
Page 444 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Chapter 12 – An Overview of Computer Architecture

We now begin an overview of the architecture of a typical stored program computer. It

should be noted that this architecture is common to almost all computers running today, from

the smallest industrial controller to the largest supercomputer. What sets the larger

computers, such as the IBM ASCII Blue (a supercomputer capable of 10
15

 floating point

operations per second), apart from the typical PC is that many larger computers are built

from a large number of processor and memory modules that communicate and work

cooperatively on a problem. The basic architecture is the same.

Stored program computers have four major components: the CPU (Central Processing Unit),

the memory, I/O devices, and one or more bus structures to allow the other three components

to communicate. The figure below illustrates a typical architecture.

Figure: Top-Level Structure of a Computer

The functions of the three top-level components of a computer seem to be obvious. The I/O

devices allow for communication of data to other devices and the users. The memory stores

both program data and executable code in the form of binary machine language. The CPU

comprises components that execute the machine language of the computer. Within the CPU,

it is the function of the control unit to interpret the machine language and cause the CPU to

execute the instructions as written. The Arithmetic Logic Unit (ALU) is that component of

the CPU that does the arithmetic operations and the logical comparisons that are necessary

for program execution. The ALU uses a number of local storage units, called registers, to

hold results of its operations. The set of registers is sometimes called the register file.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 445 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Fetch-Execute Cycle

As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program

computer. The CPU fetches each instruction from the memory unit, then executes that

instruction, and fetches the next instruction. An exception to the “fetch next instruction” rule

comes when the equivalent of a Jump or Go To instruction is executed, in which case the

instruction at the indicated address is fetched and executed.

Registers vs. Memory

Registers and memory are similar in that both store data. The difference between the two is

somewhat an artifact of the history of computation, which has become solidified in all

current architectures. The basic difference between devices used as registers and devices

used for memory storage is that registers are usually faster and more expensive (see below

for a discussion of registers and Level–1 Cache).

The origin of the register vs. memory distinction can be traced to two computers, each of

which was built in the 1940‟s: the ENIAC (Electronic Numerical Integrator and Calculator –

becoming operational in 1945) and the EDSAC (Electronic Delay Storage Automatic

Calculator – becoming operational in 1949). Each of the two computers could have been

built with registers and memory implemented with vacuum tubes – a technology current and

well-understood in the 1940‟s. The difficulty is that such a design would require a very large

number of vacuum tubes, with the associated cost and reliability problems. The ENIAC

solution was to use vacuum tubes in design of the registers (each of which required 550

vacuum tubes) and not to have a memory at all. The EDSAC solution was to use vacuum

tubes in the design of the registers and mercury delay lines for the memory unit.

In each of the designs above, the goal was the same – to reduce the number of “storage units”

that required the expensive and hard-to-maintain vacuum tubes. This small number of

storage units became the register file associated with the central processing unit (CPU). It

was not until the MIT Whirlwind in 1952 that magnetic core memory was introduced.

In modern computers, the CPU is usually implemented on a single chip. Within this context,

the difference between registers and memory is that the registers are on the CPU chip while

most memory is on a different chip. Now that L1 (level 1) caches are appearing on CPU

chips (all Pentium™ computers have a 32 KB L1 cache), the main difference between the

two is the method used by the assembly language to access each. Memory is accessed by

address as if it were in the main memory that is not on the chip and the memory management

unit will map the access to the cache memory as appropriate. Register memory is accessed

directly by specific instructions. One of the current issues in computer design is dividing the

CPU chip space between registers and L1 cache: do we have more registers or more L1

cache? The current answer is that it does not seem to make a difference.

Both memory and registers can be viewed as collections of D flip-flops, as discussed in a

previous chapter. The main difference is that registers (as static memory) may actually be

built from these flip-flops, while computer memory is fabricated from a different technology

called dynamic memory. We often describe main memory as if it were fabricated from flip-

flops as this leads to a model that is logically correct.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 446 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

A flip-flop stores one bit of data. An N–bit register is a collection of N flip-flops; thus a

32–bit register is built from 32 flip-flops. The CPU contains two types of registers, called

special purpose registers and general purpose registers. The general purpose registers

contain data used in computations and can be accessed directly by the computer program.

The special purpose registers are used by the control unit to hold temporary results, access

memory, and sequence the program execution. Normally, with one now-obsolete exception,

these registers cannot be accessed by the program.

The program status register (PSR), also called the program status word (PSW), is one of

the special purpose registers found on most computers. The PSR contains a number of bits to

reflect the state of the CPU as well as the result of the most recent computation. Some of the

common bits are

 C the carry-out from the last arithmetic computation

 V Set to 1 if the last arithmetic operation resulted in an overflow

 N Set to 1 if the last arithmetic operation resulted in a negative number

 Z Set to 1 if the last arithmetic operation resulted in a zero

 I Interrupts enabled (Interrupts are discussed later)

More on the CPU (Central Processing Unit)

The central processing unit contains four major elements

 1) The ALU (Arithmetic Logic Unit), and

 2) The control unit, and

 3) The register file (including user registers and special-purpose registers), and

 4) A set of buses used for communications within the CPU.

