
Page 521 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Chapter 15 – Implementation of the Central Processing Unit

In this chapter, we continue consideration of the design and implementation of the CPU,

more specifically the control unit of the CPU. In previous editions of this textbook, this

material was covered in the same chapter as the design. Your author has elected to split the

original chapter into two smaller chapters, just for convenience.

Top-Level View of the Arithmetic-Logic Unit

Before we begin the design of the ALU, let us recall that we have seen hints of how it must

be organized. In the definition of the assembly language, presented in chapter 7 of this text,

we hinted that the ALU would be divided into a number of execution units. In our analysis

of the assembly language instructions and translation into control signals, we have specified

a number of functions required of the ALU. Let’s list what we require of the ALU.

 Function Reason

 add Need to perform addition. First seen in the need to update the PC,

 this also supports the ADD assembly language instruction.

 tra1 Transfer bus B1 contents to bus B3

 tra2 Transfer bus B2 contents to bus B3.

 shift Needed to activate the barrel shifter

 not Needed to support the assembly language instruction NOT.

 sub Needed to support the subtract instruction SUB.

 or Needed to support the assembly language instruction OR.

 and Needed to support the assembly language instruction AND.

 xor Needed to support the assembly language instruction XOR.

As indicated above, the ALU will be designed as a collection of functional units, each of

which is responsible for the complete execution of only a few machine instructions.

As another study in preparation for the design of the ALU, let us look at the source of data

for each of the nine ALU primitives. This study will assist in allocating the primitives to

functional units of the Arithmetic Logic Unit. This table has been populated by surveying

the control signals for the machine instructions and placing an “X” in the column for an

ALU primitive whenever it uses a given bus as a source.

Source tra1 tra2 shift not add sub or and xor

B1 X X X X X X

B2 X X X X X X X X

Table: ALU Primitives associated with data sources.

Chapter 15 Boz–7 Implementation of the CPU

Page 522 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The above two analyses indicate a simple division of the ALU into four primitive units.

 TRA / NOT this handles the tra1, tra2, and not primitives,

 SHIFT this is the barrel shifter; it handles the shift primitives,

 ADD / SUB this handles addition and subtraction, and

 LOGICAL this handles the logical operations: or, and, xor.

Here then is the top-level ALU design.

Note that each of buses B1 and B2 feed

all of the units except the barrel shifter,

which is fed only by bus B3. All units

output on bus B3 and are connected by

tri-state units, so that bus conflicts do

not occur. For this first unit, we have

 tra1 input from B1

 tra2 input from B2

 not input from B1

The Logical Unit contains those

Boolean functions that take two inputs.

These are AND, OR, and XOR.

Although the NOT is also a Boolean

function, it is more easily placed in the

first unit.

The Adder/Subtractor unit is also a

binary unit and might be placed with the

Logical Unit, except that such a design

would appear more complicated than

necessary. We design this unit as a

standalone module.

The Barrel Shifter accepts input only

from bus B2. We have seen its design

earlier, with the input labeled X31-0 and

the output labeled Y31-0.

 Figure: Top-Level ALU Design.

The above control signals are generally required to be mutually exclusive in order for the

ALU to function correctly. Of the set {tra1, tra2, not, or, and, xor, add, sub, shift} at most

one may be active during any clock pulse or the ALU will malfunction. The three shift

mode selectors (A, C, and R/L) may be asserted in any combination (though A = 1 and C =

1 is arbitrarily changed to A = 0 and C = 1) and have effect only when shift = 1.

Chapter 15 Boz–7 Implementation of the CPU

Page 523 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The TRA / NOT Unit

The design of this unit is particularly simple. We present the design for a single bit and note

that the complete design just replicates this 32 times. In this and other figures B1K refers to

bit K on bus B1, B2K to bit K on bus B2, and B3K to bit K on bus B3, with 0  K  31. Note

the extensive use of tri-state buffers to connect output to bus B3.

Figure: The TRA/NOT Unit

The Binary Logical Unit

The design of this unit is also particularly simple. Again, we show the design for just one

bit and note that the complete design replicates this 32 times.

Figure: The Binary Logical Unit

Chapter 15 Boz–7 Implementation of the CPU

Page 524 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The Add/Subtract Unit

To avoid additional complexity, we implement this unit as a 32-bit ripple-carry unit.

Figure: High and Lower Order Bits of an Adder/Subtractor, with Overflow Bit V

The Shifter Unit

All we do here is to attach the shifter to buses B2 and B3.

Figure: The Shifter Unit

Chapter 15 Boz–7 Implementation of the CPU

Page 525 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The State Registers

We now consider the two state registers used in the hardwired control unit. These are the

minor state register (responsible for the four pulses T0, T1, T2, and T3) and the major

state register (responsible for transitions between the three major states: F, D, and A).

The Minor State Register

The minor state register will be a modulo–4 counter, implemented as a one-hot design using

four D flip-flops. Because of the close association, we shall also show the RUN flip-flop.

Figure: The Minor State Register with the Run Flip-Flop

Note that when RUN = 0, the system clock does not reach the minor state register, which

remains frozen in its last state until the system is restarted. The Start signal is used to reset

the minor state register to T0 = 1. The state register is a four-bit circular shift register.

This style of shift register is called “one hot” because, at any given time, only one flip–flop

has value 1 and the rest are set to 0. A design with two flip–flops and a 2–to–4 decoder

could perform an equivalent function, though with time delays for the state decoding.

The Major State Register

The function of the major state register is to control the execution state of the machine

language instructions. The current design has 3 major states: Fetch, Defer, and Execute.

The design of this register is simplified by the fact that almost all of the instructions execute

in the Fetch cycle. Only eight instructions (GET, PUT, RET, RTI, LDR, STR, BR, and

JSR) even enter the Execute state, much less the Defer state. Recall that GET, PUT, RET,

and RTI cannot enter the Defer stage and that the others enter it only if IR26 = 1.

Chapter 15 Boz–7 Implementation of the CPU

Page 526 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

In the next table, we examine these instructions closely to determine patterns that will be of

use in defining the Major State Register. For all other instructions, the state after Fetch is

Fetch again; the instruction completes execution in one major cycle and the next is fetched.

 IR31 IR30 IR29 IR28 IR27 IR26 = 0 IR26 = 1

GET 0 1 0 0 0 Execute

PUT 0 1 0 0 1 Execute

RET 0 1 0 1 0 Execute

RTI 0 1 0 1 1 Execute

LDR 0 1 1 0 0 Execute Defer

STR 0 1 1 0 1 Execute Defer

JSR 0 1 1 1 0 Execute Defer

BR 0 1 1 1 1 Execute if Branch = 1,

Fetch Otherwise

Defer if Branch = 1,

Fetch Otherwise

We define two generated control signals, S1 and S2, as follows:

 1. If the present state is Fetch and S1 = = 0, the next state will be Fetch.

 If the present state is Fetch and S1 = = 1, the next state is either Defer or Execute.

 2. If the present state is Fetch, S1 = = 1, and S2 = = 0, the next state will be Execute.

 If the present state is Fetch, S1 = = 1, and S2 = = 1, the next state will be Defer.

 3. Automatic rule: If the present state is Defer, the next state will be Execute.

 4. Automatic rule: If the present state is Execute, the next state will be Fetch.

This leads to the following state diagram for the Major State Register.

Figure: State Diagram for the Major State Register

A three–state diagram requires two flip–flops for its implementation. To begin this design,

we assign two–bit binary numbers, denoted Y1Y0, to each of the major states.

State Y1 Y0

F 0 0

D 0 1

E 1 0

Chapter 15 Boz–7 Implementation of the CPU

Page 527 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The easiest way to implement this design uses two D flip–flops, with inputs D1 and D0. We

are now left with only two questions:

 1. How to generate the two inputs D1 and D0 from S1, S2, Y0, and Y1.

 2. How to generate S1 and S2 from the op–codes.

It will be seen below that the circuitry to generate these signals is quite simple. We first ask

ourselves how it came to be so simple when it had the possibility of great complexity. To

see what has happened, we examine the evolution of the op–codes for the first 12

instructions.

Op-Code Version 1 Version 2 Version 3 Version 4

00 000 HLT HLT HLT HLT

00 001 LDI LDI LDI LDI

00 010 ANDI ANDI ANDI ANDI

00 011 ADDI ADDI ADDI ADDI

00 100 GET

00 101 PUT

00 110 LDR

00 111 STR

01 000 BR GET GET GET

01 001 JSR PUT PUT PUT

01 010 RET LDR RET RET

01 011 RTI STR RTI RTI

01 100 BR LDR LDR

01 101 JSR STR STR

01 110 RET BR JSR

01 111 RTI JSR BR

In each of these designs, the four “immediate instructions” are allocated the first 4 op–codes,

numbered 0 through 3. The original idea was that all such instructions would have op–codes

beginning with “000”. This was a good idea, but has yet to be exploited in these designs.

