  

decimal fractions in binary; e.g. the fact that 0.20 in decimal cannot be exactly represented.   

As before we present two proofs and let the student choose his/her favorite. 

The intuitive way to convert decimal 23 to binary is to note that 23 = 16 + 7 = 16 + 4 + 2 + 1;  

thus decimal 23 = 10111 binary.  As an eight bit binary number, this is 0001 0111.  Note that  

we needed 5 bits to represent the number; this reflects the fact that 24 < 23  25.  We expand  

this to an 8-bit representation by adding three leading zeroes. 

The intuitive way to convert decimal 0.375 to binary is to note that 0.375 = 1/4 + 1/8 = 

0/2 + 1/4 + 1/8, so decimal .375 = binary .011 and decimal 23.375 = binary 10111.011. 

Most students prefer a more mechanical way to do the conversions.  Here we present that  

method and encourage the students to learn this method in preference to the previous. 

Conversion of integers from decimal to binary is done by repeated integer division with  

keeping of the integer quotient and noting the integer remainder.  The remainder numbers are  

then read bottom to top as least significant bit to first bit generated.  Here is an example. 

 Quotient Remainder 

 23/2 =  11 1 Thus decimal 23 = binary 10111 

 11/2 =  5 1 

 5/2 = 2 1 Remember to read the binary number 

 2/2 =  1 0 from bottom to top. 

 1/2 =  0 1 

Conversion of the fractional part is done by repeated multiplication with copying of the  

whole number part of the product and subsequent multiplication of the fractional part.  All  

multiplications are by 2.  Read the binary results top to bottom.  Here is an example. 

 Number Product Binary  

 0.375 x 2 = 0.75 0 

 0.75 x 2 = 1.5 1 

 0.5 x 2 = 1.0 1 

 0.0 x 2 = 0.0 0 

 0.0 x 2 = 0.0 0 

The process terminates when the product of the last multiplication is 1.0.  At this point we  

copy the last 1 generated and have the result; thus decimal 0.375 = 0.011 binary.  Note that  

this conversion was carried two steps beyond the standard termination point to emphasize  

the fact that after a point, only trailing zeroes are generated. 

0.375 = 0.3750 = 0.37500, etc.  0.011 = 0.0110 = 0.01100, etc. 
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Conversions between Decimal and Hexadecimal 

One way to convert is by first converting to binary.  We consider conversion of 23.375  

from decimal to hexadecimal.  We have noted that the value is 10111.011 in binary. 

 

To convert this binary number to hexadecimal we must group the binary bits in groups of  

four, adding leading and trailing zeroes as necessary.  We introduce spaces in the numbers  

in order to show what is being done. 

 10111.011 = 1 0111.011. 

To the left of the decimal we group from the right and to the right of the decimal we group  

from the left.  Thus 1.011101 would be grouped as 1.0111 01. 

At this point we must add extra zeroes to form four bit groups.  So 

 10111.011 = 0001 0111.0110. 

Conversion to hexadecimal is done four bits at a time.  The answer is 17.6 hexadecimal. 

Another Way to Convert Decimal to Hexadecimal 

Some readers may ask why we avoid the repeated division and multiplication methods in  

conversion from decimal to hexadecimal.  Just to show it can be done, here is an example. 

Consider the number 7085.791748046875.  As an example, we convert this to hexadecimal. 

The first step is to use repeated division to produce the whole–number part. 

 7085 / 16 = 442 with remainder = 13 or hexadecimal D 

 442 / 16 = 27 with remainder = 10 or hexadecimal A 

 27 / 16 = 1 with remainder = 11 or hexadecimal B 

 1 / 16 = 0 with remainder = 1 or hexadecimal 1. 

The whole number is read bottom to top as 1BAD. 

Now we use repeated multiplication to obtain the fractional part. 

 0.791748046875  16 =  12.6679875 Remove the 12 or hexadecimal C 

 0.6679875  16 =  10.6875 Remove the 10 or hexadecimal A 

 0.6875  16 =  11.00 Remove the 11 or hexadecimal B 

 0.00  16 =  0.0 

The fractional part is read top to bottom as CAB.  The hexadecimal value is 1BAD.CAB,  

which is a small joke on the author’s part.  The only problem is to remember to write  

results in the decimal range 10 through 15 as hexadecimal A through F. 

Long division is of very little use in converting the whole number part.  It does correctly  

produce the first quotient and remainder.  The intermediate numbers may be confusing. 

       442 

   16)7085 

      64 

       68 

       64 

        45 

        32 

        13 
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But Why Do These Methods Work? 

In this optional section, we present some illustrative examples to indicate why each of these  

conversion methods work. 

Conversion of Integers: Decimal to Binary 

Our sample integer, used above, is 23 = 16 + 4 + 2 + 1 = 124 + 023 + 122 + 12 + 1.  To  

generalize this to any number representable as 5–bit unsigned binary, we use some algebra. 

Let 23 = A424 + A323 + A222 + A12 + A0, where A4 = 1, A3 = 0, A2 = 1, etc.  Now begin  

the repeated divisions by 2, noting that we track only whole numbers. 

(A424 + A323 + A222 + A12 + A0) / 2 = (A423 + A322 + A22 + A1), rem = A0. 

(A423 + A322 + A22 + A1) / 2 = (A422 + A32 + A2), rem = A1. 

(A422 + A32 + A2) / 2 = (A42 + A3), rem = A2. 

(A42 + A3) / 2 = A4 rem = A3. 

A4 / 2 = 0 rem = A4. 

Continuation of the process will generate only leading zeroes, reflecting the fact that the  

decimal value 23 is binary 10111 = 010111 = 0010111 = 0001 0111, etc. 

Conversion of “Fractional Parts”: Decimal to Binary 

Our sample “fractional part” (the author does not know a better term) is 0.375.  Since this  

conversion moves a bit quickly, we use here another value: 0.65625 = 1/2 + 1/8 + 1/32.   

Let 0.65625 = B1/2 + B2/2
2 + B3/2

3 + B4/2
4 + B5/2

5, with B1 = 1, B2 = 0, B3 = 1, etc. 

Now begin the repeated multiplications, tracking only the “fractional part”. 

(B1/2 + B2/2
2 + B3/2

3 + B4/2
4 + B5/2

5)  2 = B1 + (B2/2 + B3/2
2 + B4/2

3 + B5/2
4)  

(B2/2 + B3/2
2 + B4/2

3 + B5/2
4)  2 = B2 + (B3/2 + B4/2

2 + B5/2
3)  

(B3/2 + B4/2
2 + B5/2

3)  2 = B3 + (B4/2 + B5/2
2)  

(B4/2 + B5/2
2)  2 = B4 + B5/2  

B5/2  2 = B5  

Continuing this will lead to trailing zeroes, the value in binary being either 0.10101 or  

0.101010, or more conventionally 0.1010 1000. 

What about Other Bases? 

The methods above apply to conversion between any two radix values, though they are  

probably difficult to use for conversions from any base other than decimal (as we are quite  

familiar with decimal arithmetic).  For us, the only other base is hexadecimal. 

Consider our sample number 7085 = A3163 + A2162 + A116 + A0, with A3 = 1,  

A2 = 11 (B in hexadecimal), A1 = 10 (0xA), and A0 = 13 (0xD). 

(A3163 + A2162 + A116 + A0) / 16 = (A3162 + A216 + A1), rem = A0. 

(A3162 + A216 + A1) / 16 = (A316 + A2), rem = A1. 

(A316 + A2) / 16 = A3 rem = A2. 

A3 / 16 = 0, rem = A3. 
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Non-terminating Fractions 

We now make a detour to note a surprising fact about binary numbers – that some fractions  

that terminate in decimal are non-terminating in binary.  We first consider terminating and  

non-terminating fractions in decimal.  All of us know that 1/4 = 0.25, which is a terminating  

fraction, but that 1/3 = 0.333333333333333333333333333333…, a non-terminating fraction. 

We offer a demonstration of why 1/4 terminates in decimal notation and 1/3 does not, and  

then we show two proofs that 1/3 cannot be a terminating fraction in either binary or decimal. 

Consider the following sequence of multiplications 

 ¼  10 = 2½ 

 ½  10 = 5.  Thus 1/4 = 25/100 = 0.25. 

Put another way, ¼ = (1/10)  (2 + ½) =  (1/10)  (2 + (1/10)  5). 

However, 1/3  10 = 10/3 = 3 + 1/3, so repeated multiplication by 10 continues to yield a  

fraction of 1/3 in the product; hence, the decimal representation of 1/3 is non-terminating. 

Explicitly, we see that 1/3 = (1/10)  (3 + 1/3) = (1/10)  (3 + (1/10)  (3 + 1/3)), etc. 

In decimal numbering, a fraction is terminating if and only if it can be represented in the  

form J / 10K for some integers J and K.  We have seen that 1/4 = 25/100 = 25/102, thus the  

fraction 1/4 is a terminating fraction because we have shown the integers J = 25 and K = 2. 

Here are two proofs that the fraction 1/3 cannot be represented as a terminating fraction in  

decimal notation.  The first proof relies on the fact that every positive power of 10 can be  

written as 9M + 1 for some integer M.  The second relies on the fact that 10 = 25, so that  

10K = 2K5K.  To motivate the first proof, note that 100 = 1 = 90 + 1, 10 = 91 + 1, 

100 = 911 + 1, 1000 = 9111 + 1, etc.  If 1/3 were a terminating decimal, we could solve  

the following equations for integers J and M. 

1M9

J

10

J

3

1
K 
 , which becomes 3J = 9M + 1 or 3(J – 3M) = 1.  But there is no  

integer X such that 3X = 1 and the equation has no integer solutions. 

The other proof also involves solving an equation.  If 1/3 were a non-terminating fraction,  

then we could solve the following equation for J and K. 

52103
1

KKK

JJ


 , which becomes 3J = 2K5K.  This has an integer solution J only if the  

right hand side of the equation can be factored by 3.  But neither 2K nor 5K can be factored by  

3, so the right hand side cannot be factored by 3 and hence the equation is not solvable. 

From this, it immediately follows that the fraction 1/3, as a decimal number, does not  

terminate.  The fact that the base–3 representation (0.13), base–6 representation (0.23), and  

base–9 representation (0.39) do terminate is only of marginal academic interest. 

NOTE: This discussion of an obscure point in numeric representation might seem to be  

 pointless, but it has direct bearing on the precision with which real numbers may  

 be stored and processed in a computer. 
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Now consider the innocent looking decimal 0.20.  We show that this does not have a  

terminating form in binary.  We first demonstrate this by trying to apply the  

multiplication method to obtain the binary representation. 

 

 Number Product Binary 

 0.20  2 = 0.40 0 

 0.40  2 = 0.80 0 

 0.80  2 = 1.60 1 

 0.60  2 = 1.20 1 

 0.20  2 = 0.40 0 

 0.40  2 = 0.80 0 

 0.80  2 = 1.60 1 but we have seen this – see four lines above. 

So decimal 0.20 in binary is 0.00110011001100110011 …, ad infinitum.  This might  

be written conventionally as 0.00110 0110 0110 0110 0110, to emphasize the pattern. 

The proof that no terminating representation exists depends on the fact that any terminating  

fraction in binary can be represented in the form 
2

J
K

 for some integers J and K.  Thus we  

solve 
2

J

5

1
K

  or 5J = 2K.  This equation has a solution only if the right hand side is divisible  

by 5.  But 2 and 5 are relatively prime numbers, so 5 does not divide any power of 2 and the  

equation has no integer solution.  Hence 0.20 in decimal has no terminating form in binary. 

 

Binary Addition 

The next topic is storage of integers in a computer.  We shall be concerned with storage of  

both positive and negative integers.  Two’s complement arithmetic is the most common  

method of storing signed integers.  Calculation of the two’s complement of a number  

involves binary addition.  For that reason, we first discuss binary addition. 

To motivate our discussion of binary addition, let us first look at decimal addition.  Consider  

the sum 15 + 17 = 32.  First, note that 5 + 7 = 12.  In order to speak of binary addition, we  

must revert to a more basic way to describe 5 + 7; we say that the sum is 2 with a carry-out of  

1.  Consider the sum 1 + 1, which is known to be 2.  However, the correct answer to our  

simple problem is 32, not 22, because in computing the sum 1 + 1 we must consider the  

carry-in digit, here a 1.  With that in mind, we show two addition tables – for a half-adder  

and a full-adder.  The half-adder table is simpler as it does not involve a carry-in.  The  

following table considers the sum and carry from A + B. 

Half-Adder A + B 

 A B Sum Carry  

 0 0 0 0 Note the last row where we claim that 1 + 1 yields a 

 0 1 1 0 sum of zero and a carry of 1.  This is similar to the 

 1 0 1 0 statement in decimal arithmetic that 5 + 5 yields a 

 1 1 0 1 sum of 0 and carry of 1 when 5 + 5 = 10. 
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Remember that when the sum of two numbers equals or exceeds the value of the base of the  

numbering system (here 2) that we decrease the sum by the value of the base and generate a  

carry.  Here the base of the number system is 2 (decimal), which is 1 + 1, and the sum is 0. 

Say “One plus one equals two plus zero: 1 + 1 = 10”. 

 

For us the half-adder is only a step in the understanding of a full-adder, which implements  

binary addition when a carry-in is allowed.  We now view the table for the sum A + B, with  

a carry-in denoted by C.  One can consider this A + B + C, if that helps. 

 

Full-Adder: A + B with Carry 

 A B C Sum Carry 

 0 0 0 0 0 

 0 0 1 1 0 

 0 1 0 1 0 

 0 1 1 0 1 

 1 0 0 1 0 

 1 0 1 0 1 

 1 1 0 0 1 

 1 1 1 1 1 

In the next chapter, we shall investigate the construction of a full adder from digital  

gates used to implement Boolean logic.  Just to anticipate the answer, we note that the  

sum and carry table above is in the form of a Boolean truth table, which can be  

immediately converted to a Boolean expression that can be implemented in digital logic. 