The next figure shows a better top-level view of the CPU, showing three data buses and an

ALU optimized for standard arithmetic. Most arithmetic (consider addition: C = A + B) is

based on production of a result from two arguments. To facilitate such operations, the ALU

is designed with two inputs and a single output. As each input and output must be connected

to a bus internal to the CPU, this dictates at least three internal CPU buses.

The register file contains a number of general-purpose registers accessible to the assembly

language operations (often numbered 0 through some positive integer) and a number of

special-purpose registers not directly accessed by the program. With numbered registers (say

R0 through R7) it is often convenient to have R0 be identically 0. Such a constant register

greatly simplifies the construction of the control unit.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 447 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Some of the special purpose registers used by the central processing unit are listed next.

 PC the program counter contains the address of the assembly language instruction

 to be executed next.

 IR the instruction register contains the binary word corresponding to the machine

 language version of the instruction currently being executed.

 MAR the memory address register contains the address of the word in main memory

 that is being accessed. The word being addressed contains either data or

 a machine language instruction to be executed.

 MBR the memory buffer register (also called MDR for memory data register) is the

 register used to communicate data to and from the memory.

We may now sketch some of the operation of a typical stored program computer.

 Reading Memory First place an address in the MAR.

 Assert a READ control signal to command memory to be read.

 Wait for memory to produce the result.

 Copy the contents of the MBR to a register in the CPU.

 Writing Memory First place and address in the MAR

 Copy the contents of a register in the CPU to the MBR.

 Assert a WRITE control signal to command the memory.

We have mentioned the fetch-execute cycle that is common to all stored program computers.

We may now sketch the operation of that cycle

 Copy the contents of the PC into the MAR.

 Assert a READ control signal to the memory.

 While waiting on the memory, increment the PC to point to the next instruction

 Copy the MBR into the IR.

 Decode the bits found in the IR to determine what the instruction says to do.

The control unit issues control signals that cause the CPU (and other components of the

computer) to fetch the instruction to the IR (Instruction Register) and then execute the actions

dictated by the machine language instruction that has been stored there. One might imagine

the following sequence of control signals corresponding to the instruction fetch.

 T0: PC to Bus1, Transfer Bus1 to Bus3, Bus3 to MAR, READ.

 T1: PC to Bus1, +1 to Bus2, Add, Bus3 to PC.

 T2: MBR to Bus2, Transfer Bus2 to Bus3, Bus3 to IR.

This simple sequence introduces a number of concepts that will be used later.

 1. The internal buses of the CPU are named Bus1, Bus2, and Bus3.

 2. All registers can transfer data to either Bus1 or Bus2.

 3. Only Bus3 can transfer data into a register.

 4. Only the ALU can transfer data from either Bus1 to Bus3 or Bus2 to Bus3.

 It does this by a specific transfer operation.

 5. Control signals are named for the action that they cause to take place.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 448 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Operation of the Control Unit

We now examine very briefly the two most common methods for building a control unit.

Recall that the only function of the control unit is to emit control signals, so that the design of

a control unit is just an investigation of how to generate control signals. There are two major

classes of control units: hardwired and microprogrammed (or microcoded). In order to

see the difference, let‟s write the above control signals for the common fetch sequence in a

more compact notation.

 T0: PC  Bus1, TRA1, Bus3  MAR, READ.

 T1: PC  Bus1, +1  Bus2, ADD, Bus3  PC.

 T2: MBR  Bus2, TRA2, Bus3  IR.

Here we have used ten control signals. Remember that the ALU has two inputs, one from

Bus1, one from Bus2, and outputs its results on Bus3. The control signals used are:

 PC  Bus1 Copy the contents of the PC (Program Counter) onto Bus1

 +1  Bus2 Copy the contents of the constant register +1 onto Bus2.

 MBR  Bus2 Copy the contents of the MBR (Memory Buffer Register) onto Bus2

 TRA1 Causes the ALU to copy the contents of Bus1 onto Bus3

 TRA2 Causes the ALU to copy the contents of Bus2 onto Bus3

 ADD Causes the ALU to add the contents of Bus1 and Bus2,

 placing the sum onto Bus3.

 READ Causes the memory to be read and place the results in the MBR

 Bus3  MAR Copy the contents of Bus3 to the MAR (Memory Address Register)

 Bus3  PC Copy the contents of Bus3 to the PC (Program Counter)

 Bus3  IR Copy the contents of Bus3 to the IR (Instruction Register)

All control units have a number of important inputs, including the system clock, the IR, the

PSR (program status register) and other status and control signals. A hardwired control

unit uses combinational logic to produce the output. The following shows how the above

signals would be generated by a hardwired control unit.