Version 1 of the list of instructions just presented the instructions in the way the author

thought them up. The instructions were considered to exist in four groups: GET & PUT;

LDR & STR; JSR, RET, & RTI; and BR. They were listed in that order, with the exception

that the BR was listed first, because early designs did not allow for subroutine calls. This

almost–random order of op–codes yielded a very messy control unit.

Version 2 of this list resulted from the observation that introducing four NOP instructions

and moving the instructions beginning with GET down by four would yield the result that all

instructions that could leave the Fetch state would have op–codes beginning with “01”. This

decision was taken because it introduced a regularity into the pattern of op–codes and this

author expected such a pattern to yield a simplification in the circuitry.

Version 3 of the list resulted from the observation that moving the RET and RTI

instructions to follow GET and PUT would yield the result that those instructions that might

use the Defer state all began with “011”.

Chapter 15 Boz–7 Implementation of the CPU

Page 528 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Version 4 of the list is a minor modification of version 3. It is a result of the observation

that the branch instruction, BR, is the only one that has an additional constraint on its

leaving the Fetch state. It leaves Fetch if and only if the signal Branch = = 1. This is a time

saving feature that avoids computation of an effective address when the branch is not going

to be taken. For this reason, the BR instruction was moved to last in the list.

We now repeat the table that began this discussion and recall the definition of the two

generated control signals S1 and S2.

 IR31 IR30 IR29 IR28 IR27 IR26 = 0 IR26 = 1

GET 0 1 0 0 0 Execute

PUT 0 1 0 0 1 Execute

RET 0 1 0 1 0 Execute

RTI 0 1 0 1 1 Execute

LDR 0 1 1 0 0 Execute Defer

STR 0 1 1 0 1 Execute Defer

JSR 0 1 1 1 0 Execute Defer

BR 0 1 1 1 1 Execute if Branch = 1,

Fetch Otherwise

Defer if Branch = 1,

Fetch Otherwise

We define two generated control signals, S1 and S2, as follows:

 1. If the present state is Fetch and S1 = = 0, the next state will be Fetch.

 If the present state is Fetch and S1 = = 1, the next state is either Defer or Execute.

 2. If the present state is Fetch, S1 = = 1, and S2 = = 0, the next state will be Execute.

 If the present state is Fetch, S1 = = 1, and S2 = = 1, the next state will be Defer.

We now see the end result of modification of the op–codes:

 1. Only instructions with op–codes beginning with “01” can leave Fetch

 2. Only instructions with op–codes beginning with “011” can enter Defer.

We now derive the equations for the generated control signals.

S1: We note that S1 is 0 when IR31IR30  “01”.

 We also note that S1 is 0 when IR31IR30 = “01”, if Branch = 0 and IR29IR28IR27 = “111”.

 We could say S1 is 1 when IR31IR30 = “01”, and either Branch = 1 or IR29-27  “111”.

 But IR29-27  “111” is the same as IRIRIR 272829  . Given this observation, we see

S1 = IRIR 3031  (Branch + IRIRIR 272829 ).

S2: Given that this signal is used only when S1 is 1, we can proceed from two observations.

 1. Only instructions with IR29 = 1 can enter the defer state.

 2. The defer state is entered by these four instructions only when IR26 = 1.

S2 = IR29  IR26

As an aside, we note that many textbooks set S2 = IR26, thus saying that all instructions for

which the Indirect bit is set will enter the defer state. Our definition of S2 = IR29  IR26 and

our insistence that Defer is entered only when S1S2 = 1 avoids traps on bad bits.

Chapter 15 Boz–7 Implementation of the CPU

Page 529 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Design of the Major State Register

We now have all we need to complete a design of the major state register.

 1. The register will be designed using two D flip–flops, with inputs D1 and D0, and

 outputs Y1 and Y0. The binary encoding for these states is shown in the table.

State Y1 Y0

F 0 0

D 0 1

E 1 0

 2. There will be two control signals, S1 and S2, to sequence the register.

 If the present state is Fetch and S1 = = 0, the next state will be Fetch.

 If the present state is Fetch, S1 = = 1, and S2 = = 0, the next state will be Execute.

 If the present state is Fetch, S1 = = 1, and S2 = = 1, the next state will be Defer.

 Automatic rule: If the present state is Defer, the next state will be Execute.

 Automatic rule: If the present state is Execute, the next state will be Fetch.

 3. S1 = IRIR 3031  (Branch + IRIRIR 272829 ).

 S2 = IR29  IR26

 4. We note that the circuit, when operating properly, never has both D1 = 1 and D0 = 1.

 Thus we may say that D1 = conditions to move to Execute

 D0 = conditions to move to Defer

 So we have the following equations:

 D0 = FS1S2

 D1 = SSF 21  + D // D = 1 if and only if in the Defer state

Figure: The Major State Register of the Boz–7

Note that the trigger for the transition between major states is T3 from the minor state

register. When it is active, the minor state register continuously cycles through its states,

and the major state register changes to its next state when triggered.

Chapter 15 Boz–7 Implementation of the CPU

Page 530 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Instruction Decoder

The function of the Instruction Decoder is to take the output of the appropriate bits of the IR

(Instruction Register) and generate the discrete signal associated with the instruction. Note

that the discrete signal associated with an assembly language instruction has the same name;

thus LDI is the discrete signal asserted when the op-code in the IR is 000001, which is

associated with the LDI (Load Register Immediate) assembly language instruction.

Figure: The Decoding of IR31-27 into Discrete Signals for the Instructions

The instruction decoder is implemented as a simple 5–to–32 decoder, in that there are five

bits in the op–code and a maximum of 32 instructions. To save space outputs 26 – 31 of the

decoder are not shown. Also, outputs 4 – 7 of the decoder are not connected to any circuit,

indicating that these op–codes are presently NOP’s.

Chapter 15 Boz–7 Implementation of the CPU

Page 531 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Signal Generation Tree

We now have the three major parts of circuits required to generate the control signals.

 1) the major state register (F, D, and E),

 2) the minor state register (T0, T1, T2, and T3), and

 3) the instruction decoder.

Common Fetch Cycle

In hardwired control units, these and some other condition signals are used as input to

combinational circuits for generation of control signals. As an example, we consider the

generation of the control signals for the first three steps of the fetch phase. Note that these

signals are common for all machine language instructions, as (F, T2) results in the placing of

the instruction into the Instruction Register, from whence it is decoded.

Figure: Control Signals for the Common Fetch Sequence

This figure involves logical signal, asserted to either 0 or 1. Each output of the AND gates

should be viewed also as a discrete logic signal, which when asserted as 1 causes an action

(indicated by the signal name) to take place. Thus, when F = 1 and T2 = 1 (indicating that

the control unit is in step T2 of the Fetch state), then the three signals MBR  B2, tra2, and

B3  IR are asserted as logic 1. The assertion of the signal MBR  B2 as logic 1 causes

the contents of the MBR register to be transferred to bus B2. The assertion of signal tra2 to

logic 1 causes the contents of bus B2 to be transferred through the ALU and onto bus B3.

The assertion of signal B3  IR to logic 1 causes the contents of bus B3 to be copied into

the Instruction Register, also called the IR.

There is one obvious remark about the above drawing. Notice that each of the top two AND

gates generates a signal labeled “PC  B1”. At some point in the design, these and any

other identical signals are all input into an OR gate used to effect the actual transfer.

The reader will note that we now have terminology that must be used carefully. Consider

the machine language instruction with op-code = 10101. There are 3 terms associated with

this.

 ADD the mnemonic for the assembly language instruction associated, and

 ADD the discrete signal (logic 0 or logic 1) emitted by the instruction decoder, and

 add the discrete signal emitted by the control unit that causes the ALU to add.

The first and second used of the term “ADD” are distinguished by context. Whenever the

term is used as a logic signal, it cannot be the assembly language mnemonic.

Chapter 15 Boz–7 Implementation of the CPU

Page 532 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Defer Cycle

We now show the only other part of the signal generation tree that is independent of the

machine language instruction being executed. This is the tree for signals associated with the

Defer phase of execution. The reader will recall that only three instructions (LDR, STR, and

BR) can enter the Defer phase, and then only when IR26 = 1. Note that there are no signals

generated for T1 or T3 during the Defer phase, because nothing happens at those times.

Figure: Control Signals for the Defer Major State

The Rest of Fetch

We now investigate the control signals issued during step T3 of Fetch for the rest of the

instructions. We use the next table to investigate commonalities in the signal generation.