As an example, we shall consider a number of examples of addition of four-bit binary  

numbers.  The problem will first be stated in decimal, then converted to binary, and then  

done.  The last problem is introduced for the express purpose of pointing out an error. 

 

We shall see in a minute that four-bit binary numbers can represent decimal numbers in  

the range 0 to 15 inclusive.  Here are the problems, first in decimal and then in binary. 

 1) 6 + 1 0110 + 0001 

 2) 11 + 1 1011 + 0001 

 3) 13 + 5 1101 + 0101 

 

  0110     1011     1101 In the first sum, we add 1 to an even number.  This 

  0001     0001     0101 is quite easy to do.  Just change the last 0 to a 1. 

  0111     1100     0010 Otherwise, we may need to watch the carry bits. 

 

In the second sum, let us proceed from right to left.  1 + 1 = 0 with carry = 1.  The second  

column has 1 + 0 with carry-in of 1 = 0 with carry-out = 1.  The third column has 0 + 0  

with a carry-in of 1 = 1 with carry-out = 0.  The fourth column is 1 + 0 = 1. 

Analysis of the third sum shows that it is correct bit-wise but seems to be indicating that  

13 + 5 = 2.  This is an example of “busted arithmetic”, more properly called overflow.   

A given number of bits can represent integers only in a given range; here 13 + 5 is outside  

the range 0 to 15 inclusive that is proper for four-bit unsigned numbers. 
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Signed and Unsigned Integers 

Up to this point, we have discussed only unsigned integers and the conversion of such from  

one base to another.  We now consider signed integers and find that consideration of the  

magnitude of such numbers as unsigned integers is an important part of the process. 

Integers are stored in a number of formats.  The most common formats today include 16 and  

32 bits, though long integers (64–bits) are becoming a standard integer format.   

Although 32-bit integers are probably the most common, our examples focus on eight–bit  

integers because they are easy to illustrate.  In these discussions, the student should recall the  

powers of 2: 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, and 28 = 256. 

Bits in the storage of an integer are numbered right to left, with bit 0 being the right-most or  

least-significant.  In eight bit integers, the bits from left to right are numbered 7 to 0.  In 32  

bit integers, the bits from left to right are numbered 31 to 0.  Note that this is not the notation  

used by IBM for its mainframe and enterprise computers. In the IBM notation, the most  

significant bit (often the sign bit) is bit 0 and the least significant bit has the highest number;  

bit 7 for an 8–bit integer.  Here are the bit numberings for a signed 8–bit integer. 

Common Notation (8–bit entry) IBM Mainframe Notation 

Bit # 7 6 5 – 1 0  Bit # 0 1 2 – 6 7 

 Sign MSB  LSB  Sign MSB  LSB 

The simplest topic to cover is the storage of unsigned integers.  As there are 2N possible  

combinations of N binary bits, there are 2N unsigned integers ranging from 0 to 2N – 1.  For  

eight-bit unsigned integers, this range is 0 though 255, as 28 = 256.  Conversion from binary  

to decimal is easy and follows the discussion earlier in this chapter. 

Of the various methods for storing signed integers, we shall discuss only three 

 Two’s complement 

 One’s complement (but only as a way to compute the two’s complement) 

 Excess 127 (for 8–bit numbers only) as a way to understand the floating point standard. 

One’s complement arithmetic is mostly obsolete and interests us only as a stepping-stone to  

two’s complement arithmetic.  To compute the one’s complement of a number: 

 1) Represent the number as an N-bit binary number 

 2) Convert every 0 to a 1 and every 1 to a 0. 

Decimal 100 =  0110 0100 

One’s complement 1001 1011; decimal –100 = 1001 1011 binary. 

But consider the value 0 and problems representing it in one’s–complement notation. 

Decimal 0 =   0000 0000 

One’s complement 1111 1111; decimal –0 = 1111 1111 binary. 

There are a number of problems in one’s complement arithmetic, the most noticeable being  

illustrated by the fact that the one’s complement of 0 is 1111 1111.  In this system, we have  

–0  0, which is a violation of some of the basic principles of mathematics.  When coding  

for a computer that used one’s–complement arithmetic, one had to write code such as: 
 if ( (x == 0) || (x == –0) ) … 
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Notation: 

In discussing the one’s complement notation, we shall borrow some notation from digital  

logic.  This notation will be fully discussed in a later chapter, but is quite easy to grasp. 

We introduce the idea of logical NOT, as applied to binary values 0 and 1.  Simply put 

 NOT(0) = 1 

 NOT(1) = 0. 

The logical NOT function is denoted in three distinct ways, but here we focus on only one:  

the over–bar notation.  Thus 0 = 1 and 1  = 0. 

Let X represent an integer value.  Note that the recipe for taking the one’s–complement of a  

number involves taking the logical NOT of each of its binary bits.  For this reason, I propose  

to denote the one’s–complement of an integer X by X , using the NOT symbol. 

Let X = 100. Represented in binary, X = 0110 0100 

  The one’s complement is X  = 1001 1011 

Note that for addition X + X  = 1111 1111.  We shall say more on this later. 

The Two’s Complement  
For integer arithmetic, all modern computers use two’s–complement notation.  In this text,  

we shall reserve the standard symbol “–X” to denote the negative in the two’s–complement  

system.  The two’s complement of a number is obtained as follows: 

 1) First take the one’s complement of the number 

 2) Add 1 to the one’s complement and discard the carry out of the left-most column. 

Decimal 100 =  0110 0100 

One’s complement 1001 1011 

We now do the addition 1001 1011 
            1 

    1001 1100 

Thus, in eight-bit two’s complement arithmetic 

 Decimal 100 = 0110 0100 binary 

 Decimal – 100 = 1001 1100 binary 

This illustrates one pleasing feature of two’s complement arithmetic: for both positive and  

negative integers the last bit is zero if and only if the number is even.  Note that it is essential  

to state how many bits are to be used.  Consider the 8-bit two’s complement of 100.  Now  

100 = 64 + 32 + 4, so decimal 100 = 0110 0100 binary, and we get the result above. 

Consider decimal 12 = 0000 1100 binary.  If we took the two’s complement of 1100, we  

might get 0100, giving us no idea how to pad out the high–order four bits. 

The real reason for the popularity of two’s complement can be seen by calculating the  

representation of – 0.  To do this we take the two’s complement of 0. 
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In eight bits, 0 is represented as 0000 0000 

Its one’s complement is represented as 1111 1111. 

We now take the two’s complement of 0. 

Here is the addition   1111 1111 
             1 

   1 0000 0000 – but discard the leading 1. 

Thus the two’s complement of 0 is represented as 0000 0000.  As required by algebra,  

this is exactly the same as the representation of 0 and we avoid the messy problem – 0  0. 

In 8– bit two’s complement arithmetic, + 127 0111 1111 

the range of integers that can be  + 10 0000 1010 

represented is – 2N-1 through 2N-1 – 1  +1  0000 0001 

inclusive, thus the range for eight-bit 0  0000 0000 

two’s complement integers is –128  – 1  1111 1111 The number is 

through 127 inclusive, as 27 = 128.  The – 10 1111 0110 negative if and 

table at the right shows a number of  – 127 1000 0001 only if the left– 

binary representations for this example. – 128 1000 0000 most bit is 1. 

 

We now give the ranges allowed for the most common two’s complement representations. 

 Eight bit – 128 to +127 

 16-bit – 32,768 to  +32,767 

 32-bit – 2,147,483,648 to +2,147,483,647 

 

The range for 64-bit two’s complement integers is – 263 to 263 – 1.  As an exercise in math,  

I propose to do a rough calculation of 263.  This will be done using only logarithms. 

There is a small collection of numbers that the serious student of computer science should  

memorize.  Two of these numbers are the base-10 logarithms of 2 and 3.  To five decimal  

places, log 2 = 0.30103 and log 3 = 0.47712. 

Now 263 = (100.30103)63 = 1018.9649 = 100.9649  1018.  What do we make of 100.9649?  Since we  

have log 3 = 0.47712 and 9 = 32, we have log 9 = 2  log 3 = 2  0.47712 = 0.95424.  This  

leads to the conclusion that 100.9649 > 100.95424  9; hence 9. < 100.95424 < 10.0.  We conclude  

that a 64–bit integer allows the representation of 18 digit numbers and most 19 digit values.  

The precise range is –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807. 

 

Reminder: For any number of bits, in two’s complement arithmetic the number is negative if  

and only if the high-order bit in the binary representation is a 1. 

 

Sign Extension 

This applies to numbers represented in one’s-complement and two’s-complement form.  The  

issue arises when we store a number in a form with more bits; for example when we store a  

16-bit integer in a 32-bit register.  The question is how to set the high-order bits. 

 

Consider a 16-bit integer stored in two’s-complement form.  Bit 15 is the sign bit.  We can  

consider bit representation of the number as A15A14A13A12A11A10A9A8A7A6A5A4A3A2A1A0.  
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Consider placing this number into a 32-bit register with bits numbered R31 through R0, with  

R31 being the sign bit.  Part of the solution is obvious: make Rk = Ak for 0  k  15.  What is  

not obvious is how to set bits 31 through 16 in R as the 16-bit integer A has no such bits. 

 

For non-negative numbers the solution is obvious and simple, set the extra bits to 0.  This is  

like writing the number two hundred (200) as a five digit integer; write it 00200.  But  

consider the 16-bit binary number 1111 1111 1000 0101, decimal –123.   

If we expanded this to 0000 0000 0000 0000 1111 1111 1000 0101 by setting  

the high order bits to 0’s, we would have a positive number, 65413.  This is not correct. 

 

The answer to the problem is sign extension, which means filling the higher order bits of the  

bigger representation with the sign bit from the more restricted representation.  In our  

example, we set bits 31 through 16 of the register to the sign bit of the 16-bit integer.   

The correct answer is then 1111 1111 1111 1111 1111 1111 1000 0101. 

 

Note – the way I got the value 1111 1111 1000 0101 for the 16-bit representation of – 123  

was to compute the 8-bit representation, which is 1000 0101.  The sign bit in this  

representation is 1, so I extended the number to 16-bits by setting the high order bits to 1. 

Nomenclature: “Two’s-Complement Representation” vs. “Taking the Two’s-Complement” 

We now address an issue that seems to cause confusion to some students.  There is a  

difference between the idea of a complement system and the process of taking the  

complement.  Because we are interested only in the two’s-complement system, I restrict my  

discussion to that system. 

 

Question: What is the representation of the positive number 123 in 8-bit two’s complement  

arithmetic? 

Answer: 0111 1011.  Note that I did not take the two’s complement of anything to get this. 

 

Two’s-complement arithmetic is a system of representing integers in which the two’s- 

complement is used to compute the negative of an integer.  For positive integers, the method  

of conversion to binary differs from unsigned integers only in the representable range. 

 

For N-bit unsigned integers, the range of integers representable is 0 ... 2N – 1, inclusive.  For  

N-bit two’s-complement integers the range of non-negative integers representable is 

0 ... 2N-1 – 1, inclusive.  The rules for converting decimal to binary integers are the same for  

non-negative integers – one only has to watch the range restrictions. 

 

The only time when one must use the fact that the number system is two’s-complement  

(that is – take the two’s-complement) is when one is asked about a negative number.  Strictly  

speaking, it is not necessary to take the two’s-complement of anything in order to represent a  

negative number in binary, it is only that most students find this the easiest way. 
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Question: What is the representation of –123 in 8-bit two’s-complement arithmetic? 

Answer: Perhaps I know that the answer is 1000 0101.  As a matter of fact, I can calculate  

this result directly without taking the two’s-complement of anything, but most students find  

the mechanical way the easiest way to the solution.  Thus, the preferred solution for most 

students is 

 1) We note that 0  123  27 – 1, so both the number and its negative 

  can be represented as an 8-bit two’s-complement integer. 

 2) We note that the representation of +123 in 8-bit binary is 0111 1011 

 3) We take the two’s-complement of this binary result to get the binary 

  representation of –123 as 1000 0101. 

We note in passing a decidedly weird way to calculate the representations of non-negative 

integers in two’s-complement form.  Suppose we want the two’s-complement representation 

of +123 as an eight-bit binary number.  We could start with the fact that the representation of 

–123 in 8-bit two’s-complement is 1000 0101 and take the two’s complement of 1000 0101 

to obtain the binary representation of 123 = –(–123).  This is perfectly valid, but decidedly 

strange.  One could work this way, but why bother? 

Summary: Speaking of the two’s-complement does not mean that one must take the 

  two’s-complement of anything. 

Why Does the Two’s Complement Work? 

We now ask an obvious question.  The process of taking the two’s–complement of the binary  

representation of an integer has been described and is well defined.  But why does this  

process yield the negative of the integer.  We begin with a fact noted in passing just above 

Question: Name the only number with the property that if I add 1 to it, I get 0. 

Answer: That unique number is negative 1, denoted as –1. 

Look now at simple addition for each of 8–bit and 16–bit signed integer values. 

In 8–bit  1111 1111 

 +         1 

  0000 0000 Remember that the carry–out from the left bit is discarded. 

In 16–bit  1111 1111 1111 1111 

 +                   1 

  0000 0000 0000 0000 Again, the sum is 0. 

From these two examples, it is possible to generalize to a statement that in any system in  

which the number 0 is represented as all bits being 0, a number with all bits 1 is –1. 

We now consider the bitwise addition of a binary bit and its one’s–complement, also  

called NOT(a) or .  Thus we compute the sum a +  for the two possible values of a.   

At the bit level, the addition table is simple, as the sum is always 1, without a carry. 

 a  a +  

 0 1 1 

 1 0 1 
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We now consider the sum of an arbitrary N–bit binary number and its one’s complement,  

recalling that taking the one’s complement is a bit–by–bit operation. 

Let A be the N–bit binary number represented as an–1an–2 … a2a1a0. 

Let A  be the 1’s–complement of A, represented as . 

Positional Notation  

We now review the idea of positional notation for binary representations of integers,  

beginning with N–bit unsigned integers.  While the discussions are valid for all N > 0,  

we shall choose to illustrate with N = 8. 