Here we assume that we have the discrete signal FETCH, which is asserted during the fetch

phase of the instruction processing, and discrete time signals T0, T1, and T2, which would be

generated by a counter within the control unit. Note here that we already have a naming

problem: there will be a distinct phase of the Fetch/Execute cycle called “FETCH”. During

that cycle, the discrete signal FETCH will be active. This discrete signal is best viewed as a

Boolean value, having only two values: Logic 1 (+5 volts) and Logic 0 (0 volts).

Chapter 12 Boz–7 Overview of Computer Architecture

Page 449 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

We next consider how a microprogrammed unit would generate the above signals. In this

discussion, we shall present a simplified picture of such a control with a number of design

options assumed; these will be explained later in the text.

The central part of a microprogrammed control unit is the micro-memory, which is used to

store the microprogram (or microcode). The microprogram essentially interprets the

machine language instructions in that it causes the correct control signals to be emitted in the

correct sequence. The microprogram, written in microcode, is stored in a read-only memory

(ROM, PROM, or EPROM), which is often called the control store.

A microprogrammed control unit functions by reading a sequence of control words into a

microinstruction buffer that is used to convert the binary bits in the microprogram into

control signals for use by the CPU. To do this, there are several other components

 the MAR the micro-address of the next control word to read

 the MBR this holds the last control word read from the micro-memory

 the sequencer this computes the next value of the address for the MAR.

The figure below shows the structure of a sample microprogrammed control unit.

The microprogram for the three steps in fetch would be
10010 00011

11001 01000

00100 10100

Chapter 12 Boz–7 Overview of Computer Architecture

Page 450 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The Pipelined CPU

Pipelining is a technique that allows multiple instructions to be in execution at the same time

within the CPU. Some of the techniques used, such as instruction pre–fetching, date back to

the development of the IBM Stretch (7030) in the early 1950‟s. While it is possible that most

of the theory of pipelining was developed that early, it was not until the arrival of VLSI chips

with their excess of transistors that pipelining really became effective.

While the design is called “pipelining”, it really ought to be called “assembly lining”,

because an instruction pipeline resembles nothing so much as the assembly line in an

automobile plant. At each stage in an automobile assembly line, a distinct operation is

performed on the car assembly, leading at the end to a complete automobile. In a CPU

pipeline, the execution of an instruction is broken into primitive steps that are assigned to

independent units.

The Assembly Line

Here is a picture of the Ford assembly line in 1913. It is the number of cars per hour that roll

off the assembly line that is important, not the amount of time taken to produce any one car.

Henry Ford began working on the assembly line concept about 1908 and had essentially

perfected the idea by 1913. His motivations are worth study. In earlier years, automobile

manufacture had been done by highly skilled technicians, each of whom assembled the whole

car. It occurred to Mr. Ford that he could get more get more workers if he did not require

such a high skill level. One way to do this was to have each worker perform only a small

number of tasks related to manufacture of the entire automobile. It soon became obvious that

is was easier to bring the automobile to the worker than have the worker (and his tools) move

to the automobile. The CPU pipeline has a number of similarities.

 1. The execution of an instruction is broken into a number of simple steps, each

 of which can be handled by an efficient execution unit.

 2. The CPU is designed so that it can simultaneously be executing a number of

 instructions, each in its own distinct phase of execution.

 3. The important number is the number of instructions completed per unit time,

 or equivalently the instruction issue rate.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 451 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The MIPS Pipeline

The best way to discuss the pipeline idea is to show a sample high–level diagram. This is the

pipeline for the MIPS (Microprocessor without Interlocked Pipeline Stages [R105]) that was

developed in 1981 by a team at Stanford University lead by John L. Hennessy. Our

description of the CPU for the MIPS comes from the standard text by Patterson and

Hennessy [R80]; the second author was the one who lead the development team.

The MIPS pipeline design is based on the five–step instruction execution discussed; the

pipeline will have five stages, with one stage for each step in the execution of a typical

instruction.

 1. IF: Fetch instruction from memory.

 2. ID: Decode the instruction and read two registers.

 3. EX: Execute the operation or calculate an address.

 4. MEM: Access an operand in data memory or write back a result.

 5. WB: For LW (load word) only, write the results of the memory read into a register.

Here is a figure, taken from [R80] to illustrate the MIPS pipeline. It shows the execution

pipeline broken into five stages, with additional register sets inserted between the stages.

Thus, we have the IF/ID (Instruction Fetch / Instruction Decode) register set between the first

two stages. Note also, the three ALUs; two extra are required to support pipelining. One

should consider the instructions as moving from left to right in this pipeline; those to the right

are in a more advanced stage of execution.

A fuller explanation of this figure will be given in the graduate course on computer

architecture. The only reason for showing it here is to make two points.