Op–Code B1 B2 B3 ALU Other

IR31 IR30 IR29 IR28 IR27

0 0 0 0 0 HLT 0  RUN

0 0 0 0 1 LDI IR R tra1

0 0 0 1 0 ANDI IR R R and

0 0 0 1 1 ADDI IR R R add

0 1 0 0 0 GET

0 1 0 0 1 PUT

0 1 0 1 0 RET

0 1 0 1 1 RTI

0 1 1 0 0 LDR IR R MAR add

0 1 1 0 1 STR IR R MAR add

0 1 1 1 0 JSR IR R MAR add

0 1 1 1 1 BR IR R MAR add

1 0 0 0 0 LLS R R shift 1, 0, 0*

1 0 0 0 1 LCS R R shift 1, 0, 1

1 0 0 1 0 RLS R R shift 0, 0, 0

1 0 0 1 1 RAS R R shift 0, 1, 0

1 0 1 0 0 NOT R R not

1 0 1 0 1 ADD R R R add

1 0 1 1 0 SUB R R R sub

1 0 1 1 1 AND R R R and

1 1 0 0 0 OR R R R or

1 1 0 0 1 XOR R R R xor

*Shift control signals: L/R’, A, and C; for Left/Right, Arithmetic, and Circular

Chapter 15 Boz–7 Implementation of the CPU

Page 533 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

While we certainly could focus on generation of a set of signals for each of the twenty–two

instructions in the above table, we shall use the commonalities displayed by the table to

simplify the signal tree considerably. We begin with a consideration of the first four

instructions, as these contain an insight that will yield significant reductions in complexity.

Op–Code B1 B2 B3 ALU Other

IR31 IR30 IR29 IR28 IR27

0 0 0 0 0 HLT 0  RUN

0 0 0 0 1 LDI IR R tra1

0 0 0 1 0 ANDI IR R R and

0 0 0 1 1 ADDI IR R R add

The bus allocations for these instructions are obvious, but worth note. The LDI instruction

has no allocation for bus B2. Suppose we allocated a general–purpose register to B2. Then

some random register would have its contents transferred to bus B2, only to be ignored by

the ALU which is executing a tra1 instruction. Now consider the HLT instruction. Here we

might also allocate registers to both bus B1 and bus B2, as the ALU is not active and does

nothing with its input. Hence the table above might as well be the following.

Op–Code B1 B2 B3 ALU Other

IR31 IR30 IR29 IR28 IR27

0 0 0 0 0 HLT IR R 0  RUN

0 0 0 0 1 LDI IR R R tra1

0 0 0 1 0 ANDI IR R R and

0 0 0 1 1 ADDI IR R R add

One might legitimately ask why not go “whole hog” and allocate a register to B3 for the

HLT instruction. The answer is that such an action would cause some random register to

become corrupted as it would cause data (possibly all 0’s) to be input to the selected register.

It is very likely that register %R0 would be selected, resulting in a NOP, but the designer of

a control unit cannot make such assumptions.

Examining the above table, we come to the following conclusions.

 1) We use the ALU code to differentiate between the instructions, placing registers on

 buses B1 and B2 in any way that does not cause problems.

 2) The rule for bus B1 is as follows: IR  B1 if IR31 = = 0 and R  B1 if IR31 = = 1.

 This will cause IR  B1 for the GET, PUT, RET, and RTI instructions, but that is

 not a problem as the ALU does nothing for these. It will cause R  B1 for the shift

 and NOT instructions, but that also is not problem as only bus B2 is input to these.

 3) The rule for bus B2 is as follows: R  B2 always. The only instructions that do not

 call for such are HLT, LDI, GET, PUT, RET, and RTI. The last four do nothing in

 this minor cycle, and the first two are not made to be incorrect by the assignment.

 4) The handling of bus B3 is trickier. If IR31-29 = = “011”, we have B3  MAR. If

 either IR31 = = 1 or IR31-27 = = “00001”, “00010”, or “00011”, then B3  R. A bit

 of Boolean algebra yields the condition for B3  R as follows:

 (IR31 = = 1) OR [(IR30 = = 0) AND (IR29 = = 0) AND (IR28 + IR27 = = 1)]

Chapter 15 Boz–7 Implementation of the CPU

Page 534 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Here is the complete signal generation tree for the T3 minor cycle in the Fetch major cycle.

Note that the signals output from the AND gates to the right of the tree are control signals

that activate actual transfers; thus “IR  B1” causes the contents of the IR (Instruction

Register) to be transferred to bus B1.

Figure: Signal Generation Tree for Fetch, T3

Note that the last fourteen entries on the left side of the signal tree are all in upper case

letters. Each of these is the control signal generated by the instruction decoder based on the

op–code bits in the Instruction Register. The entries in lower case, to the right of the signal

tree, are control signals to the ALU.

Chapter 15 Boz–7 Implementation of the CPU

Page 535 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Study of the Execute Phase
The reader will recall that only eight instructions access this state. These instructions are

GET, PUT, RET, RTI (Not Implemented), LDR, STR, JSR, and BR. We collect the control

signals used by these instructions in the execute phase in an attempt to organize our thinking

prior to drawing the signal generation trees for the Execute phase.

At this point, we make two remarks that are only marginally related to this study.

 1. The original design for the control signal had both the STR (store register) and

 BR (branch) issue their final control signal in (E, T2). This lead to the following

 counts for control signals in Execute: 5, 2, 6, and 2. The final signal for STR

 could not be later than (E, T2) so it was moved to (E, T1). The final signal for BR

 could occur any time in the Execute phase, so it was moved to (E, T3). This resulted

 in the counts: 5, 3, 4, and 3.

 2. The name “Execute” for this phase is a bit awkward. The Fetch phase is so named

 because if fetches the instruction. The Defer phase is so named because it calculates

 the deferred address. The Execute phase does contain execution logic for eight of

 the instructions, but the majority of the instructions complete execution in the Fetch

 phase. There is simply no good name for this phase.

Execute, T0

 GET: IR  B1, tra1, B3  IOA. // Send out the I/O address

 PUT: R  B2, tra2, B3  IOD // Get the data ready

 RET: SP  B1, + 1  B2, add, B3  SP. // Increment the SP

 LDR: READ. // Address is already in the MAR.

 JSR: PC  B1, tra1, B3  MBR. // Put return address in MBR

Execute, T1

 RET: SP  B1, tra1, B3  MAR, READ. // Get the return address

 STR: R  B1, tra1, B3  MBR, WRITE.

 JSR: MAR  B1, tra1, B3  PC. // Set up for jump to target.

Execute, T2

 GET: IOD  B2, tra2, B3  R. // Get the results.

 PUT: IR  B1, tra1, B3  IOA. // Sending out the address

 LDR: MBR  B2, tra2, B3  R.

 JSR: SP  B1, tra1, B3  MAR, WRITE. // Put return address on stack.

Execute, T3

 RET: MBR  B2, tra2, B3  PC. // Put return address into P

 JSR: SP  B1, 1  B2, sub, B3  SP. // Decrement the SP

 BR: MAR  B1, tra1, B3  PC.

Chapter 15 Boz–7 Implementation of the CPU

Page 536 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The Execute State
We now show the signal generation trees for the Execute State.

Figure: Control Signals for the Execute State

The reader should remember that the Major State Register will enter the Execute State for

the BR (Branch) instruction only if the branch condition is true. If the branch is not to be

taken, then execution of the BR proceeds directly to Fetch, at which time the next instruction

is fetched and executed.

Chapter 15 Boz–7 Implementation of the CPU

Page 537 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Micro–Programmed Version of the Control Unit

We have just shown the signal generation trees for the hardwired version of the control unit.

We now present the micro–programmed version of the same unit.

We begin with a summary of the control signals used. This table is just a listing of the

signals. At some time later, these signals will be assigned numeric codes and the table

shown in another presentation. Note that the first row in the table is unlabeled, reflecting the

fact that we must allow for no activity on each of the units.

Bus 1 Bus 2 Bus 3 ALU Other

PC  B1 1  B2 B3 PC tra1 L / R’

MAR  B1 B3  MAR tra2 A

R  B1 R  B2 B3  R shift C

IR  B1 MBR  B2 B3  IR not READ

SP  B1 IOD  B2 B3  SP add WRITE

 B3  MBR sub extend

 B3  IOD and 0  RUN

 B3  IOA or

 xor

Microcoding (microprogramming) is another way of generating control signals. Rather than

generating these signals from hardwired gates, these are generated from words in a memory

unit, called a micro–memory. To illustrate this concept, consider a simple micro–controller

to generate control signals for bus B1.

Figure: A Sample Micro–Memory

Here we see an example, written in the style of horizontal micro–coding (soon to be defined)

with one bit in the micro–memory for each of the control signals to be emitted. When the

word at micro–address 105 is read into the micro–MBR (the register at the bottom), the

control signals generated are PC  B1 = 0, MAR  B1 = 1, R  B1 = 0, IR  B1 = 0,

and SP  B1 = 0. Thus, copying micro–word 105 into the Micro–MBR asserts

MAR  B1. Similarly, copying micro–word 106 into the Micro–MBR asserts R  B1.