But we have shown that for every bit index that  

Thus, we have A + A  = –1.  This should be clarified by a few examples.  Note that in each  

example we add either 0 + 1 or 1 + 0, so there are no carry bits to consider. 

Consider the 8–bit representation of the decimal number 100. 

Let A = 0110 0100 

then A  = 1001 1011 

A + A  = 1111 1111, which represents –1. 

Consider the 8–bit representation of the negative decimal number –123. 

Let A = 1000 0101 

then A  = 0111 1010 

A + A  = 1111 1111, which represents –1. 

If we have A + A  = –1 for any binary value A, then we have A + ( A  + 1) = 0.  

Hence ( A  + 1) = –A, the negative of the value A.  This is why two’s complement works. 

Here is a table showing how to count up from the most negative integer. 

Decimal Positive One’s Complement Two’s Complement Comment 

8   1000 –8 

7 0111 1000 1001 –8 + 1 

6 0110 1001 1010 –8 + 2 

5 0101 1010 1011 –8 + 3 

4 0100 1011 1100 –8 + 4 

3 0011 1100 1101 –8 + 5 

2 0010 1101 1110 –8 + 6 

1 0001 1110 1111 –8 + 7 

The above presents an interesting argument and proof, but it overlooks one essential point.   

How does the hardware handle this?  For any sort of adder, the bits are just that.  There is  

nothing special about the high–order bit.  It is just another bit, and not interpreted in any  

special way.  To the physical adder, the high–order is just another bit. 

We shall discuss this problem when we present the logical design of a binary adder. 
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Arithmetic Overflow – “Busting the Arithmetic” 

We continue our examination of computer arithmetic to consider one more topic – overflow.   

Arithmetic overflow occurs under a number of cases: 

 1) when two positive numbers are added and the result is negative 

 2) when two negative numbers are added and the result is positive 

 3) when a shift operation changes the sign bit of the result. 

 

In mathematics, the sum of two negative numbers is always negative and the sum of two  

positive numbers is always positive.  The overflow problem is an artifact of the limits on  

the range of integers and real numbers as stored in computers.  We shall consider only  

overflows arising from integer addition. 

 

For two’s-complement arithmetic, the range of storable integers is as follows: 

 16-bit – 215 to 215 – 1 or – 32768 to 32767 

 32-bit – 231 to 231 – 1 or – 2147483648 to 2147483647 

 

In two’s-complement arithmetic, the most significant (left-most) bit is the sign bit 

 

Overflow in addition occurs when two numbers, each with a sign bit of 0, are added and the  

sum has a sign bit of 1 or when two numbers, each with a sign bit of 1, are added and the sum  

has a sign bit of 0.  For simplicity, we consider 16-bit addition.  As an example, consider the  

sum 24576 + 24576 in both decimal and binary.  Note 24576 = 16384 + 8192 = 214 + 213. 

 

 24576 0110 0000 0000 0000 

 24576 0110 0000 0000 0000 

 – 16384 1100 0000 0000 0000 

 

In fact, 24576 + 24576 = 49152 = 32768 + 16384.  The overflow is due to the fact that  

49152 is too large to be represented as a 16-bit signed integer. 

 

As another example, consider the sum (–32768) + (–32768).  As a 16–bit signed integer,  

the sum is 0! 

 –32768 1000 0000 0000 0000 

 –32768 1000 0000 0000 0000 

 0 0000 0000 0000 0000 

 

It is easily shown that addition of a validly positive integer to a valid negative integer cannot  

result in an overflow.  For example, consider again 16–bit two’s–complement integer  

arithmetic with two integers M and N.  We have 0  M  32767 and –32768  N  0.  If 

|M|  |N|, we have 0  (M + N)  32767 and the sum is valid.  Otherwise, we have  

–32768  (M + N)  0, which again is valid. 

 

Integer overflow can also occur with subtraction.  In this case, the two values (minuend 

 and subtrahend) must have opposite signs if overflow is to be possible. 
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Excess–127 

We now cover excess–127 representation.  This is mentioned only because it is required  

when discussing the IEEE floating point standard.  In general, we can consider an  

excess–M notation for any positive integer M.  For an N–bit excess–M representation, the  

rules for conversion from binary to decimal are: 

 1) Evaluate as an unsigned binary number 

 2) Subtract M. 

 

To convert from decimal to binary, the rules are 

 1) Add M 

 2) Evaluate as an unsigned binary number. 

 

In considering excess notation, we focus on eight–bit excess–127 notation.  The range of  

values that can be stored is based on the range that can be stored in the plain eight–bit  

unsigned standard: 0 through 255.  Remember that in excess–127 notation, to store an integer  

N we first form the number N + 127.  The limits on the unsigned eight-bit storage require  

that 0  (N + 127)  255, or – 127  N  128. 

 

As an exercise, we note the eight-bit excess-127 representation of – 5, – 1, 0 and 4. 

 – 5 + 127 = 122. Decimal 122 = 0111 1010 binary, the answer. 

  – 1 + 127 = 126. Decimal 126 = 0111 1110 binary, the answer. 

 0 + 127 = 127.  Decimal 127 = 0111 1111 binary, the answer. 

 4 + 127 = 131  Decimal 131 = 1000 0011 binary, the answer. 

 

We have now completed the discussion of common ways to represent unsigned and signed  

integers in a binary computer.  We now start our progress towards understanding the storage  

of real numbers in a computer.  There are two ways to store real numbers – fixed point and  

floating point.  We focus this discussion on floating point, specifically the IEEE standard for  

storing floating point numbers in a computer. 

 

Normalized Numbers 

The last topic to be discussed prior to defining the IEEE standard for floating point numbers  

is that of normalized numbers.  We must also mention the concept of denormalized numbers,  

though we shall spend much less time on the latter. 

 

A normalized number is one with a representation of the form X  2P, where 1.0  X < 2.0.   

At the moment, we use the term denormalized number to mean a number that cannot be so  

represented, although the term has a different precise meaning in the IEEE standard.  First,  

we ask a question: “What common number cannot be represented in this form?” 

 

The answer is zero.  There is no power of 2 such that 0.0 = X  2P, where 1.0  X < 2.0.  We  

shall return to this issue when we discuss the IEEE standard, at which time we shall give a  

more precise definition of the denormalized numbers, and note that they include 0.0.  For the  

moment, we focus on obtaining the normalized representation of positive real numbers. 
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We start with some simple examples. 

 1.0 = 1.0  20, thus X = 1.0 and P = 0. 

 1.5 = 1.5  20, thus X = 1.5 and P = 0. 

 2.0 = 1.0  21, thus X = 1.0 and P = 1 

 0.25 = 1.0  2-2, thus X = 1.0 and P = -2 

 7.0 = 1.75  22, thus X = 1.75 and P = 2 

 0.75 = 1.5  2-1, thus X = 1.5 and P = -1. 

 

To better understand this conversion, we shall do a few more examples using the more  

mechanical approach to conversion of decimal numbers to binary.  We start with an example:  

9.375  10-2 = 0.09375.  We now convert to binary. 

 

0.09375  2 = 0.1875 0 

0.1875  2 = 0.375 0  Thus decimal 0.09375 = 0.00011 binary 

0.375  2 = 0.75 0  or 1.1  2-4 in the normalized notation. 

0.75  2 = 1.5 1 

0.5  2 = 1.0 1 

 

Please note that these representations take the form X  2P, where X is represented as a  

binary number but P is represented as a decimal number.  Later, P will be converted to an  

excess–127 binary representation, but for the present it is easier to keep it in decimal. 

 

We now convert the decimal number 80.09375 to binary notation.  I have chosen 0.09375 as  

the fractional part out of laziness as we have already obtained its binary representation.  We  

now convert the number 80 from decimal to binary.  Note 80 = 64 + 16 = 26  (1 + ¼). 

 

80 / 2 = 40 remainder 0 

40/2 = 20 remainder 0 

20 / 2 = 10 remainder 0 

10 / 2 = 5 remainder 0 

5 / 2 = 2 remainder 1 

2 / 2 = 1 remainder 0 

1 / 2 = 1 remainder 1 

 

Thus decimal 80 = 1010000 binary and decimal 80.09375 = 1010000.00011 binary.  To get  

the binary point to be after the first 1, we move it six places to the left, so the normalized  

form of the number is 1.01000000011  26, as expected.  For convenience, we write this as  

1.0100 0000 0110  26. 
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Extended Example: Avogadro’s Number. 

Up to this point, we have discussed the normalized representation of positive real numbers  

where the conversion from decimal to binary can be done exactly for both the integer and  

fractional parts.  We now consider conversion of very large real numbers in which it is not  

practical to represent the integer part, much less convert it to binary. 

 

We now discuss a rather large floating point number: 6.023  1023.  This is Avogadro’s  

number.  We shall convert this to normalized form and use the opportunity to discuss a  

number of issues associated with floating point numbers in general. 

 

Avogadro’s number arises in the study of chemistry.  This number relates the atomic weight  

of an element to the number of atoms in that many grams of the element.  The atomic weight  

of oxygen is 16.00, as a result of which there are about 6.023  1023 atoms in 16 grams of  

oxygen.  For our discussion we use a more accurate value of 6.022142  1023 obtained from  

the web sit of the National Institute of Standards (www.nist.gov).   

 

We first remark that the number is determined by experiment, so it is not known exactly.  We  

thus see one of the main scientific uses of this notation – to indicate the precision with which  

the number is known.  The above should be read as (6.022142  0.0000005)  1023, that is to  

say that the best estimate of the value is between 6.0221415  1023 and 6.0221425  1023, or  

between 602, 214, 150, 000, 000, 000, 000, 000 and 602, 214, 250, 000, 000, 000, 000, 000.   

Here we see another use of scientific notation – not having to write all these zeroes. 

 

Again, we use logarithms and anti-logarithms to convert this number to a power of two.  The  

first question is how accurately to state the logarithm.  The answer comes by observing that  

the number we are converting is known to seven digit’s precision.  Thus, the most accuracy  

that makes sense in the logarithm is also seven digits. 

 

In base-10 logarithms log(6.022142  1023) = 23.0 + log(6.022142).  To seven digits, this last  

number is 0.7797510, so log(6.022142  1023) = 23.7797510. 

 

We now use the fact that log(2.0) = 0.3010300 to seven decimal places to solve the equation 

 2X = (100.3010300)X = 10.23.7797520 or 0.30103X = 23.7797510 for X = 78.9946218. 

 

If we use NA to denote Avogadro’s number, the first thing we have discovered from this  

tedious analysis is that 278 < NA < 279, and that NA  279.  The representation of the number in  

normal form is thus of the form 1.f  278, where the next step is to determine f.  To do this,  

we obtain the decimal representation of 278. 

 

Note that 278 = (100.30103)78 = 1023.48034 = 100.48034  1023 = 3.022317  1023. 

But 6.022142 / 3.022317 = 1.992558, so NA = 1.992558  278, and f = 0.992558. 

 

http://www.nist.gov/
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To complete this problem, we obtain the binary equivalent of 0.992558. 

0.992558  2 = 1.985116 1 

0.985116  2 = 1.970232 1 

0.970232  2 = 1.949464 1 

0.949464  2 = 1.880928 1 

0.880928  2 = 1.761856 1 

0.761856  2 = 1.523712 1 

0.523712  2 = 1.047424 1 

0.047424  2 = 0.094848 0 

0.094848  2 = 0.189696 0 

0.189696  2 = 0.379392 0 

0.379392  2 = 0.758784 0 

0.758784  2 = 1.517568 1 

 

The desired form is 1.1111 1110 0001  278. 

 

IEEE Standard 754 Floating Point Numbers 

There are two primary formats in the IEEE 754 standard; single precision and double  

precision.  We shall study the single precision format. 

 

The single precision format is a 32–bit format.  From left to right, we have 

 1 sign bit; 1 for negative and 0 for non-negative 

 8 exponent bits 

 23 bits for the fractional part of the mantissa. 

 

The eight-bit exponent field stores the exponent of 2 in excess-127 form, with the  

exception of two special bit patterns. 

 0000 0000 numbers with these exponents are denormalized 

 1111 1111 numbers with these exponents are infinity or Not A Number 

 

Before presenting examples of the IEEE 754 standard, we shall examine the concept of NaN  

or Not a Number.  In this discussion, we use some very imprecise terminology. 

Consider the quotient 1/0.  The equation 1 / 0 = X is equivalent to solving for a number X  

such that 0  X = 1.  There is no such number X such that the result of multiplying it by 0 

yields a 1.  Loosely speaking, we say 1 / 0 = ; precisely speaking we use the notations of  

the calculus and speak of limits to the fraction 1 / Y as the number Y approaches 0.   

Now consider the quotient 0/0.  Again we are asking for the number X such that 0  X = 0.  

The difference here is that this equation is true for every number X.  In terms of the IEEE  

standard, 0 / 0 is Not a Number, or NaN. 

The number NaN can also be used for arithmetic operations that have no solutions, such as  

taking the square root of –1 while limited to the real number system.  While this result  

cannot be represented, it is definitely neither + nor – . 
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We now illustrate the standard by doing some conversions. 

For the first example, consider the number –0.75. 

 

To represent the number in the IEEE standard, first note that it is negative so that the sign bit  

is 1.  Having noted this, we convert the number 0.75. 

 0.75  2 = 1.5  1 

 0.5  2 = 1.0  1 

 

Thus, the binary equivalent of decimal 0.75 is 0.11 binary.  We must now convert this into  

the normalized form 1.10  2–1.  Thus we have the key elements required. 

 The power of 2 is –1, stored in Excess-127 as 126 = 0111 1110 binary. 

 The fractional part is 10, possibly best written as 10000 

 

Recalling that the sign bit is 1, we form the number as follows: 

 
 1 0111 1110 10000  

 

We now group the binary bits by fours from the left until we get only 0’s. 

 
 1011 1111 0100 0000 

 

Since trailing zeroes are not significant in fractions, this is equivalent to 

 
 1011 1111 0100 0000 0000 0000 0000 0000 

 

or BF40 0000 in hexadecimal. 