 1. The execution of an instruction can be broken into sequential stages.

 2. There is additional hardware required to support pipelining.

As a design feature, pipelining is similar to very many enhancements. If added “after the

fact”, it will be very hard to implement correctly. It is much better to design the ISA

(Instruction Set Architecture) with pipelining in mind. This brings home a very important

feature of design: the compilers, operating system, ISA, and hardware implementation must

all be designed at the same time. Put another way, the system must be designed as a whole,

with appropriate trade–offs between subsystems in order to optimize the overall performance.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 452 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Features of the MIPS design that were intended to facilitate pipelining include:

 1. The fact that all instructions are the same length.

 2. The small number of instruction formats.

 3. The regularity of the instruction format, always beginning with a 6–bit opcode,

 followed by two 5–bit register identifiers.

 4. The use of the load/store design, restricting memory accesses to

 only two, well defined, steps.

 5. The fact that only one instruction writes to memory and that as the last stage in

 instruction execution. This has major impact on the design to handle interrupts,

 especially the page–fault interrupts generated by a virtual memory system.

Many of these features are precisely those that characterize a RISC design, as discussed later

in this chapter. In fact, the MIPS is properly called a RISC architecture. The reader is

advised to consult with the referenced textbook [R80] for more details on this design.

In order to discuss the operation of the pipeline and focus on the difficulties associated with a

correct pipeline design, we focus on a five–line fragment of MIPS assembly language.

 SUB $2, $1, $3 # The “$” denotes a register. $2

 AND $12, $2, $5 # is register 2 in the register file.

 OR $13, $6, $2 # Note that $2 is used in each line.

 ADD $14, $2, $2 # 100($2) is an address calculation.

 SW $15, 100($2) # Add 100 to contents of $2.

Ideally a pipelined CPU should function in much the same way as an automobile assembly

line; each stage operates in complete independence of every other stage. The instruction is

issued and enters the pipeline. It then moves through each of the execution stages, until it is

completed and exits the pipeline. The next table shows the stage of execution for each of the

five instructions above for each clock cycle. In clock cycle 5, the SUB instruction is in WB,

the AND instruction is in MEM, etc.

Time (Clock Cyles) CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9
SUB $2, $1, $3 IF ID EX MEM WB
AND $12, $2, $5 IF ID EX MEM WB
OR $13, $6, $2 IF ID EX MEM WB
ADD $14, $2, $2 IF ID EX MEM WB
SW $15, 100($2) IF ID EX MEM WB

Another way to look at this is ordered by clock pulse and shows what four of the five stages

in the pipeline is doing at any given time. WB is omitted to keep the table readable.

CC IF ID EX MEM

1 SUB $2, $1, $3 An earlier instruction. An earlier instruction. An earlier instruction.

2 AND $12, $2, $5 SUB $2, $1, $3 An earlier instruction. An earlier instruction.

3 OR $13, $6, $2 AND $12, $2, $5 SUB $2, $1, $3 An earlier instruction.

4 ADD $14, $2, $2 OR $13, $6, $2 AND $12, $2, $5 SUB $2, $1, $3

5 SW $15, 100($2) ADD $14, $2, $2 OR $13, $6, $2 AND $12, $2, $5

Chapter 12 Boz–7 Overview of Computer Architecture

Page 453 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

We can use either of these two tables to examine the progression of instructions through the

execution pipeline. Ideally, as an instruction progresses through the pipeline it does not

depend on the results of any other instruction now in the pipeline. Obviously, this cannot

always be the case; in our example above, it is not the case.

There is one absolute requirement for correct operation of a pipeline. We use the above code

fragment to illustrate this requirement.

 SUB $2, $1, $3

 AND $12, $2, $5

 OR $13, $6, $2

 ADD $14, $2, $2

 SW $15, 100($2)

The effect of executing this code must be the same as it would have been had the code been

executed on a simple non–pipelined CPU. In particular, the value in register $2, computed in

the first instruction, must be the value used in all following instructions. Suppose that the

effect of the SUB instruction is to change the value stored in $2 from 10 to –20. The next

four instructions must use this new value, not the older value of +10.

What can we say that will always be true about pipelined execution?

 1. It is not possible for any instruction to depend on the results of instructions

 that will execute in the future. This is a logical impossibility.

 2. Instructions can have dependence only on those previously executed; however,

 there are no issues associated with dependence on instructions that have completed

 execution and exited the pipeline. Results of these instructions have been stored in

 either the memory or register file, and are available for immediate use.

 3. It is possible, and practical, to design a compiler that will minimize problems in

 the pipeline. This is a desirable result of the joint design of compiler and ISA.

 4. It is not possible for the compiler to eliminate all pipelining problems without

 reducing the CPU to a non–pipelined datapath, which is unacceptably slow.

A pipeline hazard occurs when an instruction cannot complete a step in its execution, due to

some event in the previous clock cycle. When an instruction must be held for one or more

clock pulses in order to complete a step in its execution, this is called a “pipeline stall”,

informally a “bubble”. These pipeline problems are called hazards. They come in three

varieties: structural hazards, data hazards, and control hazards. Structural hazards occur

when the instruction set architecture does not match the design of the control unit. In other

words, the hardware cannot support the combination of instructions that we want to execute

in the same clock cycle. Careful design can eliminate this type of problem.