Chapter 15 Boz–7 Implementation of the CPU

Page 538 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Horizontal vs. Vertical Micro–Code
The micro–programming strategy called “horizontal microcode” allows one bit in the

micro–memory for each control signal generated. We have illustrated this with a small

memory to issue control signals for bus B1. There are five control signals associated with

this bus, so this part of the micro–memory would comprise five–bit numbers.

A quick count from the table of control signals shows that there are thirty–four discrete

control signals associated with this control unit. A full horizontal implementation of the

microcode would thus require 34 bits in each micro–word just to issue the control signals.

The memory width is not a big issue; indeed there are commercial computers with much

wider micro–memories. We just note the width requirement.

In vertical microcoding, each signal is assigned a numeric code that is unique for its

function. Thus, each of the five signals for control of bus B1 would be assigned a numeric

code. The following table illustrates the codes actually used in the design of the Boz–7.

Code Signal

000

001 PC  B1

010 MAR  B1

011 R  B1

100 IR  B1

101 SP  B1

It is particularly important that a vertical microcoding scheme allow for the option that no

signal is being placed on the bus. In this design we reserve the code 0 for “nothing on bus”

or “ALU does nothing”, etc. The three bits in this design are placed into a 3–to–8 decoder,

as shown in the figure below. Admittedly, this design is slower than the horizontal

microcode in that it incurs the time penalty associated with the decoder.

Figure: Sample of Vertical Microcoding

In this revised example, word 105 generates MAR  B1 and word 106 generates R  B1.

Chapter 15 Boz–7 Implementation of the CPU

Page 539 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

One advantage of encoding the control signals is the unique definition of the signal for each

function. As an example, consider both the horizontal and vertical encodings for bus B1. In

the five–bit horizontal encoding, we were required to have at most one 1 per micro–word.

An examination of that figure will show that the micro–word “10100” would assert the two

control signals PC  B1 and R  B1 simultaneously, causing considerable difficulties. In

the vertical microcoding example, the three–bit micro–word with contents “011” causes the

control signal R  B1, and only that control signal, to be asserted. To be repetitive, the

code “000” is reserved for not specifying any source for bus B1; in which case the contents

of the bus are not specified. In such a case, the ALU cannot accept input from bus B1.

The design chosen for the microcode will be based on the fact that four of the CPU units

(bus B1, bus B2, bus B3, and the ALU) can each have only one “function”. For this reason,

the control signals for these units will be encoded. There are seven additional control

signals that could be asserted in any combination. These signals will be represented in

horizontal microcode, with one bit for each signal.

Structure of the Boz–7 Microcode
As indicated above, the Boz–7 microcode will be a mix of horizontal and vertical

microcode. The reader will note that some of the encoded fields require 3–bit codes and

some require 4–bit codes. For uniformity of notation we shall require that each field be

encoded in 4 bits. The requirement that each field be encoded by a 4–bit binary number has

no justification in engineering practice. Rather it is a convenience to the student, designed

to remove at least one minor nuisance from the tedium of writing binary microcode and

converting it to hexadecimal format. Four binary bits correspond to one hex digit.

Consider the following example, taken from the common fetch sequence.

MBR  B2, tra2, B3  IR.

A minimal–width encoding of this sequence of control signals would yield the following.

0 000 110 100 010 000 0000 0000 0000 0000 0000.

Conversion of this to hexadecimal requires regrouping the bits and then rewriting.

0000 1101 0001 0000 0000 0000 0000 0000 0000 or 0x0 D100 0000

The four–bit constant width coding of this sequence yields the following.

0000 0000 0110 0100 0010 0000 0000 0000 0000 0000 0000

This is immediately converted to 0x006 4200 0000 without shuffling any bits.

Dispatching the Microcode

In addition to micro–words that cause control signals to be emitted, we need micro–words to

sequence the execution of the microcode. This is seen most obviously in the requirement for

a dispatch based on the assembly language op–code. Let’s begin with an observation that is

immediately obvious. If the microprogrammed control unit is to handle each distinct

assembly language opcode differently, it must have sections of microprogram that are

unique to each of the assembly language instructions.

The solution to this will be a dispatch microoperation, one which invokes a section of the

microprogram that is selected based on the 5–bit opcode that is currently in the Instruction

Register. But what is called and how does it return?

Chapter 15 Boz–7 Implementation of the CPU

Page 540 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The description above suggests the use of a micro–subroutine, which would be the

microprogramming equivalent of a subroutine in either assembly language or a higher level

language. This option imposes a significant control overhead in the microprogrammed

control unit, one that we elect not to take.

The “where to return issue” is easily handled by noting that the action next after executing

any assembly language instruction is the fetching of the next one to execute. For reasons

that will soon be explained, we place the first microoperation of the common fetch sequence

at address 0x20 in the micromemory; each execution phase ends with “go to 0x20”.

The structure of the dispatch operation is best considered by examination of the control

signals for the common fetch sequence.

 F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

 F, T3: Do something specific to the opcode in the IR.

In the hardwired control unit, the major and minor state registers would play a large part in

generation of the control signals for (F, T3) and the major state register would handle the

operation corresponding to “dispatch”, that is selection of what to do next. Proper handling

of the dispatch in the microprogrammed control unit requires an explicit micro–opcode and

a slight resequencing of the common fetch control signals. Here is the revised sequence.

 F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

 Dispatch based on the assembly language opcode

 F, T3: Do something specific to the opcode in the IR.

The next issue for our consideration in the design of the structure of the microprogram is a

decision on how to select the address of the micro–instruction to be executed next after the

current micro–instruction. In order to clarify the choices, let’s examine the microprogram

sequence for a specific assembly language instruction and see what we conclude.

The assembly language instructions that most clearly illustrate the issue at hand are the

register–to–register instructions. We choose the logical AND instruction and arbitrarily

assume that its microprogram segment begins at address 0x80 (a new design, to be

developed soon, will change this) and see what we have. Were we to base our control

sequence on the model of assembly language programming, we would write it as follows.

 0x20 PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 0x21 PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 0x22 MBR  B2, tra2, B3  IR. // IR  (MBR)

 0x23 Dispatch based on the assembly language opcode

 0x80 R  B1, R  B2, and, B3  R.

 0x81 Go to 0x20.

Chapter 15 Boz–7 Implementation of the CPU

Page 541 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

While the above sequence corresponds to a coding model that would be perfectly acceptable

at the assembly language level, it presents several significant problems at the microcode

level. We begin with the observation that it requires the introduction of an explicitly

managed microprogram counter in addition to the micro–memory address register.

The second, and most significant, drawback to the above design is that it requires two clock

pulses to execute what the hardwired control unit executed in one clock pulse. One might

also note that the present design calls for using two micro–words (addresses 0x80 and 0x81)

where one micro–word might do. This is a valid observation, but the cost of memory is far

less significant than the “time cost” to execute the extra instruction.

The design choice taken here is to encode the address of the next microinstruction in each

microinstruction in the microprogram. This removes the complexity of managing a program

counter and the necessity of the time–consuming explicit branch instruction. Recasting the

example above in the context of our latest decision leads to the following sequence.

 Address Control Signals Next address

 0x20 PC  B1, tra1, B3  MAR, READ. 0x21

 0x21 PC  B1, 1  B2, add, B3  PC. 0x22

 0x22 MBR  B2, tra2, B3  IR. 0x23

 0x23 Dispatch based on IR31–IR27. ?? – We decide later

 0x80 R  B1, R  B2, and, B3  R. 0x20

Note that the introduction of an explicit next address causes the execution phase of the

logical AND instruction to be reduced to one clock pulse, as desired. The requirement for

uniformity of microcode words leads to use of an explicit next address in every micro–word

in the micromemory. The only microinstruction that appears not to require an explicit next

address in the dispatch found at address 0x23.

A possible use for the next address field of the dispatch instruction is seen when we consider

the effort put into the hardwired control unit to avoid wasting execution time on a Branch

instruction when the branch condition was not met. The implementation of this decision in a

microprogrammed control unit is to elect not to dispatch to the opcode–specific microcode

when the instruction is a branch and the condition is not met. What we have is shown

below.

 Address Control Signals Next address

 0x20 PC  B1, tra1, B3  MAR, READ. 0x21

 0x21 PC  B1, 1  B2, add, B3  PC. 0x22

 0x22 MBR  B2, tra2, B3  IR. 0x23

 0x23 Dispatch based on IR31–IR27. 0x20

 0x80 R  B1, R  B2, and, B3  R. 0x20

The present design places the next address for dispatch when the condition is not met in the

field of the micro–word associated with the next address for two reasons:

 1. This results in a more regular design, one that is faster and easier to implement.

 2. This avoids “hard coding” the address of the beginning of the common fetch.

Chapter 15 Boz–7 Implementation of the CPU

Page 542 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

At this point in the design of the microprogrammed control unit, we have two distinct types

of microoperations: a type that issues control signals and a type that dispatches based on the

assembly language opcode. To handle this distinction, we introduce the idea of a micro–

opcode with the following values at present.