 

As another example, we revisit a number converted earlier.  We have shown that 

80.09375 = 1.0100 0000 0110  26.  This is a positive number, so the sign bit is 0.  As an  

Excess–127 number, 6 is stored as 6 + 127 = 133 = 1000 0101 binary.  The fractional part  

of the number is 0100 0000 0110 0000, so the IEEE representation is 

 
 0 1000 0101 0100 0000 0110 0000 

 

Regrouping by fours from the left, we get the following 

 
 0100 0010 1010 0000 0011 0000 

In hexadecimal this number is 42A030, or 42A0 3000 as an eight digit hexadecimal  

number.  Note that all single–precision values should be represented with 8 hex digits. 

Here is the general rule for floating–point numbers: 

 single precision 32 bit values  represent with 8 hexadecimal digits  

 double precision 64 bit values  represent with 16 hex digits. 
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Some Examples “In Reverse” 

We now consider another view on the IEEE floating point standard – the “reverse” view.   

We are given a 32-bit number, preferably in hexadecimal form, and asked to produce the  

floating-point number that this hexadecimal string represents.  As always, in interpreting any  

string of binary characters, we must be told what standard to apply – here the IEEE-754 

single precision standard. 

 

First, convert the following 32-bit word, represented by eight hexadecimal digits, to the  

floating-point number being represented. 

 

 0000 0000  // Eight hexadecimal zeroes representing 32 binary zeroes 

 

The answer is 0.0.  This is a result that should be memorized. 

 

 

The question in the following paragraph was taken from a mid–term exam for an  

introductory course in computer organization.  The paragraphs following were taken  

from the answer key for that exam. 

 

Give the value of the real number (in standard decimal representation) represented by  

the following 32-bit words stored as an IEEE standard single precision. 

  a) 4068 0000 

  b) 42E8 0000 

  c) C2E8 0000 

  d) C380 0000 

  e) C5FC 0000 

 

The first step in solving these problems is to convert the hexadecimal to binary. 

a) 4068 0000 = 0100 0000 0110 1000 0000 0000 0000 0000 

Regroup to get 0  1000 0000  1101 0000 etc. (trailing zeroes can be ignored) 

Thus s = 0 (not a negative number) 

  p + 127 = 100000002 = 12810, so p = 1 

and  m = 1101, so 1.m = 1.1101 and the number is 1.110121 = 11.1012. 

But 11.1012 = 2 + 1 + 1/2 + 1/8 = 3 + 5/8 = 3.625. 

 

 

b) 42E8 0000 = 0100 0010 1110 1000 0000 0000 0000 0000 

Regroup to get 0  1000 0101  1101 0000 etc 

Thus s = 0 (not a negative number) 

  p + 127 = 100001012 = 128 + 4 + 1 = 133, hence p = 6 

and  m = 1101, so 1.m = 1.1101 and the number is 1.110126 = 11101002  

But 11101002 = 64 + 32 + 16 + 4 = 96 + 20 = 116 = 116.0 
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c) C2E80 0000 = 1100 0010 1110 1000 0000 0000 0000 0000 

Regroup to get 1 1000 0101 1101 0000 etc. 

Thus s = 1 (a negative number) and the rest is the same as b).  So – 116.0 

 

 

d) C380 0000 = 1100 0011 1000 0000 0000 0000 0000 0000 

Regroup to get 1  1000 0111  0000 0000 0000 0000 0000 000 

Thus s = 1 (a negative number) 

  p + 127 = 100001112 = 128 + 7 = 135; hence p = 8. 

  m = 0000, so 1.m = 1.0 and the number is  – 1.0  28 =  – 256.0 

 

 

e) C5FC 0000 = 1100 0101 1111 1100 0000 0000 0000 0000 

Regroup to get 1  1000 1011  1111 1000 0000 0000 0000 000 

Thus s = 1 (a negative number) 

  p + 127 = 1000 10112 = 128 + 8 + 2 + 1 = 139, so p = 12 

  m = 1111 1000, so 1.m = 1.1111 1000 

 

There are three ways to get the magnitude of this number.  The magnitude can be written  

in normalized form as 1.1111 1000  212 = 1.1111 1000  4096, as 212 = 4096. 

 

Method 1 

If we solve this the way we have, we have to place four extra zeroes after the decimal point  

to get the required 12, so that we can shift the decimal point right 12 places. 

 

 1.1111 1000  212 = 1.1111 1000 0000  212 = 1 1111 1000 00002 

    = 212 + 211+ 210 + 29 + 28 + 27 

    = 4096 + 2048 + 1024 + 512 + 256 + 128 = 8064. 

Method 2 

We shift the decimal place only 5 places to the right (reducing the exponent by 5) to get 

 1.1111 1000  212 = 1 1111 1.0  27 

    = (25 + 24 + 23 + 22 + 21 + 20)  27 

    = (32 + 16 + 8 + 4 + 2 + 1)  128 = 63  128 = 8064. 

Method 3 
This is an offbeat method, not much favored by students. 

 1.1111 1000  212 = (1 + 2–1 + 2–2+ 2–3+ 2–4+ 2–5)  212 

    = 212 + 211+ 210 + 29 + 28 + 27 

    = 4096 + 2048 + 1024 + 512 + 256 + 128 = 8064. 

Method 4 
This is another offbeat method, not much favored by students. 

 1.1111 1000  212 = (1 + 2–1 + 2–2+ 2–3+ 2–4+ 2–5)  212 

    = (1 + 0.5 + 0.25 + 0.125 + 0.0625+ 0.03125)  4096 

    = 1.96875  4096 = 8064. 

 

The answer is – 8064.0. 
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As a final example, we consider the IEEE standard representation of Avogadro’s number.  

We have seen that NA  1.1111 1110 0001  278.  This is a positive number; the sign bit is 0. 

 

We now consider the representation of the exponent 78.  Now 78 + 127 = 205, so the  

Excess-127 representation of 78 is 205 = 128 + 77 = 128 + 64 + 13 = 128 + 64 + 8 + 4 + 1.  

As an 8-bit binary number this is 1100 1101.  We already have the fractional part, so we get 

 
 0 1100 1101 1111 1110 0001 0000 

 

Grouped by fours from the left we get 

 

 0110 0110 1111 1111 0000 1000 0000 0000,  

or 66FF 0800 in hexadecimal. 

 

Range and Precision 

We now consider the range and precision associated with the IEEE single precision standard  

using normalized numbers..  The range refers to the smallest and largest positive numbers  

that can be stored.  Recalling that zero is not a positive number, we derive the smallest and  

largest representable numbers. 

 

In the binary the smallest normalized number is 1.0  2–126 and the largest number is a bit  

less than 2.0  2127 = 2128.  Again, we use logarithms to evaluate these numbers. 

 – 126  0.30103 = – 37.93 = – 38.0 + 0.07, so 2–126 = 1.07  10 -38, approximately. 

 128  0.30103 = 38.53, so 2128 = 3.5  10 38, as 100.53 is a bit bigger than 3.2. 

 

We now consider the precision associated with the standard.  Consider the decimal notation  

1.23.  The precision associated with this is  0.005 as the number really represents a value  

between 1.225 and 1.235 respectively. 

 

The IEEE standard has a 23-bit fraction.  Thus, the precision associated with the standard is  

1 part in 224 or 1 part in 16  220 = 16  1048576 = 16777216.  This accuracy is more precise  

than 1 part in 107, or seven digit precision. 

 

Denormalized Numbers 

We shall see in a bit that the range of normalized numbers is approximately 10 –38 to 10 38.   

We now consider what we might do with a problem such as the quotient 10 –20 / 10 30.  In  

plain algebra, the answer is simply 10 –50, a very small positive number.  But this number is  

smaller than allowed by the standard.  We have two options for representing the quotient,  

either 0.0 or some strange number that clearly indicates the underflow.  This is the purpose of  

denormalized numbers – to show that the result of an operation is positive but too small  

to be represented in standard format.   
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Why Excess–127 Notation for the Exponent? 

We have introduced two methods to be used for storing signed integers – two’s-complement  

notation and excess–127 notation.  One might well ask why two’s-complement notation is  

used to store signed integers while the excess–127 method is used for exponents in the  

floating point notation. 

The answer for integer notation is simple.  It is much easier to build an adder for integers  

stored in two’s-complement form than it is to build an adder for integers in the excess  

notation.  In the next chapter we shall investigate a two’s-complement adder. 

So, why use excess–127 notation for the exponent in the floating point representation?  The  

answer is best given by example.  Consider some of the numbers we have used as examples. 

0011 1111 0100 0000 0000 0000 0000 0000 for 0.75 

0100 0010 1010 0000 0011 0000 0000 0000 for 80.09375 

0110 0110 1111 1111 0000 1000 0000 0000 for Avagadro’s number. 

It turns out that the excess–127 notation allows the use of the integer compare unit to  

compare floating point numbers.  Consider two floating point numbers X and Y.  Pretend that  

they are integers and compare their bit patterns as integer bit patterns.  It viewed as an  

integer, X is less than Y, then the floating point number X is less than the floating point Y.   

Note that we are not converting the numbers to integer form, just looking at the bit patterns  

and pretending that they are integers. 

Were the exponents stored in two’s–complement notation, we would have 
0111 1111 1100 0000 0000 0000 0000 0000 for 0.75 

0000 0011 0010 0000 0011 0000 0000 0000 for 80.09375 

Comparing these as if they were integers makes the value 0.75 appear to be larger.  Recall  

that it is the leftmost bit that is the sign bit in any standard numeric representation. 

Pretending that each of these values is an integer makes both positive numbers. 

Floating Point Equality: X == Y 

Due to round off error, it is sometimes not advisable to check directly for equality of floating  

point numbers.  A better method would be to use an acceptable relative error.  We borrow the  

notation  from calculus to stand for a small number, and use the notation |Z| for the absolute  

value of the number Z. 

Here are two valid alternatives to the problematic statement (X == Y). 

 1) Absolute difference |X – Y|   

 2) Relative difference |X – Y|  (|X| +|Y|) 

Note that this form of the second statement is preferable to computing the quotient 

|X – Y| / (|X| +|Y|) which will be NaN (Not A Number) if X = 0.0 and Y = 0.0. 

Bottom Line: In your coding with real numbers, decide what it means for two numbers to be  

equal.  How close is close enough?  There are no general rules here, only cautions.  It is  

interesting to note that one language (SPARK, a variant of the Ada programming language)  

does not allow floating point comparison statements such as X == Y, but demands an  

evaluation of the absolute value of the difference between X and Y. 
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The IBM Mainframe Floating–Point Formats 

In this discussion, we shall adopt the bit numbering scheme used in the IBM documentation,  

with the leftmost (sign) bit being number 0.  The IBM Mainframe supports three formats;  

those representations with more bits can be seen to afford more precision. 

 Single precision 32 bits numbered 0 through 31, 

 Double precision 64 bits numbered 0 through 63, and 

 Extended precision 128 bits numbered 0 through 127. 

As in the IEEE–754 standard, each floating point number in this standard is specified by  

three fields: the sign bit, the exponent, and the fraction.  Unlike the IEEE–754 standard, the  

IBM standard allocates the same number of bits for the exponent of each of its formats.   

The bit numbers for each of the fields are shown below. 

Format Sign bit Bits for exponent Bits for fraction 

Single precision 0 1 – 7 8 – 31 

Double precision 0 1 – 7 8 – 63 

Extended precision 0 1 – 7 8 – 127 

Note that each of the three formats uses eight bits to represent the exponent, in what is called  

the characteristic field, and the sign bit.  These two fields together will be represented by  

two hexadecimal digits in a one–byte field. 

The size of the fraction field does depend on the format. 

 Single precision 24 bits 6 hexadecimal digits, 

 Double precision 56 bits 14 hexadecimal digits, and 

 Extended precision 120 bits 30 hexadecimal digits. 

The Characteristic Field 

In IBM terminology, the field used to store the representation of the exponent is called the  

“characteristic”.  This is a 7–bit field, used to store the exponent in excess–64 format; if  

the exponent is E, then the value (E + 64) is stored as an unsigned 7–bit number. 

Recalling that the range for integers stored in 7–bit unsigned format is 0  N  127, we have  

0  (E + 64)  127, or –64  E  63. 

Range for the Standard 

We now consider the range and precision associated with the IBM floating point formats.   

The reader should remember that the range is identical for all of the three formats; only the  

precision differs.  The range is usually specified as that for positive numbers, from a very  

small positive number to a large positive number.  There is an equivalent range for negative  

numbers.  Recall that 0 is not a positive number, so that it is not included in either range. 

Given that the base of the exponent is 16, the range for these IBM formats is impressive.  It  

is from somewhat less than 16–64 to a bit less than 1663.  Note that 1663 = (24)63 = 2252, and  

16–64 = (24)–64 = 2–256 = 1.0 / (2256) and recall that log10(2) = 0.30103.  Using this, we compute  

the maximum number storable at about (100.30103)252 = 1075.86  91075.  We may approximate  

the smallest positive number at 1.0 / (361075) or about 3.010–77.  In summary, the following  

real numbers can be represented in this standard: X = 0.0 and 3.010–77 < X < 91075. 

One would not expect numbers outside of this range to appear in any realistic calculation. 
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Precision for the Standard 

Unlike the range, which depends weakly on the format, the precision is very dependent on  

the format used.  More specifically, the precision is a direct function of the number of bits  

used for the fraction.  If the fraction uses F bits, the precision is 1 part in 2F. 

We can summarize the precision for each format as follows. 

 Single precision F = 24 1 part in 224. 

 Double precision F = 56 1 part in 256. 

 Extended precision F = 120 1 part in 2120. 

The first power of 2 is easily computed; we use logarithms to approximate the others. 

 224     = 16,777,216  

 256  (100.30103)56 = 1016.85   91016. 

 2120  (100.30103)120 = 1036.12  1.21036. 

The argument for precision is quite simple.  Consider the single precision format, which is  

more precise than 1 part in 10,000,000 and less precise than 1 part in 100,000,000.  In other  

words it is better than 1 part in 107, but not as good as 1 in 108; hence we say 7 digits. 

Range and Precision 

We now summarize the range and precision for the three IBM Mainframe formats. 