Data hazards are due to tight dependencies in sequences of machine language instructions.

These occur when one step in the pipeline must await the completion of a previous

instruction. A good compiler can reduce these hazards, but not eliminate them. Our example

code section above illustrates a typical data hazard.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 454 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The next figure, taken from [R80] assumes that the effect of the first instruction is to change

the contents of register $2 from 10 to –20. This result is not available in the register file until

the first half of CC 5; thus the two instructions (AND, OR) following the first get bad values.

Control hazards, also called branch hazards, arise from the need to make a decision based

on the results of one instruction while others are executing. A typical example would be the

execution of a conditional branch instruction. If the branch is taken, the instructions

currently in the pipeline might be invalid. As an example, consider the following execution

flow which has no data hazards.

 The instruction at address 40 is in the Execution stage of the datapath,

 The instruction at address 44 is in the Instruction Decode stage, and

 The instruction at address 48 is in the Instruction Fetch stage.

The MIPS is a byte–addressable machine, with 32–bit instructions. The address of the

instruction after that at 40 is 44. When the BEQ executes, the PC already has value 44. The

branch target address is the value 7 multiplied by 4 and added to the PC; 47 + 44 = 72.

40 BEQ $1, $3, 7 # Branch if ($1 == $3)

44 AND $12, $2, $5

48 OR $13, $6, $2

52 ADD $14, $2, $2

72 LW $4, 50($7)

There are two possible outcomes for the execution of the BEQ:

 1. The branch is not taken. Execution proceeds without delay.

 2. The branch is taken. The partially executed instructions at addresses 44 and 48 must

 be removed from the pipeline without having changed the machine state.

A more thorough discussion of pipelining, pipeline hazards, and the remedies to those

hazards would be interesting but take too much time. This textbook requires a knowledge of

what a data hazard is, because they are considered in the design of some supercomputers.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 455 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Levels of Machines and Virtual Machines

As with any system, a computer can be viewed from a number of perspectives or levels of

detail. Each level corresponds to a virtual machine – one able to execute directly a specific

language. For example, many people view computers as virtual machines that directly

execute e-mail programs, spread sheets, or word processors. These people do not care about

the lower level instructions that actually cause the machine to function, nor should they.

Put another way, many people consider the computer as just another appliance – that is,

something that does its job with little human interaction. In this author‟s opinion, this fact is

one of the major achievements of the computer industry.

“Levels” of Automobiles

In order to motivate the idea of levels of machines, let us consider what might be called

“levels of automobiles” or more precisely, the level of detail at which a particular user

chooses to understand an automobile. As an example, let us think about the Rolls Royce

Phantom (the 2004 model is priced at only $470,000, in case you want to buy one). There

are a number of levels at which to view this automobile.

The automobile collector will view the car as a work of art. The possibility that one might

drive the thing might not even occur to him or her.

The VIP (very rich person or diplomat) will view the automobile as something that

transports him or her to the desired destination. Admittedly, the automobile does not drive

itself, but it might as well, given the fact that it almost always has a paid chauffeur.

The casual driver will understand the basics of operating the vehicle – use of the keys,

transmission, steering wheel, and other controls. To this person, the automobile is just a

machine that can be controlled in predictable ways.

The more involved driver will, in addition, understand that the automobile comprises a

number of subsystems, such as the chassis, engine, transmission, and electronic systems. He

or she will understand the necessity of system maintenance without being able to perform it.

The automobile mechanic will understand the details of each of the automobile subsystems

and how to repair them. Note that this is a lower (more detailed) level of understanding than

the involved driver. The mechanic not only understands that the subsystems exist but also

understands how they work and how to fix them.

The automobile engineer will understand one of the subsystems in detail, for example the

detailed kinetics of fuel combustion, metallurgy of the engine block, or dynamics of the

electrical system.

Using this analogy, the goal of this course is to give the student an understanding of a

computer somewhere between that of a mechanic and an engineer.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 456 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Levels of Machines in the Computer Hierarchy

A traditional view of the computer (see Tanenbaum [R15] or Murdocca & Heuring [R16])

presents between five and eight levels of machines. Here we construct a typical list.

 9. Application Programs (Appliance level),

 8. High Level (Problem Oriented) Languages,

 7. Assembly language,

 6. Operating system services (such as BIOS calls)

 5. Binary machine language,

 4. Micro-operation level (usually microprogramming),

 3. Functional units (memory, ALU, etc.)

 2. Logic gates, including SSI and MSI components.

 1. Transistors and wires.

We skip over level 9 (application programs) and begin our top-down study with level 8 (High

Level Languages). A high-level language programmer may experience the computer as a

machine that directly executes the high-level language, such as C++, Visual Basic, COBOL,

or FORTRAN. In fact, very few machines are designed for direct execution of high-level

languages (there are several LISP machines and a FORTH machine), but one may imagine a

virtual machine that does exactly that. In practice, most virtual machines operating at the

high-level language level achieve their effect by compiling the program into a form suitable

for execution on a lower-level machine. The figure below shows two of the more common

ways in which a high-level language virtual machine functions.