 Micro–Op Function

 0000 Issue control signals

 0001 Dispatch based on the assembly language opcode.

We have stated that there are conditions under which the dispatch will not be taken. There

is only one condition that will not be dispatched: the assembly–language opcode is 0x0F and

the branch condition is not met. Before we consider how to handle this situation, we must

first address another design issue, that presented by indirect addressing.

Handling Defer

Consider the control signals for the LDR (Load Register) assembly language instruction.

LDR Op-Code = 01100 (Hexadecimal 0x0C)

 F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

 F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

Here the major state register takes control.

 1) If the I–bit (bit 26) is 1, then the Defer state is entered.

 2) If the I–bit is 0, then the E state is entered.

 D, T0: READ. // Address is already in the MAR.

 D, T1: WAIT. // Cannot access the MBR just now.

 D, T2: MBR  B2, tra2, B3  MAR. // MAR  (MBR)

 D, T3: WAIT.

Here the transition is automatic from the D state to the E state.

 E, T0: READ. // Again, address is already in the MAR.

 E, T1: WAIT.

 E, T2: MBR  B2, tra2, B3  R.

 E, T3: WAIT.

The issue here is that we no longer have an explicit major state register to handle the

sequencing of major states. The microprogram itself must handle the sequencing; it must do

something different for each of the two possibilities: indirect addressing is used and indirect

addressing is not used. Assuming a dispatch to address 0x0C for LDR (as it will be done in

the final design), the current design calls for the following microinstruction at that address.

 Address Control Signals Next address

 0x0C IR  B1, R  B2, add, B3  MAR. Depends on IR26.

Suddenly we need two “next addresses”, one if the defer phase is to be entered and one to be

used if that phase is not to be entered. This last observation determines the final form of the

microprogram; each micro–word has length 44 bits with structure as shown below.

Chapter 15 Boz–7 Implementation of the CPU

Page 543 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

In this representation of the microprogram words, we use “D = 0” to indicate that the defer

phase is not to be entered and “D = 1” to indicate that it should be entered. This notation

will be made more precise after we explore the new set of signals used to control the

sequencing of the microprogram. Here we assume no more than 256 micro–words in the

control store.

Micro–Op B1 B2 B3 ALU M1 M2 D = 0 D = 1

4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 8 bit 8 bit

Notes:
 1. The width of each field is either four or eight bits. The main reason for this is

 to facilitate the use of hexadecimal notation in writing the microcode.

 2. The use of four bits to encode only two options for the micro–opcode may appear

 extravagant. This follows our desire for a very regular structure.

 3. The use of “D = 0” and “D = 1” is not exactly appropriate for the dispatch

 instruction with micro–opcode = 0001. We shall explain this later.

 4. The bits associated with the M1 field are those specifying the shift parameters

 Bit 3 L / R (1 for a left shift, 0 for a right shift)

 Bit 2 A (1 for an arithmetic shift)

 Bit 1 C (1 for circular shift)

 Bit 0 Not used

 5. The bits associated with the M2 field are

 Bit 3 READ (Indicates a memory reference)

 Bit 2 WRITE (Unless READ = 1)

 Bit 1 extend (Sign–extend contents of IR when copying to B1)

 Bit 0 0  RUN (Stop the computer)

 6. For almost every micro–instruction, the two “next addresses” are identical. For

 these, we cannot predict the value of the generated control signal “branch” and do

 not care, since the next address will be independent of that value.

 7. The values for next addresses will each be two hexadecimal digits. It is here that

 we have made the explicit assumption on the maximum size of the micromemory.

Sequencing the Boz–7 Microprogrammed Control Unit

In addition to the assembly language opcode, we shall need two new signals in order to

sequence the microprogrammed control unit correctly. We call these two control signals

“S1” and “S2”, because they resemble the control signals S1 and S2 used in the hardwired

control unit but are not exactly identical.

In the hardwired control unit, the signal S1 was used to determine whether or not the state

following Fetch would again be Fetch. This allowed completion of the execution of 14 of

the 22 assembly language instructions in the Fetch phase. In the microprogrammed control

unit, the signal S1 will be used to determine whether or not the dispatch microinstruction is

executed. The only condition under which it is not executed is that in which the assembly

language calls for a conditional branch and the branch condition is not met.

Chapter 15 Boz–7 Implementation of the CPU

Page 544 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

This leads to a simple statement defining this sequencing signal.

 S1 = 0 if and only if the assembly language opcode = 0x0F and branch = 0,

 where branch = 1 if and only if the branch condition is met.

The sequencing signal S2 is used to control the entering of the defer code for those

instructions that can use indirect addressing. Recall that the assignment of opcodes to the

assembly language instructions has been structured so that only instructions beginning with

“011” can enter the defer phase. Even these enter the defer phase only when IR26 = 1.

Thus, we have the following definition of this signal.

 S2 = 1 if and only if (IR31 = 0, IR30 = 1, IR29 = 1, and IR26 = 1)

In a way, this is exactly the definition of the sequencing control signal S2 as used in the

hardwired control unit. The only difference is that in this design the signal S2 must be used

independently of the signal S1, so we must use the full definition. The figure below

illustrates the circuitry to generate the two sequencing signals S1 and S2.

Given these circuits, we have the final form and labeling of the micro–words in the micro–

memory. Note that there are no “micro–data” words, only microinstructions.

Micro–Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 8 bit 8 bit

The form of the type 1 instruction is completely defined and can be given as follows.

Micro–Op B1 B2 B3 ALU M1 M2 D = 0 D = 1

0001 0x0 0x0 0x0 0x0 0x0 0x0 0x20 0x20

But what exactly does this dispatch instruction do? The question becomes one of defining

the dispatch table, which is used to determine the address of the microcode that is invoked

explicitly by this dispatch. We now address that issue.

Chapter 15 Boz–7 Implementation of the CPU

Page 545 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The design of the Boz–7 uses a dispatch mechanism copied from that used by Andrew S.

Tanenbaum in his textbook Structured Computer Organization [R15]. It is apparent that this

dispatch mechanism is commonly used in many commercial implementations of microcode.

The solution is to use the opcode itself as the dispatch address. As the Boz–7 uses a five bit

opcode, the sequencer unit for the microprogrammed control unit must expand it to an 8–bit

address by adding three high order 0 bits so that the dispatch address is 000 ¢ IR31–27. As

an example, the binary opcode for LDR is 01100; its dispatch address is 0000 1100 or 0x0C.

The Boz–7 uses five–bit opcodes, with range 0x00 through 0x1F. It then follows that

addresses 0x00 through 0x1F in the micromemory must be reserved for dispatch addresses.

It is for this reason that the common fetch sequence begins at address 0x20; that is the next

available address. We now see that this structure works only because the address of the

next microinstruction is explicitly encoded in the microinstruction.

This dispatch mechanism works very well on the 14 of 22 assembly language instructions

that complete execution in one additional clock pulse. As examples, we examine the control

signals for the first 8 opcodes (0x00 – 0x07) along with the common fetch microcode.

Address Micro Control Signals Next Address

 Opcode S2 = 0 S2 = 1

0x00 0 0  RUN 0x20 0x20

0x01 0 IR  B1, extend, tra1, B3  R 0x20 0x20

0x02 0 IR  B1, R  B2, and, B3  R 0x20 0x20

0x03 0 IR  B1, R  B2, extend, add, B3 R 0x20 0x20

0x04 0 NOP 0x20 0x20

0x05 0 NOP 0x20 0x20

0x06 0 NOP 0x20 0x20

0x07 0 NOP 0x20 0x20

0x20 0 PC  B1, tra1, B3  MAR, READ 0x21 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC 0x22 0x22

0x22 0 MBR  B2, tra2, B3  IR 0x23 0x23

0x23 1 Dispatch based on opcode 0x20 0x20

At this point, our design continues to look sound. Note that the unused opcodes (those at

microprogram addresses 0x04 through 0x07) simply do nothing and return to the common

fetch sequence at address 0x20. This allows for future expansion of the instruction set.

The only problem left to be addressed is the proper handling of instructions that require

more than one clock cycle (following the common fetch) in which to execute. The first such

instruction is the GET assembly language instruction.

Chapter 15 Boz–7 Implementation of the CPU

Page 546 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The control signals for the GET assembly language instruction, as implemented in the

hardwired control unit are shown below. Note that (F, T3) here does nothing as the

instruction cannot be completed in Fetch and I decided not to make the (F, T3) signal

generation tree more complex when I could force the execution into (E, T0) and (E, T2).