Format Positive Range Precision 

Single Precision 3.010–77 < X < 91075 7 digits 

Double Precision 3.010–77 < X < 91075 16 digits 

Extended Precision 3.010–77 < X < 91075 36 digits 

Representation of Floating Point Numbers 

As with the case of integers, we shall most commonly use hexadecimal notation to represent  

the values of floating–point numbers stored in the memory.  From this point, we shall focus  

on the two more commonly used formats: Single Precision and Double Precision. 

The single precision format uses a 32–bit number, represented by 8 hexadecimal digits. 

The double precision format uses a 64–bit number, represented by 16 hexadecimal digits. 

Due to the fact that the two formats use the same field length for the characteristic,  

conversion between the two is quite simple.  To convert a single precision value to a double  

precision value, just add eight hexadecimal zeroes. 

Consider the positive number 128.0. 

As a single precision number, the value is stored as 4280 0000. 

As a double precision number, the value is stored as 4280 0000 0000 0000. 

Conversions from double precision to single precision format will involve some rounding. 

For example, consider the representation of the positive decimal number 123.45.  In a few  

pages, we shall show that it is represented as follows. 

As a double precision number, the value is stored as 427B 7333 3333 3333. 

As a single precision number, the value is stored as 427B 7333. 
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The Sign Bit and Characteristic Field  

We now discuss the first two hexadecimal digits in the representation of a floating–point  

number in these two IBM formats.  In IBM nomenclature, the bits are allocated as follows. 

 Bit 0  the sign bit 

 Bits 1 – 7 the seven–bit number storing the characteristic. 

Bit Number 0 1 2 3 4 5 6 7 

Hex digit 0 1 

Use Sign bit Characteristic (Exponent + 64) 

Consider the four bits that comprise hexadecimal digit 0.  The sign bit in the floating–point  

representation is the “8 bit” in that hexadecimal digit.  This leads to a simple rule. 

If the number is not negative, bit 0 is 0, and hex digit 0 is one of 0, 1, 2, 3, 4, 5, 6, or 7. 

If the number is negative,  bit 0 is 1, and hex digit 0 is one of 8, 9, A, B, C, D, E, or F. 

Some Single Precision Examples  

We now examine a number of examples, using the IBM single–precision floating–point  

format.  The reader will note that the methods for conversion from decimal to hexadecimal  

formats are somewhat informal, and should check previous notes for a more formal method.   

Note that the first step in each conversion is to represent the magnitude of the number in the  

required form X16E, after which we determine the sign and build the first two hex digits. 

Example 1: Positive exponent and positive fraction. 

The decimal number is 128.50.  The format demands a representation in the form X16E,  

with 0.625  X < 1.0.  As 128  X < 256, the number is converted to the form X162. 

Note that 128 = (1/2)162 = (8/16)162 , and 0.5 = (1/512)162 = (8/4096)162. 

Hence, the value is 128.50 = (8/16 + 0/256 + 8/4096)162; it is 1620x0.808. 

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010.   

The first two hexadecimal digits in the eight digit representation are formed as follows. 

Field Sign Characteristic 

Value 0 1 0 0 0 0 1 0 

Hex value 4 2 

The fractional part comprises six hexadecimal digits, the first three of which are 808. 

The number 128.50 is represented as 4280 8000. 

Example 2: Positive exponent and negative fraction. 

The decimal number is the negative number –128.50.  At this point, we would normally  

convert the magnitude of the number to hexadecimal representation.  This number has the  

same magnitude as the previous example, so we just copy the answer; it is 1620x0.808. 

We now build the first two hexadecimal digits, noting that the sign bit is 1. 

Field Sign Characteristic 

Value 1 1 0 0 0 0 1 0 

Hex value C 2 

The number 128.50 is represented as C280 8000. 

Note that we could have obtained this value just by adding 8 to the first hex digit. 



Chapter 3 Boz–8 Data Representation 

Page 109 CPSC 5155 Last Revised on November 27, 2014 

 Copyright © 2014 by Ed Bosworth 

Example 3: Negative exponent and positive fraction. 

The decimal number is 0.375.  As a fraction, this is 3/8 = 6/16.  Put another way, it is  

1600.375 = 160(6/16).  This is in the required format X16E, with 0.625  X < 1.0. 

The exponent value is 0, so the characteristic value is either 64 or 0x40 = 100 0000.   

The first two hexadecimal digits in the eight digit representation are formed as follows. 

Field Sign Characteristic 

Value 0 1 0 0 0 0 0 0 

Hex value 4 0 

The fractional part comprises six hexadecimal digits, the first of which is a 6. 

The number 0.375 is represented in single precision as 4060 0000. 

The number 0.375 is represented in double precision as 4060 0000 0000 0000. 

Example 4: A Full Conversion 
The number to be converted is 123.45.  As we have hinted, this is a non–terminator. 

Convert the integer part. 

123 / 16 = 7 with remainder 11  this is hexadecimal digit B. 

  7 / 16 = 0 with remainder  7  this is hexadecimal digit 7. 

Reading bottom to top, the integer part converts as 0x7B. 

Convert the fractional part. 

0.45  16 = 7.20 Extract the 7, 

0.20  16 = 3.20 Extract the 3, 

0.20  16 = 3.20 Extract the 3, 

0.20  16 = 3.20 Extract the 3, and so on. 

In the standard format, this number is 1620x0.7B33333333…... 

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010.   

The first two hexadecimal digits in the eight digit representation are formed as follows. 

Field Sign Characteristic 

Value 0 1 0 0 0 0 1 0 

Hex value 4 2 

The number 123.45 is represented in single precision as 427B 3333. 

The number 0.375 is represented in double precision as 427B 3333 3333 3333. 

Example 5: One in “Reverse” 

We are given the single precision representation of the number.  It is 4110 0000. 

What is the value of the number stored?  We begin by examination of the first two hex digits. 

Field Sign Characteristic 

Value 0 1 0 0 0 0 0 1 

Hex value 4 1 

The sign bit is 0, so the number is positive.  The characteristic is 0x41, so the exponent is 

1 and the value may be represented by X161.  The fraction field is 100 000, so the value is 

161(1/16) = 1.0. 
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Packed Decimal Formats 

While the IBM mainframe provides three floating–point formats, it also provides another  

format for use in what are called “fixed point” calculations.  The term “fixed point” refers to  

decimal numbers in which the decimal point takes a predictable place in the number; money  

transactions in dollars and cents are a good and very important example of this. 

 

Consider a ledger such as might be maintained by a commercial firm.  This contains credits  

and debits, normally entered as money amounts with dollars and cents.  The amount that  

might be printed as “$1234.56” could easily be stored as the integer 123456 if the program  

automatically adjusted to provide the implicit decimal point.  This fact is the basis for the  

Packed Decimal Format developed by IBM in response to its business customers. 

 

One may well ask “Why not use floating point formats for financial transactions?”.  We  

present a fairly realistic scenario to illustrate the problem with such a choice.  This example  

is based on your author’s experience as a consultant to a bank in Rochester, NY. 

 

It is a fact that banks loan each other money on an overnight basis; that is, the bank borrows  

the money at 6:00 PM today and repays it at 6:00 AM tomorrow.  While this may seem a bit  

strange to those of us who think in terms of 20–year mortgages, it is an important practice. 

Overnight loans in the amount of one hundred million dollars are not uncommon. 

 

Suppose that I am a bank officer, and that another bank wants to borrow $100,000,000  

overnight.  I would like to make the loan, but do not have the cash on hand.  On the other  

hand, I know a bank that will lend me the money at a smaller interest rate.  I can make the  

loan and pocket the profit. 

 

Suppose that the borrowing bank is willing to pay 8% per year on the borrowed amount.   

This corresponds to a payback of (1.08)1/730 = 1.0001054, which is $10,543 in interest. 

 

Suppose that I have to borrow the money at 6% per annum.  This corresponds to my paying  

at a rate of (1.06)1/730 = 1.0000798, which is a cost of $7,982 to me.  I make $2,561. 

 

Consider these numbers as single–precision floating point format in the IBM Mainframe. 

My original money amount is $100,000,000 

The interest I make is $10,543 

My principal plus interest is $100,010,500 Note the truncation due to precision. 

The interest I pay is $7,982 

What I get back is $100,002,000 Again, note the truncation. 

 

The use of floating–point arithmetic has cost me $561 for an overnight transaction.  I do not  

like that.  I do not like numbers that are rounded off; I want precise arithmetic. 

 

Almost all banks and financial institutions demanded some sort of precise decimal  

arithmetic; IBM’s answer was the Packed Decimal format. 
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BCD (Binary Coded Decimal) 

The best way to introduce the Packed Decimal Data format is to first present an earlier  

format for encoding decimal digits. This format is called BCD, for “Binary Coded Decimal”.   

As may be inferred from its name, it is a precursor to EBCDIC (Extended BCD Interchange  

Code) in addition to heavily influencing the Packed Decimal Data format. 

We shall introduce BCD and compare it to the 8–bit unsigned binary previously discussed for  

storing unsigned integers in the range 0 through 255 inclusive.  While BCD doubtless had  

encodings for negative numbers, we shall postpone signed notation to Packed Decimal. 

The essential difference between BCD and 8–bit binary is that BCD encodes each decimal in  

a separate 4–bit field (sometimes called “nibble” for half–byte).  This contrasts with the usual  

binary notation in which it is the magnitude of the number (and not the number of digits) that  

determines whether or not it can be represented in the format. 

We begin with a table of the BCD codes for each of the ten decimal digits.  These codes are  

given in both binary and hexadecimal.  It will be important for future discussions to note that  

these encodings are actually hexadecimal digits; they just appear to be decimal digits. 

Digit ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

Hexadecimal 0 1 2 3 4 5 6 7 8 9 

To emphasize the difference between 8–bit unsigned binary and BCD, we shall examine a  

selection of two–digit numbers and their encodings in each system. 

Decimal Number 8–bit binary BCD (Represented in binary) BCD (hexadecimal) 

5 0000 0101 0000 0101 05 

13 0000 1101 0001 0011 13 

17 0001 0001 0001 0111 17 

23 0001 0111 0010 0011 23 

31 0001 1111 0011 0001 31 

64 0100 0000 0110 0100 64 

89 0101 1001 1000 1001 89 

96 0110 0000 1001 0110 96 

As a hypothetical aside, consider the storage of BCD numbers on a byte–addressable  

computer.  The smallest addressable unit would be an 8–bit byte.  As a result of this, all BCD  

numbers would need to have an even number of digits, as to fill up an integral number of  

bytes.  Our solution to the storage of integers with an odd number of digits is to recall that a  

leading zero does not change the value of the integer. 

In this hypothetical scheme of storage: 

 1 would be stored as 01, 

 22 would be stored as 22, 

 333 would be stored as 0333, 

 4444 would be stored as 4444, 

 55555 would be stored as 055555, and 

 666666 would be stored as 666666. 
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Packed Decimal Data 

The packed decimal format should be viewed as a generalization of the BCD format with the  

specific goal of handling the fixed point arithmetic so common in financial transactions.  The  

two extensions of the BCD format are as follows: 

 1. The provision of a sign “half byte” so that negative numbers can be handled. 

 2. The provision for variable length strings. 

While the term “fixed point” is rarely used in computer literature these days, the format is  

very common.  Consider any transaction denominated in dollars and cents.  The amount will  

be represented as a real number with exactly two digits to the right of the decimal point; that  

decimal point has a fixed position in the notation, hence the name “fixed point”. 

The packed decimal format provides for a varying number of digits, one per half–byte,  

followed by a half–byte denoting the sign of the number.  Because of the standard byte  

addressability issues, the number of half–bytes in the representation must be an even number;  

given the one half–byte reserved for the sign, this implies an odd number of digits. 

In the BCD encodings, we use one hexadecimal digit to encode each of the decimal digits.   

This leaves the six higher–valued hexadecimal digits (A, B, C, D, E, and F) with no use; in  

BCD these just do not encode any values.  In Packed Decimal, each of these will encode a  

sign.  Here are the most common hexadecimal digits used to represent signs. 

Binary Hexadecimal Sign Comment 

1100 C + The standard plus sign 

1101 D – The standard minus sign 

1111 F + A plus sign seen in converted EBCDIC 

We now move to the IBM implementation of the packed decimal format.  This section breaks  

with the tone previously established in this chapter – that of discussing a format in general  

terms and only then discussing the IBM implementation.  The reason for this change is  

simple; the IBM implementation of the packed decimal format is the only one used. 

The Syntax of Packed Decimal Format 

 1. The length of a packed decimal number may be from 1 to 31 digits; the 

  number being stored in memory as 1 to 16 bytes. 

 2. The rightmost half–byte of the number contains the sign indicator.  In constants 

  defined by code, this is 0xC for positive numbers and 0xD for negative. 

 3. The remaining number of half–bytes (always an odd number) contain the 

  hexadecimal encodings of the decimal digits in the number. 

 4. The rightmost byte in the memory representation of the number holds one 

  digit and the sign half–byte.  All other bytes hold two digits. 

 5. The number zero is always represented as the two digits 0C, never 0D. 

 6. Any number with an even number of digits will be converted to an equivalent 

  number with a prepended “0” prior to storage as packed decimal. 

 7. Although the format allows for storage of numbers with decimal points, neither 

  the decimal point nor any indication of its position is stored.  As an example,  

  each of 1234.5, 123.45, 12.345, and 1.2345 is stored as 12345C. 



Chapter 3 Boz–8 Data Representation 

Page 113 CPSC 5155 Last Revised on November 27, 2014 

 Copyright © 2014 by Ed Bosworth 

There are two common ways to generate numbers in packed decimal format, and quite a  

variety of instructions to operate on data in this format.  We might discuss these in later  

chapters.  For the present, we shall just show a few examples. 

1. Store the positive number 144 in packed decimal format. 

Note that the number 144 has an odd number of digits.  The format just adds the half–byte  

for non–negative numbers, generating the representation 144C.  This value is often written  

as 14 4C, with the space used to emphasize the grouping of half–bytes by twos. 