Before discussing this figure, it is important to understand the differences between level 6

(the Operating System/BIOS level) and level 5 (the Binary Machine Language level). In

some aspects, levels 5 and 6 are identical. The major difference is that level 6 may be

regarded as providing standard service routines, such as those in the Basic Input-Output

System (BIOS). The operating code for both levels 5 and 6 is binary machine code.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 457 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Some compilers (mainly the older ones) compile directly to assembly language, which is then

assembled into calls to level 6 machine language. Some compile directly to level 6 code.

At this point, we see an important part of the separation of levels. Consider modern

languages, such as C++ and Java. At level 8, all computers that execute such code appear to

be almost identical, with slight differences (such as integer sizes) that can be handled by use

of macros and other definitions. At level 7, the computers may appear quite different as each

computer brand seems to have its own particular assembly language.

The transition between levels 6 and 7 (assembly language & O/S services) and level 5 is

often achieved by a linking loader. This transition allows programs to be loaded at any free

part of memory, rather than at fixed locations (as was the case with some earlier machines).

Thus we have two views of machines – the level 6/7 virtual machine in which the program

always loads at a fixed location and the level 5 machine in which the program is relocated.

The split between levels 5 and 4 reflects the fact that there are a number of ways in which to

implement a Central Processing Unit (CPU) to execute a machine language. The two

primary methods for machine language execution are hard-wired and microprogrammed.

This separation between these two levels allows a company to build a series of computers

with widely differing performance levels but with the same assembly/machine language set.

For examples, we look to the IBM 360 series and the DEC (Digital Equipment Corporation –

no longer in business) PDP–11 series.

Here is a quote from an article by C. Gordon Bell in William Stallings []. It discusses two

different implementations of the IBM 360 family, each with the same assembly language.

“The IBM 360, introduced in 1964, was one of the earliest computer families to span

a range of price and performance. Along with the 360, IBM introduced the word

„architecture‟ to refer to the various processing characteristics of a machine as seen

by the programmer and his programs. In the initial 360 product family, the model

91 exceeded the model 20 in performance by a factor of 300, in memory size by a

factor of 512, and in price by a factor of 100.”

The next three layers form the basis for the hardware implementation of the computer. As

technology improves, we see two trends in implementation at this level: more powerful units

for the same price and equally powerful units for a lesser price. One very early example of

this was the IBM 709/7090 series, both of which implemented the same machine language

and used the same hardwired control design. The difference is that the IBM 709 used

vacuum tubes as the basic circuit elements, while the IBM 7090 used transistors.

Probably the major revolution in computer design occurred at these low levels with the

introduction to the integrated circuit to replace circuits built from discrete transistors. The

transition from vacuum tubes to transistors resulted in considerable gains in reliability and

reductions in power usage. The transition from transistors to integrated circuits, especially

VLSI (Very Large Scale Integration) chips allowed the introduction of the modern micro-

computer and all that has gone with it.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 458 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

RISC vs. CISC Computers

One of the recent developments in computer architecture is called by the acronym RISC.

Under this classification, a design is either RISC or CISC, with the following definitions.

 RISC Reduced Instruction Set Computer

 CISC Complex Instruction Set Computer.

The definition of CISC architecture is very simple – it is any design that does not implement

RISC architecture. We now define RISC architecture and give some history of its evolution.

The source for these notes is the book Computer Systems Design and Architecture, by

Vincent P. Heuring and Harry F. Jordan [R03].

One should note that while the name “RISC” is of fairly recent origin (dating to the late

1970‟s) the concept can be traced to the work of Seymour Cray, then of Control Data

Corporation, on the CDC–6600 and related machines. Mr. Cray did not think in terms of a

reduced instruction set, but in terms of a very fast computer with a well-defined purpose – to

solve complex mathematical simulations. The resulting design supported only two basic data

types (integers and real numbers) and had a very simple, but powerful, instruction set.

Looking back at the design of this computer, we see that the CDC–6600 could have been

called a RISC design.

As we shall see just below, the entire RISC vs. CISC evolution is driven by the desire to

obtain maximum performance from a computer at a reasonable price. Mr. Cray‟s machines

maximized performance by limiting the domain of the problems they would solve.

The general characteristic of a CISC architecture is the emphasis on doing more with each

instruction. This may involve complex instructions and complex addressing modes; for

example the MC68020 processor supports 25 addressing modes.

The ability to do more with each instruction allows more operations to be compressed into

the same program size, something very desirable if memory costs are high. Some historical

data will illustrate the memory issue. Better cost data are found in the chapter on memory.