GET Op-Code = 01000 (Hexadecimal 0x08)

 F, T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 F, T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 F, T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

 F, T3: NOP.

 E, T0: IR  B1, tra1, B3  IOA. // Send out the I/O address

 E, T1: WAIT.

 E, T2: IOD  B2, tra2, B3  R. // Get the results.

 E, T3: NOP.

Noting that the NOP microoperations in this sequence are used only because there is nothing

that can be done during those clock pulses, we can rewrite the sequence as follows.

GET Op-Code = 01000 (Hexadecimal 0x08)

 T0: PC  B1, tra1, B3  MAR, READ. // MAR  (PC)

 T1: PC  B1, 1  B2, add, B3  PC. // PC  (PC) + 1

 T2: MBR  B2, tra2, B3  IR. // IR  (MBR)

 T3: IR  B1, tra1, B3  IOA. // Send out the I/O address

 T4: IOD  B2, tra2, B3  R. // Get the results.

This fits into the structure of the microcode fairly well, except that it seems to call for two

instructions to be placed at address 0x08. The solution to the problem is based on the fact

that each microinstruction must encode the address of the next microinstruction. Just select

the next available word in micromemory and place the “rest of the execution sequence”

there. What we have is as follows.

Address Micro Control Signals Next Address

 Opcode S2 = 0 S2 = 1

0x08 0 IR  B1, tra1, B3  IOA. 0x24 0x24

0x20 0 PC  B1, tra1, B3  MAR, READ 0x21 0x21

0x21 0 PC  B1, 1  B2, add, B3  PC 0x22 0x22

0x22 0 MBR  B2, tra2, B3  IR 0x23 0x23

0x23 1 Dispatch based on opcode 0x20 0x20

0x24 0 IOD  B2, tra2, B3  R. 0x20 0x20

In software engineering, such a structure is called “spaghetti code” and is highly

discouraged. The reason is simple; one writes a few thousand lines in this style and nobody

(including the original author) can follow the logic. The microprogram, however, comprises

a small number (fewer than 33) independent threads of short (less than 12) instructions. For

such a structure, even spaghetti code can be tolerated.

Chapter 15 Boz–7 Implementation of the CPU

Page 547 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Assignment of Numeric Codes to Control Signals
We now start writing the microcode. This step begins with the assignment of numeric

values to the control signals that the control unit emits.

The next table shows the numeric codes that this author has elected to assign to the encoded

control signals; these being the controls for bus B1, bus B2, bus B3, and the ALU. While

the assignment may appear almost random, it does have some logic. The basic rule is that

code 0 does nothing. The bus codes have been adjusted to have the greatest commonality;

thus code 6 is the code for both MBR  B2 and B3  MBR.

Code Bus 1 Bus 2 Bus 3 ALU

0

1 PC  B1 1  B2 B3 PC tra1

2 MAR  B1 B3  MAR tra2

3 R  B1 R  B2 B3 R shift

4 IR  B1 B3  IR not

5 SP  B1 B3  SP add

6 MBR  B2 B3  MBR sub

7 IOD B2 B3  IOD and

8 B3  IOA or

9 xor

10

Other assignments may be legitimately defended, but this is the one we use. There is no

assignment for Code = 2 on Bus 2. This is the result of a recent revision. The control signal

for Code = 2 was deleted, but your author did not want to change the other codes.

Example: Common Fetch Sequence
We begin our discussion of microprogramming by listing the control signals for the first

three minor cycles in the Fetch major cycle and translating these to microcode. We shall

mention here, and frequently, that the major and minor cycles are present in the microcode

only implicitly. It is better to think that major cycles map into sections of microcode.

For this example, we do the work explicitly.

 Location 0x20 F, T0: PC  B1 B1 code is 1

 tra1 ALU code is 1

 B3  MAR B3 code is 2

 READ M2(Bit 3) = 1, so M2 = 8

 Micro–Op = 0. B2 code and M1 code are both 0.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x20 0 1 0 2 1 0 8 0x21 0x21

Chapter 15 Boz–7 Implementation of the CPU

Page 548 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

 Location 0x21 F, T1: PC  B1 B1 code is 1

 1  B2 B2 code is 1

 add ALU code is 5

 B3  PC. B3 code is 1

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x21 0 1 1 1 5 0 0 0x22 0x22

 Location 0x22 F, T2: MBR  B2 B2 code is 6

 tra2 ALU code is 2

 B3  IR B3 code is 4

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x22 0 0 6 4 2 0 0 0x23 0x23

 Location 0x23 Dispatch on the op–code in the machine language instruction

For this we assume that the Micro–Op is 1 and that none of the other fields are used.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x23 1 0 0 0 0 0 0 0x20 0x20

Here is the microprogram for the common fetch sequence.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x20 0 1 0 2 1 0 8 0x21 0x21

0x21 0 1 1 1 5 0 0 0x22 0x22

0x22 0 0 6 4 2 0 0 0x23 0x23

0x23 1 0 0 0 0 0 0 0x20 0x20

Here is the section of microprogram for the common fetch sequence, written in the form that

would be seen in a utility used for debugging the microcode.

Address Contents

0x20 0x010 2108 2121

0x21 0x011 1500 2222

0x22 0x006 4200 2323

0x23 0x100 0000 2020

We now have assembled all of the design tricks required to write microcode and have

examined some microcode in detail. It is time to finish the microprogramming.

Chapter 15 Boz–7 Implementation of the CPU

Page 549 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The Execution of Op–Codes 0x00 through 0x07
The first four of these machine instructions (0x00 –0x00) use immediate addressing and

execute in a single cycle, while the last four (0x04 –0x07) are NOP’s, also executing in a

single cycle. The microcode for these goes in addresses 0x00 through 0x07 of the

micro–memory. The next step for each of these is Fetch for the next instruction, so the next

address for all of them is 0x20.

HLT Op-Code = 00000 0  RUN.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x00 0 0 0 0 0 0 1 0x20 0x20

LDI Op-Code = 00001 IR  B1, extend, tra1, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x01 0 4 0 3 1 0 2 0x20 0x20

ANDI Op-Code = 00010 IR  B1, R  B2, and, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x02 0 4 3 3 7 0 0 0x20 0x20

ADDI Op-Code = 00011 IR  B1, R  B2, extend, add, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x03 0 1 3 3 5 0 2 0x20 0x20

We are now in a position to specify the first eight micro–words.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x00 0 0 0 0 0 0 1 0x20 0x20

0x01 0 4 0 3 1 0 2 0x20 0x20

0x02 0 4 3 3 7 0 0 0x20 0x20

0x03 0 1 3 3 5 0 2 0x20 0x20

0x04 0 0 0 0 0 0 0 0x20 0x20

0x05 0 0 0 0 0 0 0 0x20 0x20

0x06 0 0 0 0 0 0 0 0x20 0x20

0x07 0 0 0 0 0 0 0 0x20 0x20

Based on the tables above, we state the contents of the first eight micro–words.

Address Contents

0x00 0x 000 0001 2020

0x01 0x 040 3102 2020

0x02 0x 043 3700 2020

0x03 0x 013 3502 2020

0x04 0x 000 0000 2020

0x05 0x 000 0000 2020

0x06 0x 000 0000 2020

0x07 0x 000 0000 2020

Chapter 15 Boz–7 Implementation of the CPU

Page 550 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

For the moment, let’s skip the next eight opcodes and finish the simpler cases.

LLS Op-Code = 10000 R  B2, shift, R/L = 1, A = 0. C = 0, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x10 0 0 3 3 3 8 0 0x20 0x20

LCS Op-Code = 10001 R  B2, shift, R/L = 1, A = 0. C = 1, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x11 0 0 3 3 3 9 0 0x20 0x20

RLS Op-Code = 10010 R  B2, shift, R/L = 0, A = 0. C = 0, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x12 0 0 3 3 3 0 0 0x20 0x20

RAS Op-Code = 10011 R  B2, shift, R/L = 0, A = 1. C = 0, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x13 0 0 3 3 3 4 0 0x20 0x20

NOT Op-Code = 10100 R  B2, not, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x14 0 0 3 3 4 0 0 0x20 0x20

ADD Op-Code = 10101 R  B1, R  B2, add, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x15 0 3 3 3 5 0 0 0x20 0x20

SUB Op-Code = 10110 R  B1, R  B2, sub, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x16 0 3 3 3 6 0 0 0x20 0x20

AND Op-Code = 10111 R  B1, R  B2, and, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x17 0 3 3 3 7 0 0 0x20 0x20

OR Op-Code = 11000 R  B1, R  B2, or, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x18 0 3 3 3 8 0 0 0x20 0x20

XOR Op-Code = 11001 R  B1, R  B2, xor, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x19 0 3 3 3 9 0 0 0x20 0x20

We have now completed the microprogramming for all but eight of the instructions. The

table on the next page shows what we have generated up to this point.