2. Store the negative number –1023 in packed decimal format. 

Note that the magnitude of the number (1023) has an even number of digits, so the format  

will prepend a “0” to produce the equivalent number 01023, which has an odd number of  

digits.  The value stored is 01023D, often written as 01 02 3D. 

2. Store the negative number –7 in packed decimal format. 

Note that the magnitude of the number (7) has an odd number of digits, so the format  

just adds the sign half–byte to generate the representation 7D. 

4. Store the positive number 123.456 in packed decimal format. 

Note that the decimal point is not stored.  This is the same as the storage of the number 

123456 (which has a decidedly different value).  This number has an even number of digits,  

so that it is converted to the equivalent value 0123456 and stored as 01 23 45 6C. 

5. Store the positive number 1.23456 in packed decimal format. 

Note that the decimal point is not stored.  This is the same as the storage of the number 

123456 (which has a decidedly different value).  This number has an even number of digits,  

so that it is converted to the equivalent value 0123456 and stored as 01 23 45 6C. 

6. Store the positive number 12345.6 in packed decimal format. 

Note that the decimal point is not stored.  This is the same as the storage of the number 

123456 (which has a decidedly different value).  This number has an even number of digits,  

so that it is converted to the equivalent value 0123456 and stored as 01 23 45 6C. 

7. Store the number 0 in packed decimal form. 

Note that 0 is neither positive nor negative.  IBM convention treats the zero as a positive  

number, and always stores it as 0C. 

8. Store the number 12345678901234567890 in packed decimal form. 

Note that very large numbers are easily stored in this format.  The number has 20 digits, an  

even number, so it must first be converted to the equivalent 012345678901234567890.  It is  

stored as 01 23 45 67 89 01 23 45 67 89 0C. 

Comparison: Floating–Point and Packed Decimal 

Here are a few obvious comments on the relative advantages of each format. 

1. Packed decimal format can provide great precision and range, more that is required 

 for any conceivable financial transaction.  It does not suffer from round–off errors. 

2. The packed decimal format requires the code to track the decimal points explicitly. 

 This is easily done for addition and subtraction, but harder for other operations. 

 The floating–point format provides automatic management of the decimal point. 
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Character Codes: ASCII 

We now consider the methods by which computers store character data.  There are three  

character codes of interest: ASCII, EBCDIC, and Unicode.  The EBCDIC code is only used  

by IBM in its mainframe computer.  The ASCII code is by far more popular, so we consider  

it first and then consider Unicode, which can be viewed as a generalization of ASCII. 

 

The figure below shows the ASCII code.  Only the first 128 characters (Codes 00 – 7F in  

hexadecimal) are standard.  There are several interesting facts. 

 

Last Digit \ First Digit 0 1 2 3 4 5 6 7 

0 NUL DLE SP 0 @ P ` p 

1 SOH DC1 ! 1 A Q a q 

2 STX DC2 “ 2 B R b r 

3 ETX DC3 # 3 C S c s 

4 EOT DC4 $ 4 D T d t 

5 ENQ NAK % 5 E U e u 

6 ACK SYN & 6 F V f v 

7 BEL ETB ` 7 G W g w 

8 BS CAN ( 8 H X h x 

9 HT EM ) 9 I Y i y 

A LF SUB * : J Z j z 

B VT ESC + ; K [ k { 

C FF FS ‘ < L \ l | 

D CR GS - = M ] m } 

E SO RS . > N ^ n ~ 

F SI US / ? O _ o DEL 

 

As ASCII is designed to be an 8–bit code, several manufacturers have defined extended code  

sets, which make use of the codes 0x80 through 0xFF (128 through 255).  One of the more  

popular was defined by IBM.  None are standard; most books ignore them.  So do we. 

 

Let X be the ASCII code for a digit.  Then X – ‘0’ = X – 30 is the value of the digit. 

For example ASCII(‘7’) = 37, with value 37 – 30 = 7. 

 

Let X be an ASCII code. If ASCII(‘A’)  X  ASCII(‘Z’) then X is an upper case letter. 

 If ASCII(‘a’)  X  ASCII(‘z’) then X is an lower case letter. 

 If ASCII(‘0’)  X  ASCII(‘9’) then X is a decimal digit. 

 

Let X be an upper-case letter.  Then ASCII ( lower_case(X) ) = ASCII ( X ) + 32 

Let X be a lower case letter.  Then ASCII ( UPPER_CASE(X) ) = ASCII (X ) – 32. 

The expressions are ASCII ( X ) + 20 and ASCII (X ) – 20 in hexadecimal. 

NOTE: The first 32 character codes (decimal values 0 through 31) are control 

 characters used to manage a communication process and are not printed.  For  

 example the BEL (07) character would ring a bell on old teletype equipment. 
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Character Codes: EBCDIC 

The Extended Binary Coded Decimal Interchange Code (EBCDIC) was developed by IBM  

in the early 1960’s for use on its System/360 family of computers.  It evolved from an older  

character set called BCDIC, hence its name. 

EBCDIC code uses eight binary bits to encode a character set; it can encode 256 characters.   

The codes are binary numeric values, traditionally represented as two hexadecimal digits. 

Character codes 0x00 through 0x3F and 0xFF represent control characters. 

 0x0D is the code for a carriage return; this moves the cursor back to the left margin. 

 0x20 is used by the ED (Edit) instruction to represent a packed digit to be printed. 

 0x21 is used by the ED (Edit) instruction to force significance. 

  All digits, including leading 0’s, from this position will be printed. 

 0x25 is the code for a line feed; this moves the cursor down but not horizontally. 

 0x2F is the BELL code; it causes the terminal to emit a “beep”. 

Character codes 0x40 through 0x7F represent punctuation characters. 

 0x40 is the code for a space character: “ ”. 

 0x4B is the code for a decimal point: “.”. 

 0x4E is the code for a plus sign: “+”. 

 0x50 is the code for an ampersand: “&”. 

 0x5B is the code for a dollar sign: “$”. 

 0x5C is the code for an asterisk: “*”. 

 0x60 is the code for a minus sign: “–”. 

 0x6B is the code for a comma: “,”. 

 0x6F is the code for a question mark: “?”. 

 0x7C is the code for the commercial at sign: “@”. 

Character codes 0x81 through 0xA9 represent the lower case Latin alphabet. 

 0x81 through 0x89 represent the letters “a” through “i”, 

 0x91 through 0x99 represent the letters “j” through “r”, and 

 0xA2 through 0xA9 represent the letters “s” through “z”. 

Character codes 0xC1 through 0xE9 represent the upper case Latin alphabet. 

 0xC1 through 0xC9 represent the letters “A” through “I”, 

 0xD1 through 0xD9 represent the letters “J” through “R”, and 

 0xE2 through 0xE9 represent the letters “S” through “Z”. 

Character codes 0xF0 through 0xF9 represent the digits “0” through “9”. 

NOTES: 

 1. The control characters are mostly used for network data transmissions. 

  The ones listed above appear frequently in user code for terminal I/O. 

 2. There are gaps in the codes for the alphabetical characters. 

  This is due to the origins of the codes for the upper case alphabetic characters 

  in the card codes used on the IBM–029 card punch. 

 3. One standard way to convert an EBCDIC digit to its numeric value 

  is to subtract the hexadecimal number 0xF0 from the character code. 



Chapter 3 Boz–8 Data Representation 

Page 116 CPSC 5155 Last Revised on November 27, 2014 

 Copyright © 2014 by Ed Bosworth 

An Abbreviated Table: The Common EBCDIC 

Code Char. Comment Code Char. Comment Code Char. Comment 

   80   C0 } Right brace 

   81 a  C1 A  

   82 b  C2 B  

   83 c  C3 C  

   84 d  C4 D  

   85 e  C5 E  

   86 f  C6 F  

   87 g  C7 G  

0C FF Form feed 88 h  C8 H  

0D CR Return 89 i  C9 I  

16 BS Back space 90   D0 { Left brace 

25 LF Line Feed 91 j  D1 J  

27 ESC Escape 92 k  D2 K  

2F BEL Bell 93 l  D3 L  

40 SP Space 94 m  D4 M  

4B . Decimal 95 n  D5 N  

4C <  96 o  D6 O  

4D (  97 p  D7 P  

4E +  98 q  D8 Q  

4F | Single Bar 99 r  D9 R  

50 &  A0   E0 \ Back slash 

5A !  A1 ~ Tilde E1   

5B $  A2 s  E2 S  

5C *  A3 t  E3 T  

5D )  A4 u  E4 U  

5E ;  A5 v  E5 V  

5F  Not A6 w  E6 W  

60 – Minus A7 x  E7 X  

61 / Slash A8 y  E8 Y  

6A ¦ Dbl. Bar A9 z  E9 Z  

6B , Comma B0 ^ Carat F0 0  

6C % Percent B1   F1 1  

6D _ Underscore B2   F2 2  

6E >  B3   F3 3  

6F ?  B4   F4 4  

79 ‘ Apostrophe B5   F5 5  

7A : Colon B6   F6 6  

7B # Sharp B7   F7 7  

7C @ At Sign B8   F8 8  

7D ' Apostrophe B9   F9 9  

7E = Equals BA [ Left Bracket    

7F " Quote BB ] R. Bracket    
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It is worth noting that IBM seriously considered adoption of ASCII as its method for internal  

storage of character data for the System/360.  The American Standard Code for Information  

Interchange was approved in 1963 and supported by IBM.  However the ASCII code set was  

not compatible with the BCDIC used on a very large installed base of support equipment,  

such as the IBM 026.  Transition to an incompatible character set would have required any  

adopter of the new IBM System/360 to also purchase or lease an entirely new set of  

peripheral equipment; this would have been a deterrence to early adoption. 

The figure below shows a standard 80–column IBM punch card produced by the IBM 029  

card punch.  This shows the card punch codes used to represent some EBCDIC characters. 

 

The structure of the EBCDIC, used for internal character storage on the System/360 and later  

computers, was determined by the requirement for easy translation from punch card codes.   

The table below gives a comparison of the two coding schemes. 

Remember that the punch card codes  

represent the card rows punched.  Each  

digit was represented by a punch in a  

single row; the row number was  

identical to the value of the digit being  

encoded. 

The EBCDIC codes are eight–bit binary  

numbers, almost always represented as  

two hexadecimal digits.  Some IBM  

documentation refers to these digits as: 

 The first digit is the zone potion, 

 The second digit is the numeric. 

 

 

Character Punch Code EBCDIC 

‘0’ 0 F0 

‘1’ 1 F1 

‘9’ 9 F9 

‘A’ 12 – 1 C1 

‘B’ 12 – 2 C2 

‘I’ 12 – 9 C9 

‘J’ 11 – 1 D1 

‘K’ 11 – 2 D2 

‘R’ 11 – 9 D9 

‘S’ 0 – 2 E2 

‘T’ 0 – 8 E3 

‘Z’ 0 – 9 E9 
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A comparison of the older card punch codes with the EBCDIC shows that its design was  

intended to facilitate the translation.  For digits, the numeric punch row became the numeric  

part of the EBCDIC representation, and the zone part was set to hexadecimal F.  For the  

alphabetical characters, the second numeric row would become the numeric part and the  

first punch row would determine the zone portion of the EBCDIC. 

This matching with punched card codes explains the “gaps” found in the EBCDIC set.   

Remember that these codes are given as hexadecimal numbers, so that the code immediately  

following C9 would be CA (as hexadecimal A is decimal 10).  But the code for ‘J’ is not  

hexadecimal CA, but hexadecimal D1.  Also, note that the EBCDIC representation for the  

letter ‘S’ is not E1 but E2.  This is a direct consequence of the design of the punch cards. 

Character Codes: UNICODE 

The UNICODE character set is a generalization of the ASCII character set to allow for the  

fact that many languages in the world do not use the Latin alphabet.  The important thing to  

note here is that UNICODE characters consume 16 bits (two bytes) while ASCII and  

EBCDIC character codes are 8 bits (one byte) long.  This has some implications in  

programming with modern languages, such as Visual Basic and Visual C++, especially in  

allocation of memory space to hold strings.  This seems to be less of an issue in Java. 

An obvious implication of the above is that, while each of ASCII and EBCDIC use two  

hexadecimal digits to encode a character, UNICODE uses four hexadecimal digits.  In part,  

UNICODE was designed as a replacement for the ad–hoc “code pages” then in use.  These  

pages allowed arbitrary 256–character sets by a complete redefinition of ASCII, but were  

limited to 256 characters.  Some languages, such as Chinese, require many more characters. 

UNICODE is downward compatible with the ASCII code set; the characters represented by  

the UNICODE codes 0x0000 through 0x007F are exactly those codes represented by the  

standard ASCII codes 0x00 through 0x7F.  In other words, to convert standard ASCII to  

correct UNICODE, just add two leading hexadecimal 0’s and make a two–byte code. 

The origins of Unicode date back to 1987 when Joe Becker from Xerox and Lee Collins and  

Mark Davis from Apple started investigating the practicalities of creating a universal  

character set. In August of the following year Joe Becker published a draft proposal for an  

"international/multilingual text character encoding system, tentatively called Unicode."  

In this document, entitled Unicode 88, he outlined a 16 bit character model: 

“Unicode is intended to address the need for a workable, reliable world text  

encoding. Unicode could be roughly described as "wide-body ASCII" that has  

been stretched to 16 bits to encompass the characters of all the world's living  

languages. In a properly engineered design, 16 bits per character are more than  

sufficient for this purpose.” 

In fact the 16–bit (four hexadecimal digit) code scheme has proven not to be adequate to  

encode every possible character set.  The original code space (0x0000 – 0xFFFF) was  

defined as the “Basic Multilingual Plane”, or BMP.  Supplementary planes have been  

added, so that as of September 2008 there were over 1,100,000 “code points” in UNICODE. 

http://en.wikipedia.org/wiki/Xerox
http://en.wikipedia.org/wiki/Mark_Davis_(Unicode)
http://en.wikipedia.org/wiki/Apple_Inc.
http://www.unicode.org/history/unicode88.pdf
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Here is a complete listing of the character sets and languages supported by the Basic  

Multilingual Plane.  The source is http://www.ssec.wisc.edu/~tomw/java/unicode.html. 