Time Cost of memory Cost of disk drive

Introduction of MC6800 $500 for 16KB RAM $55,000 for 40 MB

Introduction of MC68000 $200 for 64 KB RAM $5,000 for 10 MB

Now (Micron 4/10/2002) $49 for 128 MB RAM $149 for 20 GB

Another justification for the CISC architectures was the “semantic gap”, the difference

between the structure of the assembly language and the structure of the high level languages

(COBOL, C++, Visual Basic, FORTRAN, etc.) that we want the computer to support. It was

expected that a more complicated instruction set (more complicated assembly language)

would more closely resemble the high level language to be supported and thus facilitate the

creation of a compiler for the assembly language.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 459 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

One of the first motivations for the RISC architecture came from a careful study of the

implications of the semantic gap. Experimental studies conducted in 1971 by Donald Knuth

and 1982 by David Patterson showed that nearly 85% of a programs statements were simple

assignment, conditional, or procedure calls. None of these required a complicated instruction

set. It was further notes that typical compilers translated complex high level language

constructs into simpler assembly language statements, not the complicated assembly

language instructions that seemed more likely to be used.

The results of this study are quoted from an IEEE Tutorial on RISC architecture [R05]. This

table shows the percentages of program statements that fall into five broad classifications.

Language Pascal FORTRAN Pascal C SAL

Workload Scientific Student System System System

Assignment 74 67 45 38 42

Loop 4 3 5 3 4

Call 1 3 15 12 12

If 20 11 29 43 36

GOTO 2 9 -- 3 --

Other 7 6 1 6

The authors of this study made the following comments on the results.

“There is quite good agreement in the results of this mixture of languages and

applications. Assignment statements predominate, suggesting that the simple

movement of data is of high importance. There is also a preponderance of

conditional statements (If, Loop). These statements are implemented in machine

language with some sort of compare and branch instruction. This suggests that the

sequence control mechanism is important.”

The “bottom line” for the above results can be summarized as follows.

 1) As time progresses, more and more programs will be written in a compiled high-

 level language, with much fewer written directly in assembly language.

 2) The compilers for these languages do not make use of the complex instruction

 sets provided by the architecture in an attempt to close the semantic gap.

In 1979, the author of these notes attended a lecture by a senior design engineer from IBM.

He was discussing a feature of an architecture that he designed: he had put about 6 months of

highly skilled labor into implementing a particular assembly language instruction and then

found that it was used less than 1/10,000 of a percent of the time by any compiler.

So the “semantic gap” – the desire to provide a robust architecture for support of high-level

language programming turned out to lead to a waste of time and resources. Were there any

other justifications for the CISC design philosophy?

Chapter 12 Boz–7 Overview of Computer Architecture

Page 460 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The other motivation for the RISC architecture is that a complex instruction set implies a

slower computer. It is not just the fact that the more complex instructions execute more

slowly than the simpler instructions. There is also the fact that making a CPU capable of

handling more complex instructions causes it to execute simple instructions more slowly.

Thus we are facing the facts that the more complex instruction sets are not necessary and that

dropping the ability to support them will yield a faster CPU. There are other factors that

favor the RISC architecture, specifically the fact that speed-up techniques such as instruction

pre-fetching and instruction pipelining are more easily achieved for simple instructions.

The name RISC, Reduced Instruction Set Computer, focuses on reducing the number and

complexity of instructions in the machine. A number of common strategies are:

 1) Fixed instruction length, generally one word. This simplifies instruction fetch.

 2) Simplified addressing modes.

 3) Fewer and simpler instructions in the instruction set.

 4) Only load and store instructions access memory; no add memory to register, etc.

 5) Let the compiler do it. Use a good compiler to break complex high-level language

 statements into a number of simple assembly language statements.

The philosophy behind the RISC approach is well described in the IEEE tutorial. Here we

pick up on a narrative by a design engineer who worked on the IBM 801 project.

“About this point, several people, including those who had been working on

microprogramming tools, began to rethink the architectural design principles of the

1970‟s. In trying to close the „semantic gap‟, these principles had actually

introduced a ‟performance gap‟. The attempt to bridge the gap with WCS‟s

[Writable Control Stores – microprogrammed control units] was unsuccessful.”

“A new computer design philosophy evolved: Optimizing compilers could be used to

compile „normal‟ programming languages down to instructions that were as

unencumbered as microinstructions in a large virtual address space, and to make the

instruction cycle time as fast as the technology would allow. These machines would

have fewer instructions – a reduced set – and the remaining instructions would be

simple and would generally execute in one cycle – reduced instructions – hence the

name reduced instruction set computers (RISC‟s). RISC‟s inaugurated a new set of

architectural design principles.

1. Functions should be kept simple unless there is a very good reason to do

 otherwise.

2. Microinstructions should not be faster than simple instructions.

3. Microcode is not magic.

4. Simple decoding and pipelined execution are more important than

 program size.