Chapter 15 Boz–7 Implementation of the CPU

Page 551 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x00 0 0 0 0 0 0 1 0x20 0x20

0x01 0 4 0 3 1 0 2 0x20 0x20

0x02 0 4 3 3 7 0 0 0x20 0x20

0x03 0 1 3 3 5 0 2 0x20 0x20

0x04 0 0 0 0 0 0 0 0x20 0x20

0x05 0 0 0 0 0 0 0 0x20 0x20

0x06 0 0 0 0 0 0 0 0x20 0x20

0x07 0 0 0 0 0 0 0 0x20 0x20

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10 0 0 3 3 3 8 0 0x20 0x20

0x11 0 0 3 3 3 9 0 0x20 0x20

0x12 0 0 3 3 3 0 0 0x20 0x20

0x13 0 0 3 3 3 4 0 0x20 0x20

0x14 0 0 3 3 4 0 0 0x20 0x20

0x15 0 3 3 3 5 0 0 0x20 0x20

0x16 0 3 3 3 6 0 0 0x20 0x20

0x17 0 3 3 3 7 0 0 0x20 0x20

0x18 0 3 3 3 8 0 0 0x20 0x20

0x19 0 3 3 3 9 0 0 0x20 0x20

0x1A 0 0 0 0 0 0 0 0x20 0x20

0x1B 0 0 0 0 0 0 0 0x20 0x20

0x1C 0 0 0 0 0 0 0 0x20 0x20

0x1D 0 0 0 0 0 0 0 0x20 0x20

0x1E 0 0 0 0 0 0 0 0x20 0x20

0x1F 0 0 0 0 0 0 0 0x20 0x20

0x20 0 1 0 2 1 0 8 0x21 0x21

0x21 0 1 1 1 5 0 0 0x22 0x22

0x22 0 0 6 4 2 0 0 0x23 0x23

0x23 1 0 0 0 0 0 0 0x20 0x20

Note that instructions 0x1A through 0x1F are not yet implemented, so they show as NOP’s.

We now move to those instructions that require Defer and Execute for completion. Due to

the ordering of the op–codes, we first investigate those instructions that cannot enter Defer.

Chapter 15 Boz–7 Implementation of the CPU

Page 552 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

GET Op-Code = 01000 (Hexadecimal 0x08)

 F, T3: WAIT.

 E, T0: IR  B1, tra1, B3  IOA. // Send out the I/O address

 E, T1: WAIT.

 E, T2: IOD  B2, tra2, B3  R. // Get the results.

 E, T3: WAIT.

As noted above, we can ignore any WAIT signal that is not required by considerations of

memory timing. The first of two microoperations is associated with the dispatch address for

the GET instruction and the second one at the first available micromemory word.

IR  B1, tra1, B3  IOA.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x08 0 4 0 8 1 0 0 0x24 0x24

IOD  B2, tra2, B3  R.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x24 0 0 7 7 2 0 0 0x20 0x20

PUT Op-Code = 01001 (Hexadecimal 0x09)

 F, T3: WAIT.

 E, T0: R  B2, tra2, B3  IOD // Get the data ready

 E, T1: WAIT.

 E, T2: IR  B1, tra1, B3  IOA. // Sending out the address

 E, T3: WAIT. // causes the output of data.

R  B2, tra2, B3  IOD

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x09 0 0 3 7 2 0 0 0x25 0x25

IR  B1, tra1, B3  IOA.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x25 0 4 0 8 1 0 0 0x20 0x20

RET Op-Code = 01010 (Hexadecimal 0x0A)

 F, T3: WAIT

 E, T0: SP  B1, + 1  B2, add, B3  SP. // Increment the SP

 E, T1: SP  B1, tra1, B3  MAR, READ. // Get the return address

 E, T2: WAIT.

 E, T3: MBR  B2, tra2, B3  PC. // Put return address into PC

Here we have three non–waiting instructions plus a WAIT that is necessary for the memory

access. As a result, we must allocate four micro–memory words to the execution.

Chapter 15 Boz–7 Implementation of the CPU

Page 553 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

SP  B1, + 1  B2, add, B3  SP

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x0A 0 5 1 5 5 0 0 0x26 0x26

SP  B1, tra1, B3  MAR, READ.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x26 0 5 0 2 1 0 8 0x27 0x27

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x27 0 0 0 0 0 0 0 0x28 0x28

MBR  B2, tra2, B3  PC

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x28 0 0 6 1 2 0 0 0x20 0x20

RTI Op-Code = 01011 (Hexadecimal 0x0B)

 Not yet implemented.

This is encoded as another NOP, until time to develop the details of interrupt handling.

The “link”

Address Micro-Op B1 B2 B3 ALU M1 M2 B = 0 B = 1

0x0B 0 0 0 0 0 0 0 0x20 0x20

We now turn to the four instructions that use both Defer and Execute. One might be

tempted to write a common Defer “subroutine” to be “called” by each of the Execute

sections. While this would reduce duplication of micro–code, we opt for in–line coding.

In each of the following four instructions, the step corresponding to (F, T3) issues control

signals. These will be issued by the “link” micro–operation. We must also introduce a new

micro–op to account for conditionally entering or not entering the Defer section.

Chapter 15 Boz–7 Implementation of the CPU

Page 554 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The next four assembly language instructions (LDR, STR, JSR, and BR) are the only that

possibly use indirect addressing. As discussed in our presentation of the sequencing control

signals for the microprogram, the defer phase will be entered if and only if S2 = 1. The

template for the DEFER state is shown below. It has one essential WAIT state.

 X READ

 X + 1 WAIT

 X + 2 MBR  B2, tra2, B3  MAR

 X + 3 Code for E, T0

Due to this structure, the address for (S2 = = 0) will be 3 more than that for (S2 = = 1).

LDR Op-Code = 01100 (Hexadecimal 0x0C)

 F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

 D, T0: READ. // Address is already in the

MAR.

 D, T1: WAIT. // Cannot access the MBR just now.

 D, T2: MBR  B2, tra2, B3  MAR. // MAR  (MBR)

 D, T3: WAIT.

 E, T0: READ. // Again, address is already in the MAR.

 E, T1: WAIT.

 E, T2; MBR  B2, tra2, B3  R.

 E, T3: WAIT.

IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x0C 0 4 3 2 5 0 0 0x2C 0x29

READ

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x29 0 0 0 0 0 0 8 0x2A 0x2A

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2A 0 0 0 0 0 0 0 0x2B 0x2B

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2B 0 0 6 2 2 0 0 0x2C 0x2C

READ.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2C 0 0 0 0 0 0 8 0x2D 0x2D

WAIT.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2D 0 0 0 0 0 0 0 0x2E 0x2E

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2E 0 0 6 2 2 0 0 0x20 0x20

Chapter 15 Boz–7 Implementation of the CPU

Page 555 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

STR Op-Code = 01101 (Hexadecimal 0x0D)

 F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

 D, T0: READ. // Address is already in the MAR.

 D, T1: WAIT. // Cannot access the MBR just now.

 D, T2: MBR  B2, tra2, B3  MAR. // MAR  (MBR)

 D, T3: WAIT.

 E, T0: WAIT.

 E, T1; R  B1, tra1, B3  MBR, WRITE.

 E, T2: WAIT.

 E, T3: WAIT.

IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x0D 0 4 3 2 5 0 0 0x32 0x2F

READ

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x2F 0 0 0 0 0 0 8 0x30 0x30

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x30 0 0 0 0 0 0 0 0x31 0x31

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x31 0 0 6 2 2 0 0 0x32 0x32

R  B1, tra1, B3  MBR, WRITE

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x32 0 3 0 6 1 0 4 0x33 0x33

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x33 0 0 0 0 0 0 0 0x20 0x20

Note here that we must have a WAIT state following the last WRITE of the execute phase.

This allows the memory to complete the instruction before the next instruction is fetched.

Chapter 15 Boz–7 Implementation of the CPU

Page 556 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

JSR Op-Code = 01110 (Hexadecimal 0x0E)

 F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

 D, T0: READ. // Address is already in the MAR.

 D, T1: WAIT. // Cannot access the MBR just now.

 D, T2: MBR  B2, tra2, B3  MAR. // MAR  (MBR)

 D, T3: WAIT.

 E, T0: PC  B1, tra1, B3  MBR. // Put return address in MBR

 E, T1: MAR  B1, tra1, B3  PC. // Set up for jump to target.

 E, T2: SP  B1, tra1, B3  MAR, WRITE. // Put return address on stack.