Range Decimal Name 

0x0000-0x007F 0-127 Basic Latin (what we normally use)  

0x0080-0x00FF 128-255 Latin-1 Supplement  

0x0100-0x017F 256-383 Latin Extended-A  

0x0180-0x024F 384-591 Latin Extended-B  

0x0250-0x02AF 592-687 IPA Extensions  

0x02B0-0x02FF 688-767 Spacing Modifier Letters  

0x0300-0x036F 768-879 Combining Diacritical Marks  

0x0370-0x03FF 880-1023 Greek  

0x0400-0x04FF 1024-1279 Cyrillic  

0x0530-0x058F 1328-1423 Armenian  

0x0590-0x05FF 1424-1535 Hebrew  

0x0600-0x06FF 1536-1791 Arabic  

0x0700-0x074F 1792-1871 Syriac  

0x0780-0x07BF 1920-1983 Thaana  

0x0900-0x097F 2304-2431 Devanagari  

0x0980-0x09FF 2432-2559 Bengali  

0x0A00-0x0A7F 2560-2687 Gurmukhi  

0x0A80-0x0AFF 2688-2815 Gujarati  

0x0B00-0x0B7F 2816-2943 Oriya  

0x0B80-0x0BFF 2944-3071 Tamil  

0x0C00-0x0C7F 3072-3199 Telugu  

0x0C80-0x0CFF 3200-3327 Kannada  

0x0D00-0x0D7F 3328-3455 Malayalam  

0x0D80-0x0DFF 3456-3583 Sinhala  

0x0E00-0x0E7F 3584-3711 Thai  

0x0E80-0x0EFF 3712-3839 Lao  

0x0F00-0x0FFF 3840-4095 Tibetan  

0x1000-0x109F 4096-4255 Myanmar  

0x10A0-0x10FF 4256-4351 Georgian  

0x1100-0x11FF 4352-4607 Hangul Jamo  

0x1200-0x137F 4608-4991 Ethiopic  

0x13A0-0x13FF 5024-5119 Cherokee  

0x1400-0x167F 5120-5759 Unified Canadian Aboriginal Syllabics  

0x1680-0x169F 5760-5791 Ogham  

0x16A0-0x16FF 5792-5887 Runic  

0x1780-0x17FF 6016-6143 Khmer  

0x1800-0x18AF 6144-6319 Mongolian  
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Range Decimal Name 

0x1E00-0x1EFF 7680-7935 Latin Extended Additional  

0x1F00-0x1FFF 7936-8191 Greek Extended  

0x2000-0x206F 8192-8303 General Punctuation  

0x2070-0x209F 8304-8351 Superscripts and Subscripts  

0x20A0-0x20CF 8352-8399 Currency Symbols  

0x20D0-0x20FF 8400-8447 Combining Marks for Symbols  

0x2100-0x214F 8448-8527 Letter–like Symbols  

0x2150-0x218F 8528-8591 Number Forms  

0x2190-0x21FF 8592-8703 Arrows  

0x2200-0x22FF 8704-8959 Mathematical Operators  

0x2300-0x23FF 8960-9215 Miscellaneous Technical  

0x2400-0x243F 9216-9279 Control Pictures  

0x2440-0x245F 9280-9311 Optical Character Recognition  

0x2460-0x24FF 9312-9471 Enclosed Alphanumerics  

0x2500-0x257F 9472-9599 Box Drawing  

0x2580-0x259F 9600-9631 Block Elements  

0x25A0-0x25FF 9632-9727 Geometric Shapes  

0x2600-0x26FF 9728-9983 Miscellaneous Symbols  

0x2700-0x27BF 9984-10175 Dingbats  

0x2800-0x28FF 10240-10495 Braille Patterns  

0x2E80-0x2EFF 11904-12031 CJK Radicals Supplement  

0x2F00-0x2FDF 12032-12255 Kangxi Radicals  

0x2FF0-0x2FFF 12272-12287 Ideographic Description Characters  

0x3000-0x303F 12288-12351 CJK Symbols and Punctuation  

0x3040-0x309F 12352-12447 Hiragana  

0x30A0-0x30FF 12448-12543 Katakana  

0x3100-0x312F 12544-12591 Bopomofo  

0x3130-0x318F 12592-12687 Hangul Compatibility Jamo  

0x3190-0x319F 12688-12703 Kanbun  

0x31A0-0x31BF 12704-12735 Bopomofo Extended  

0x3200-0x32FF 12800-13055 Enclosed CJK Letters and Months  

0x3300-0x33FF 13056-13311 CJK Compatibility  

0x3400-0x4DB5 13312-19893 CJK Unified Ideographs Extension A  

0x4E00-0x9FFF 19968-40959 CJK Unified Ideographs  

0xA000-0xA48F 40960-42127 Yi Syllables  

0xA490-0xA4CF 42128-42191 Yi Radicals  

0xAC00-0xD7A3 44032-55203 Hangul Syllables  

0xD800-0xDB7F 55296-56191 High Surrogates  

0xDB80-0xDBFF 56192-56319 High Private Use Surrogates  
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Range Decimal Name 

0xDC00-0xDFFF 56320-57343 Low Surrogates  

0xE000-0xF8FF 57344-63743 Private Use  

0xF900-0xFAFF 63744-64255 CJK Compatibility Ideographs  

0xFB00-0xFB4F 64256-64335 Alphabetic Presentation Forms  

0xFB50-0xFDFF 64336-65023 Arabic Presentation Forms-A  

0xFE20-0xFE2F 65056-65071 Combining Half Marks  

0xFE30-0xFE4F 65072-65103 CJK Compatibility Forms  

0xFE50-0xFE6F 65104-65135 Small Form Variants  

0xFE70-0xFEFE 65136-65278 Arabic Presentation Forms-B  

0xFEFF-0xFEFF 65279-65279 Specials  

0xFF00-0xFFEF 65280-65519 Halfwidth and Fullwidth Forms  

0xFFF0-0xFFFD 65520-65533 Specials  

Here is a bit of the Greek alphabet as encoded in the BMP. 
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For those with more esoteric tastes, here is a small sample of Cuneiform in 32–bit Unicode. 

 

Now we see some Egyptian hieroglyphics, also with the 32–bit Unicode encoding. 
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We close this chapter with a small sample of the 16–bit BMP encoding for the CJK  

(Chinese, Japanese, & Korean) character set.  Unlike the above two examples (Cuneiform  

and Egyptian hieroglyphics) this is a living language. 

 

As a final note, we mention the fact that some fans of the Star Trek series have proposed that  

the alphabet for the Klingon language be included in the Unicode 32–bit encodings.  So far,  

they have inserted it in the Private Use section (0xE000-0xF8FF).  It is not yet recognized as  

an official part of the Unicode standard. 
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Solved Problems  

As is obvious from the variety of fonts, these problems have been assembled from a variety  

of sources.  All of these problems have been used in a teaching context. 

1. What range of integers can be stored in an 16–bit word if  

 a) the number is stored as an unsigned integer? 

 b) the number is stored in two’s–complement form? 

Answer: a) 0 through 65,535 inclusive, or 0 through 216 – 1. 

  b) –32768 through 32767 inclusive, or –(215) through (215) – 1 

2 You are given the 16–bit value, represented as four hexadecimal digits, 

 and stored in two bytes.  The value is 0x812D. 

 a) What is the decimal value stored here, if interpreted as a packed decimal number? 

 b) What is the decimal value stored, if interpreted as a 16–bit two’s–complement  

  integer? 

 c) What is the decimal value stored here, if interpreted as a 16–bit unsigned integer? 

ANSWER: The answers are found in the lectures for January 13 and January 20. 

 a) For a packed decimal number, the absolute value is 812 and the value is negative. 

  The answer is –812. 

 b) To render this as a two’s–complement integer, one first has to convert to binary. 

  Hexadecimal 812D converts to 1000 0001 0010 1101.  This is negative. 

  Take the one’s complement to get 0111 1110 1101 0010. 

  Add 1 to get the positive value 0111 1110 1101 0011. 

  In hexadecimal, this is 7ED3, which converts to 7163 + 14162 + 1316 + 3,  

  or 74096 + 14256 + 1316 + 3 = 28672 + 3584 + 208 + 3 = 32,467 

  The answer is –32,467. 

 c) As an unsigned binary number the value is obtained by direct conversion from  

  the hexadecimal value.  The value is 8163 + 1162 + 216 + 13,  

  or 84096 + 1256 + 216 + 13 = 32768 + 256 + 32 + 13 = 33069. 

3. Give the 8–bit two’s complement representation of the number – 98. 

Answer: 98 = 96 + 2 = 64 + 32 + 2, so its binary representation is 0110 0010. 

  8–bit representation of + 98 0110 0010 

  One’s complement   1001 1101 

  Add 1 to get    1001 1110 9E. 

4. Give the 16–bit two’s complement representation of the number – 98. 

Answer: The 8–bit representation of – 98 is 1001 1110 

  Sign extend to 16 bits 1111 1111 1001 1110 
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5 Convert the following decimal numbers to binary. 

  a)  37.375 b)  93.40625 

ANSWER:  Recall that the integer part and fractional part are converted separately. 

 a)  37.375 

  37 / 2 = 18 rem 1 

  18 / 2 =  9 rem 0 

  9 / 2 =  4 rem 1 

  4 / 2 = 2 rem 0 

  2 / 2 = 1 rem 0 

  1 / 2 = 0 rem 1 Answer: 100101. 

  0.375  2 = 0.75 

  0.75  2 =  1.50 

  0.50  2 = 1.00 

  0.00  2 = 0.00  Answer 0.011  100101.011 

 b) 93.40625 

  93 / 2 = 46 rem 1 

  46 / 2 = 23 rem 0 

  23 / 2 = 11 rem 1 

  11 / 2 =  5 rem 1 

  5 / 2 =  2 rem 1 

  2 / 2 =  1 rem 0 

  1 / 2 =  0 rem 1 Answer: 1011101 

  0.40625  2 = 0.8125 

  0.8125  2 = 1.6250 

  0.625  2 = 1.2500 

  0.25  2 = 0.5000 

  0.50  2 = 1.0000 

  0.00  2 = 0.0000  Answer: 0.01101 1011101.01101 

6 Convert the following hexadecimal number to decimal numbers. 

 The numbers are unsigned.  Use as many digits as necessary 

 a) 0x022 b) 0x0BAD c) 0x0EF 

ANSWER: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 

 160 = 1,  161 = 16,  162 = 256,  163 = 4096,  164 = 65536 

 a) 0x022 = 216 + 2 = 32 + 2 = 34 34 

 b) 0x0BAD = 11162 + 1016 + 13 = 11256 + 1016 + 13 

  = 2816 + 160 + 13 = 2989 2989 

 c) 0x0EF = 1416 + 15 = 224 + 15 = 239 239 
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7 Show the IEEE–754 single precision representation of the following real numbers. 

 Show all eight hexadecimal digits associated with each representation. 

 a) 0.0 b) – 1.0 c) 7.625 d) – 8.75 

ANSWER: 

a) 0.0 = 0x0000 0000   0x0000 0000 

b) – 1.0 this is negative, so the sign bit is S = 1 

 1.0 = 1.020 

 1.M = 1.0 so M = 0000 

 P = 0 so P + 127 = 127 = 0111 11112 

 Concatenate S | (P + 127) | M 1 0111 1111 0000 

 Group by 4’s from the left 1011 1111 1000 0 

 Pad out the last to four bits 1011 1111 1000 0000 

 Convert to hex digits BF80 

 Pad out to eight hexadecimal digits  0xBF80 0000 

c) 7.625 this is non-negative, so the sign bit is S = 0 

 Convert 7.625 to binary. 

  7 = 4 + 2 + 1  01112 

  0.625 = 5/8 = 1/2 + 1/8 .1012 

  7.625   111.1012 

 Normalize by moving the binary point 

 two places to the left.  1.1110122 

 Thus saying that 22  7.625 < 23. 

 1.M = 1.11101   so M = 11101 

 P = 2 so P + 127 = 129 = 1000 0001 

 Concatenate S | (P + 127) | M 0 1000 0001 11101 

 Group by 4’s from the left 0100 0000 1111 01 

 Pad out the last to four bits 0100 0000 1111 0100 

 Covert to hex digits 40F4  0x40F4 0000 

d) – 8.75 this is negative, so S = 1 

 8.75 = 8 + 1/2 + 1/4 1000.11 

   1.0001123 

 1.M = 1.00011  so M = 00011 

 P = 3 so P + 127 = 130 1000 0010 

 Concatenate S | (P + 127) | M 1 1000 0010 00011 

 Group by 4’s from the left 1100 0001 0000 11 

 Pad out the last to four bits 1100 0001 0000 1100 

 Convert to hex digits C10C  0xC10C 0000 
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8 Give the value of the real number (in standard decimal representation) represented by the  

following 32-bit words stored as an IEEE standard single precision. 

 a) 4068 0000 b) 42E8 0000 c) C2E8 0000 

 

ANSWERS: 

The first step in solving these problems is to convert the hexadecimal to binary. 

a) 4068 0000 = 0100 0000 0110 1000 0000 0000 0000 0000 

Regroup to get 0  1000 0000  1101 0000 etc. 

Thus s = 0 (not a negative number) 

  p + 127 = 100000002 = 12810, so p = 1 

and  m = 1101, so 1.m = 1.1101 and the number is 1.110121 = 11.1012. 

But 11.1012 = 2 + 1 + 1/2 + 1/8 = 3 + 5/8 = 3.625. 

b) 42E8 0000 = 0100 0010 1110 1000 0000 0000 0000 0000 

Regroup to get 0  1000 0101  1101 0000 etc 

Thus s = 0 (not a negative number) 

  p + 127 = 100001012 = 128 + 4 + 1 = 133, hence p = 6 

and  m = 1101, so 1.m = 1.1101 and the number is 1.110126 = 11101002  

But 11101002 = 64 + 32 + 16 + 4 = 96 + 20 = 116 = 116.0 

 

c) C2E80 0000 = 1100 0010 1110 1000 0000 0000 0000 0000 

Regroup to get 1 1000 0101 1101 0000 etc. 

Thus s = 1 (a negative number) and the rest is the same as b).  So – 116.0 

9 Consider the string of digits “2108”. 

 a) Show the coding of this digit string in EBCDIC. 

 b) How many bytes does this encoding take? 

ANSWER: F2 F1 F0 F8.  Four bytes. 

10 Consider the positive number 2108. 

 a) Show the representation of this number in packed decimal format. 

 b) How many bytes does this representation take? 

ANSWER: To get an odd number of decimal digits, this must be represented 

  with a leading 0, as 02108.  02 10 8C.  Three bytes. 

11 The following block of bytes contains EBCDIC characters. 

 Give the English sentence represented. 

E3 C8 C5 40 C5 D5 C4 4B 

Answer: E3 C8 C5 40 C5 D5 C4 4B 

  T  H  E     E  N  D  .  “THE END.” 
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12 Perform the following sums assuming that each is a hexadecimal number. 

   Show the results as 16–bit (four hexadecimal digit) results. 

 a) 123C + 888C 

 b) 123C + 99D 

ANSWER: a) In hexadecimal C + C = 18  (12 + 12 = 24 = 16 + 8). 

      3 + 8 + 1 = C  (Decimal 12 is 0xC) 

      2 + 8 + 0 = A  (Decimal 10 is 0xA) 

      1 + 8 + 0 = 9.  9AC8 

  b) In hexadecimal C + D = 19  (12 + 13 = 25 = 16 + 9) 

      3 + 9 + 1 = D  (Decimal 13 is 0xD) 

      2 + 9 + 0 = B  (Decimal 11 is 0xB) 

      1 + 0 + 0 = 1  1BD9 

Each of the previous two problems uses numbers written as 123C and 888C. 

The numbers in the problem on packed decimal are not the same as those in 

the problem on hexadecimal.  They just look the same. 

Interpreted as packed decimal: 123C is interpreted as the positive number 123, and  

      888C is interpreted as the positive number 888. 

If we further specify that each of these is to be read as an integer value, then we have  

the two numbers +123 and +888. 

Interpreted as hexadecimal, 123C is interpreted as the decimal number  

1163 + 2162 + 316 + 12 = 4096 + 512 + 48 + 12 = 4,668 

Interpreted as hexadecimal, 888C is interpreted as the decimal number  

8163 + 8162 + 816 + 12 = 32768 + 2048 + 128 + 12 = 34,968 

As for the number 1011, it translates to 0x3F3. 

13 The two–byte entry shown below can be interpreted in a number of ways. 
VALUE     DC X‘021D’ 

 a) What is its decimal value if it is interpreted as an unsigned binary integer? 

 b) What is its decimal value if it is interpreted as a packed decimal value? 

ANSWER:  As a binary integer, its value is 2162 + 116 + 13 = 512 + 16 + 13 = 541. 

  As a packed decimal, this has value – 21. 
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14 A given computer uses byte addressing with the little-endian structure. 

 The following is a memory map, with all values expressed in hexadecimal. 

 

Address 104 105 106 107 108 109 10A 10B 10C 10D 

Value C2 3F 84 00 00 00 9C C1 C8 C0 

 

 What is the value (as a decimal real number; e.g. 203.75 ) of the floating point  

 number stored at address 108?  Assume IEEE–754 single precision format. 

 

Answer:  The first thing to notice is that the memory is byte-addressable.  That means that  

each address takes holds one byte or eight bits.  The IEEE format for single precision  

numbers calls for 32 bits to be stored, so the number takes four bytes of memory. 

 

In byte addressable systems, the 32-bit entry at address 108 is stored in the four bytes 

with addresses 108, 109, 10A, and 10B.  The contents of these are 00, 00, 9C, and C1. 

 

The next thing to do is to get the four bytes of the 32-bit number in order. 

This is a little-endian memory organization, which means that the LSB is stored at address  

108 and the MSB is stored as address 10B.  In correct order, the four bytes are 

  C1  9C  00  00.  In binary, this becomes 

  1100 0001   1001 1100   0000 0000   0000 0000.  Breaking into fields we get 

  1100 0001 1001 1100 0000 0000 0000 0000, with the exponent field in bold, or 

  1  1000 0011  0011 1000. 

 Thus s = 1  a negative number 

   e + 127 = 1000 00112 = 128 + 2 + 1 = 131, so e = 4 

   m = 00111 

 So the number’s magnitude is 1.001112  24 = 10011.12 = 16 + 2 + 1 + 0.5 = 19.5, 

 and the answer is – 19.5. 

15 Consider the 32-bit number represented by the eight hexadecimal digits 

 BEEB 0000.  What is the value of the floating point number represented by this 

 bit pattern assuming that the IEEE-754 single-precision standard is used? 

 

ANSWER:  First recall the binary equivalents: B = 1011, E = 1110, and 0 = 0000. 

Convert the hexadecimal string to binary 

 
Hexadecimal:  B    E    E    B    0    0    0    0 

Binary:     1011 1110 1110 1011 0000 0000 0000 0000 

 

Regroup the binary according to the 1 | 8 | 23 split required by the format. 

 
Binary:     1011 1110 1110 1011 0000 0000 0000 0000 

Split:      1 011 1110 1 110 1011 0000 0000 0000 0000 

Regrouped:  1  0111 1101  1101 0110 0000 0000 0000 000 

 

The fields in the expression are now analyzed. 

Sign bit: S = 1  this will become a negative number 
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Exponent: 

The field contains 0111 1101, or 64 + 32 + 16 + 8 + 4 + 1 = 96 + 24 + 5 = 125.  This number  

may be more easily derived by noting that 0111 1111 = 127 and this is 2 less. 

The exponent is given by P + 127 = 125, or P = – 2.  The absolute value of the number being  

represented should be in the range [0.25, 0.50), or 0.25  N  < 0.50. 

Mantissa: 

The mantissa field is 1101 0110, so 1.M = 1.1101 0110. 

In decimal, this equals 1 + 1/2 + 1/4 + 1/16 + 1/64 + 1/128, also written as 

    (128 + 64 + 32 + 8 + 2 + 1) / 128 = (192 + 40 + 3) / 128 = 235 / 128. 

The magnitude of the number equals 235 / 128  1/4 = 235 / 512 = 0.458984375. 

16 The following are two examples of the hexadecimal representation of  

  floating–point numbers stored in the IBM single–precision format. 

  Give the decimal representation of each.  Fractions (e.g., 1/8) are acceptable. 

 a) C1 64 00 00 

 b) 3F 50 00 00 

ANSWER: a) First look at the sign and exponent byte.  This is 0xC1, or 1100 0001. 

Bit 0 1 2 3 4 5 6 7 

Value 1 1 0 0 0 0 0 1 

The sign bit is 1, so this is a negative number. 

Stripping the sign bit, the exponent field is 0100 0001 or 0x41 = decimal 65. 

We have (Exponent + 64) = 65, so the exponent is 1. 

The value is 161F, where F is 0x64, or 6/16 + 4/256. 

The magnitude of the number is 161(6/16 + 4/256) = 6 + 4/16 = 6.25.  The value is –6.25. 

  b) First look at the sign and exponent byte.  This 0x3F, or 0011 1111 

The sign bit is 0, so this is a non–negative number. 

The exponent field is 0x3F = 316 + 15 = decimal 63 = 64 – 1. 

The value is 16–1F, where F is 0x50, or 5/16. 

The magnitude of the number is 16–1(5/16) = 5/256 = 0.01953125. 

17 These questions refer to the IBM Packed Decimal Format. 

 a) How many bytes are required to represent a 3–digit integer? 

 b) Give the Packed Decimal representation of the positive integer 123. 

 c) Give the Packed Decimal representation of the negative integer –107. 

ANSWER: Recall that each decimal digit is stored as a hexadecimal digit, and  

   that the form calls for one hexadecimal digit to represent the sign. 

 a) One needs four hexadecimal digits, or two bytes, to represent three decimal digits. 

 b)  12 3C  c) 10 7D 
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18 These questions also refer to the IBM Packed Decimal Format. 

 a) How many decimal digits can be represented in Packed Decimal form  

  if three bytes (8 bits each) are allocated to store the number? 

 b) What is the Packed Decimal representation of the largest integer stored in 3 bytes? 

ANSWER: Recall that N bytes will store 2N hexadecimal digits.  With one of these  

   reserved for the sign, this is (2N – 1) decimal digits. 

 a) 3 bytes can store five decimal digits. 

 b) The largest integer is 99,999.  It is represented as 99 99 9C. 

19 Convert the following numbers to their representation IBM Single Precision 

 floating point and give the answers as hexadecimal digits. 

 a) 123.75 

 b) –123.75 

ANSWER: 

 a) First convert the number to hexadecimal. 

The whole number conversion: 123 / 16 = 7 with remainder = 11 (B) 

      7 / 16 = 0 with remainder 7.   123 = 7B. 

The fractional part conversion: .7516 = 12 (C).  The number is 7B.C 

The number can be represented as 162  0.7BC; the exponent is 2. 

The exponent stored with excess 64, thus it is 66 or X‘42’. 

Appending the fractional part, we get X‘427BC’. 

Add three hexadecimal zeroes to pad out the answer to X‘427B C000’ 

b) The only change here is to add the sign bit as the leftmost bit. 

In the positive number, the leftmost byte was X‘42’, which in binary would be 

Bit 0 1 2 3 4 5 6 7 

Value 0 1 0 0 0 0 1 0 

Just flip the bit in position 0 to get the answer for the leftmost byte. 

Bit 0 1 2 3 4 5 6 7 

Value 1 1 0 0 0 0 1 0 

This is X‘C2’.  The answer to this part is X‘C27B C000’ 

Convert the following numbers to their representation in packed decimal. 

 Give the hexadecimal representation with the proper number of hexadecimal digits. 

 a) 123.75 

 b) –123.7 

ANSWER: a) 12375 has five digits.  It is represented as 12 37 5C. 

   b) 1237 has four digits.  Expand to 01237 and represent as 01 23 7D. 
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20 Give the correct Packed Decimal representation of the following numbers. 

  a) 31.41 b) –102.345 c) 1.02345 

ANSWER: Recall that the decimal is not stored, and that we need to have an odd  

   count of decimal digits. 

 a) This becomes 3141, or 03141. 03141C 

 b) This becomes 102345, or 0102345 0102345D 

 c) This also becomes 102345, or 0102345 0102345C. 

21 Perform the following sums of numbers in Packed Decimal format. Convert to  

  standard integer and show your math.  Use Packed Decimal for the answers. 

 a) 025C + 085C   d) 666D + 444D 

 b) 032C + 027D   e) 091D + 0C 

 c) 10003C + 09999D 

ANSWER: Just do the math required and convert back to standard  

   Packed Decimal format. 

 a) 025C + 085C represents 25 +85 = 110.  This is represented as 110C. 

 b) 032C + 027D represents 32 –27 = 5.  This is represented as 5C. 

 c) 10003C + 09999D represents 10003 –9999 = 4.  This is represented as 4C. 

 d) 666D + 444D represents –666 –444 = –1110.  This is represented as 01 11 0D. 

 e) 091D + 0C represents –91 +0 = –91  This is represented as 091D. 

22 These questions concern 10–bit integers, which are not common. 

 a) What is the range of integers storable in 10–bit unsigned binary form? 

 b) What is the range of integers storable in 10–bit two’s–complement form? 

 c) Represent the positive number 366 in 10–bit two’s–complement binary form. 

 d) Represent the negative number –172 in 10–bit two’s–complement binary form. 

 e) Represent the number 0 in 10–bit two’s–complement binary form. 

ANSWER: Recall that an N–bit scheme can store 2N distinct representations. 

   For unsigned integers, this is the set of integers from 0 through 2N – 1. 

   For 2’s–complement, this is the set from – (2N–1) through 2N–1 – 1. 

 a) For 10–bit unsigned the range is 0 though 210 – 1, or 0 through 1023. 

 b) For 10–bit 2’s–complement, this is – (29) through 29 – 1, or – 512 through 511. 
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 c)   366 / 2 = 183 remainder = 0 

    183 / 2 = 91 remainder = 1 

    91 / 2 = 45 remainder = 1 

    45 / 2 = 22 remainder = 1 

    22 / 2 = 11 remainder = 0 

    11 / 2 = 5 remainder = 1 

    5 / 2 = 2 remainder = 1 

    2 / 2 = 1 remainder = 0 

    1 / 2 = 0 remainder = 1. READ BOTTOM TO TOP! 

The answer is 1 0110 1110, or 01 0110 1110, which equals 0x16E. 

0x16E = 1256 + 616 + 14 = 256 + 96 + 14 = 256 + 110 = 366. 

The number is not negative, so we stop here.  Do not take the two’s complement unless the 

number is negative. 

 d)   172 / 2 = 86 remainder = 0 

    86 / 2 = 43 remainder = 0 

    43 / 2 = 21 remainder = 1 

    21 / 2 = 10 remainder = 1 

    10 / 2 = 5 remainder = 0 

    5 / 2 = 2 remainder = 1 

    2 / 2 = 1 remainder = 0 

    1 / 2 = 0 remainder = 1. READ BOTTOM TO TOP! 

This number is 1010 1100, or 00 1010 1100, which equals 0x0AC. 

0xAC = 1016 + 12 = 160 + 12 = 172. 

The absolute value: 00 1010 1100 

Take the one’s complement: 11 0101 0011 

Add one:              1 

The answer is: 11 0101 0100 or 0x354. 

 e) The answer is 00 0000 0000. 

  You should just know this one. 

23 These questions IBM Packed Decimal Form. 

 a) Represent the positive number 366 as a packed decimal with fewest digits. 

 d) Represent the negative number –172 as a packed decimal with fewest digits. 

 e) Represent the number 0 as a packed decimal with fewest digits. 

ANSWER: a) 366C 

   b) 172D 

   c) 0C (not 0D, which is incorrect) 

 