 E, T3: SP  B1, 1  B2, sub, B3  SP. // Bump SP

IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x0E 0 4 3 2 5 0 0 0x37 0x34

READ

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x34 0 0 0 0 0 0 8 0x35 0x35

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x35 0 0 0 0 0 0 0 0x36 0x36

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x36 0 0 6 2 2 0 0 0x37 0x37

PC  B1, tra1, B3  MBR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x37 0 1 0 6 1 0 0 0x38 0x38

MAR  B1, tra1, B3  PC

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x38 0 2 0 1 1 0 0 0x39 0x39

SP  B1, tra1, B3  MAR, WRITE

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x39 0 5 0 2 1 0 0 0x3A 0x3A

SP  B1, 1  B2, sub, B3  SP

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x3A 0 5 1 5 6 0 0 0x20 0x20

Chapter 15 Boz–7 Implementation of the CPU

Page 557 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

BR Op-Code = 01111 (Hexadecimal 0x0F)

 F, T3: IR  B1, R  B2, add, B3  MAR. // Do the indexing.

 D, T0: READ. // Address is already in the MAR.

 D, T1: WAIT. // Cannot access the MBR just now.

 D, T2: MBR  B2, tra2, B3  MAR. // MAR  (MBR)

 D, T3: WAIT.

 E, T0: WAIT.

 E, T1: WAIT.

 E, T2: WAIT.

 E, T3: MAR  B1, tra1, B3  PC.

Remember that the microcode at address 0x23 will not dispatch to address 0x0F if the

branch condition is not true. This avoids wasted time and incorrect execution.

IR  B1, R  B2, add, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x0F 0 4 3 2 5 0 0 0x3E 0x3B

READ

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x3B 0 0 0 0 0 0 8 0x3C 0x3C

WAIT

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x3C 0 0 0 0 0 0 0 0x3D 0x3D

MBR  B2, tra2, B3  MAR

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x3D 0 0 6 2 2 0 0 0x3E 0x3E

MAR  B1, tra1, B3  PC

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x3E 0 2 0 1 1 0 0 0x20 0x20

This completes the derivation of the microprogram for the Boz–7.

Chapter 15 Boz–7 Implementation of the CPU

Page 558 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Here now is the complete microprogram of the Boz–7, shown in two pages of tables.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x00 0 0 0 0 0 0 1 0x20 0x20

0x01 0 4 0 3 1 0 2 0x20 0x20

0x02 0 4 3 3 7 0 0 0x20 0x20

0x03 0 1 3 3 5 0 2 0x20 0x20

0x04 0 0 0 0 0 0 0 0x20 0x20

0x05 0 0 0 0 0 0 0 0x20 0x20

0x06 0 0 0 0 0 0 0 0x20 0x20

0x07 0 0 0 0 0 0 0 0x20 0x20

0x08 0 4 0 8 1 0 0 0x24 0x24

0x09 0 0 3 7 2 0 0 0x25 0x25

0x0A 0 5 1 5 5 0 0 0x26 0x26

0x0B 0 0 0 0 0 0 0 0x20 0x20

0x0C 0 4 3 2 5 0 0 0x2C 0x29

0x0D 0 4 3 2 5 0 0 0x32 0x2F

0x0E 0 4 3 2 5 0 0 0x37 0x34

0x0F 0 4 3 2 5 0 0 0x3E 0x3B

0x10 0 0 3 3 3 8 0 0x20 0x20

0x11 0 0 3 3 3 9 0 0x20 0x20

0x12 0 0 3 3 3 0 0 0x20 0x20

0x13 0 0 3 3 3 4 0 0x20 0x20

0x14 0 0 3 3 4 0 0 0x20 0x20

0x15 0 3 3 3 5 0 0 0x20 0x20

0x16 0 3 3 3 6 0 0 0x20 0x20

0x17 0 3 3 3 7 0 0 0x20 0x20

0x18 0 3 3 3 8 0 0 0x20 0x20

0x19 0 3 3 3 9 0 0 0x20 0x20

0x1A 0 0 0 0 0 0 0 0x20 0x20

0x1B 0 0 0 0 0 0 0 0x20 0x20

0x1C 0 0 0 0 0 0 0 0x20 0x20

0x1D 0 0 0 0 0 0 0 0x20 0x20

0x1E 0 0 0 0 0 0 0 0x20 0x20

0x1F 0 0 0 0 0 0 0 0x20 0x20

0x20 0 1 0 2 1 0 8 0x21 0x21

0x21 0 1 1 1 5 0 0 0x22 0x22

0x22 0 0 6 4 2 0 0 0x23 0x23

0x23 1 0 0 0 0 0 0 0x00 0x00

Chapter 15 Boz–7 Implementation of the CPU

Page 559 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Address Micro-Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

0x24 0 0 7 7 2 0 0 0x20 0x20

0x25 0 4 0 8 1 0 0 0x20 0x20

0x26 0 5 0 2 1 0 8 0x27 0x27

0x27 0 0 0 0 0 0 0 0x28 0x28

0x28 0 0 6 1 2 0 0 0x20 0x20

0x29 0 0 0 0 0 0 8 0x2A 0x2A

0x2A 0 0 0 0 0 0 0 0x2B 0x2B

0x2B 0 0 6 2 2 0 0 0x2C 0x2C

0x2C 0 0 0 0 0 0 8 0x2D 0x2D

0x2D 0 0 0 0 0 0 0 0x2E 0x2E

0x2E 0 0 6 2 2 0 0 0x20 0x20

0x2F 0 0 0 0 0 0 8 0x30 0x30

0x30 0 0 0 0 0 0 0 0x31 0x31

0x31 0 0 6 2 2 0 0 0x32 0x32

0x32 0 3 0 6 1 0 4 0x33 0x33

0x33 0 0 0 0 0 0 0 0x20 0x20

0x34 0 0 0 0 0 0 8 0x35 0x35

0x35 0 0 0 0 0 0 0 0x36 0x36

0x36 0 0 6 2 2 0 0 0x37 0x37

0x37 0 1 0 6 1 0 0 0x38 0x38

0x38 0 2 0 1 1 0 0 0x39 0x39

0x39 0 5 0 2 1 0 0 0x3A 0x3A

0x3A 0 5 1 5 6 0 0 0x20 0x20

0x3B 0 0 0 0 0 0 8 0x3C 0x3C

0x3C 0 0 0 0 0 0 0 0x3D 0x3D

0x3D 0 0 6 2 2 0 0 0x3E 0x3E

0x3E 0 2 0 1 1 0 0 0x20 0x20

The last address is 0x3E = 62 (in decimal). The microprogram has used 63 of the available

256 addresses (it is an 8–bit address) for a 25% usage. With 63 addresses used, we could

have opted for a 6–bit address. We chose an 8–bit address for the sake of simplicity.

The reader will note that this leaves plenty of unused microprogram space for possible

implementation of any new instructions.

Chapter 15 Boz–7 Implementation of the CPU

Page 560 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The Sequencer for the Microprogrammed Control Unit

We now discuss the micro–control unit, which is responsible for sequencing the control unit

itself, which is microprogrammed.

Recall that there are no “microdata” in the microprogram, but only microinstructions. Based

on this observation, the only function of the micro–control unit is the selection of the next

address to place into the micro–memory address register (MAR).

There are four sources for this address.

 1. the assembly language opcode,

 2. the S2 = 0 field of the microinstruction,

 3. the S2 = 1 field of the microinstruction, and

 4. a constant register 0x20 which is used only when the computer is started.

Here is the circuit for the micro–control unit, omitting only the constant register.

Chapter 15 Boz–7 Implementation of the CPU

Page 561 CPSC 5155 Last Revised July 9, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Summary of Control Signals

This is a summary of control signals, organized by bus and functional unit. It is designed to

support discussions of microprogramming, but can stand on its own as a handy table.

Code Bus 1 Bus 2 Bus 3 ALU

0

1 PC  B1 1  B2 B3 PC tra1

2 MAR  B1 B3  MAR tra2

3 R  B1 R  B2 B3 R shift

4 IR  B1 B3  IR not

5 SP  B1 B3  SP add

6 MBR  B2 B3  MBR sub

7 IOD B2 B3  IOD and

8 B3  IOA or

9 xor

10

Miscellaneous control signals Specified by the M1 and M2 fields

These fields are not encoded, so that each bit can be set separately. Each of M1 and M2 is a

four bit field, having bits Bit3, Bit2, Bit1, and Bit0.

 Bit Number Shift Select Other Signals

 Bit3 L / R READ

 Bit2 A WRITE

 Bit1 C extend

 Bit0 0  RUN

Micro-Code Format

The following assumes no more than 256 micro-words in the control store.

 On Off Next Address if

Micro-Op B1 B2 B3 ALU M1 M2 Branch = 0 Branch = 1

4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 4 bit 8 bit 8 bit

Four–bit field format

Bit3 Bit2 Bit1 Bit0