5. Compiler technology should be used to simplify instructions rather

 than to generate complex instructions.”

Chapter 12 Boz–7 Overview of Computer Architecture

Page 461 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The narrative from the tutorial continues with remarks on the RISC architectures developed

at the University of California at Berkeley.

“Although each project [the Berkeley RISC I and RISC II and the IBM 801] had

different constraints and goals, the machines they eventually created have a great

deal in common.

1. Operations are register-to-register, with only LOAD and STORE

 accessing memory.

2. The operations and addressing modes are reduced. Operations between

registers complete in one cycle, permitting a simpler, hardwired control for each

RISC, instead of microcode. Multiple-cycle instructions such as floating-point

arithmetic are either executed in software or in a special-purpose processor.

(Without a coprocessor, RISC‟s have mediocre floating-point performance.) Only

two simple addressing modes, indexed and PC-relative, are provided. More

complicated addressing modes can be synthesized from the simple ones.

3. Instruction formats are simple and do not cross word boundaries. This

restriction allows RISC‟s to remove instruction decoding time from the critical

execution path. … RISC register operands are always in the same place in the

32-bit word, so register access can take place simultaneously with opcode decoding.

This removes the instruction decoding stage from the pipelined execution, making it

more effective by shortening the pipeline.”

There are a number of other advantages to the RISC architecture. We list a few

Better Access to Memory

According to the IEEE Tutorial

“Register-oriented architectures have significantly lower data memory bandwidth.

Lower data memory bandwidth is highly desirable since data access is less

predictable than instruction access and can cause more performance problems.”

We note that, even at 6.4 GB/second data transfer rates, access to memory is still a bottleneck

in modern computer design, so any design that reduces the requirement for memory access

(here called reducing the memory bandwidth) would be advantageous.

Better Support of Compilers
According to the IEEE Tutorial

“The load/store nature of these [existing RISC] architectures is very suitable for

effective register allocation by the compiler; furthermore, each eliminated memory

reference results in saving an entire instruction.”

We note here that more effective register allocation by a compiler will usually result in

faster-running code. We see this as another advantage of the RISC design.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 462 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The Dynamic–Static Interface

In order to understand the DSI, we must place it within the context of a compiler for a

higher–level language. Although most compilers do not emit assembly language, we shall

find it easier to under the DSI if we pretend that they do.

What does the compiler output? There are two options:

 1. A very simple assembly language. This requires a sophisticated compiler.

 2. A more complex assembly language. This may allow a simpler compiler,

 but it requires a more complex control unit.

The DSI really defines the division between what the compiler does and what the

microarchitecture does. The more complexity assigned to the compiler, the less that is

assigned to the control unit, which can be simpler, faster, and smaller.

One should put the DSI conversation within the context of the fact that we have become very

good at writing efficient compilers. This is especially true in management of the register file,

as well as identifying code segments that can be run in parallel, were parallel execution units

available. Some modern hardware architectures explicitly allow multiple instructions to be

issued at once, but depend on the compiler to issue execution packets. While this grouping

of instructions into execution packets could be done by hardware at execution time, that

would lead to a great increase in hardware complexity.

Instruction Pre-Fetching

One advantage of the RISC architecture is seen in the process referred to as

instruction pre-fetching. In this process, we view the fetch-execute process as a pipeline.

In a traditional fetch-execute machine, the instruction is first fetched from memory and then

executed. Very early in CPU design, it was recognized that the fetch unit should be doing

something during the time interval for executing the instruction. The logical thing for the

fetch unit to do was to fetch the instruction in the next memory location on the chance that it

would be the instruction that would be executed next. This process has been shown to

improve computer performance significantly. The logic to pre-fetch instructions is facilitated

by the RISC design philosophy that all instructions are the same size, so in a machine based

on 32-bit words the pre-fetch unit just grabs the next four bytes.

Instruction pre-fetching appears rather simple, except in the presence of program jumps, such

as occur in the case of conditional branches and the end of program loops. A lot of work has

gone into prediction of the next instruction in such cases, where there are two instructions

that could be executed next depending on some condition. It may be possible to execute both

candidate instructions and discard the result of the instruction not in the true execution path.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 463 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Implications for the Control Unit

The complex instructions in a CISC computer tend to require more support in the execution

than can conveniently be provided by a hardwired control unit. For this reason, most CISC

computers are microprogrammed to handle the complexity of each of the instructions. For

this reason, most CISC instructions require a number of system clock cycles to execute. The

RISC approach emphasizes use of a simpler instruction set that can easily be supported by a

hardwired control unit. As a side effect, most RISC instructions can be executed in one clock

cycle. A given computer program will compile into more RISC instructions than CISC

instructions, but the CISC instructions execute more slowly than the RISC instructions. The

overall effect on the computer program may be hard to predict. According to the tutorial

“Reducing the instruction set further reduces the work a RISC processor has to do.

Since RISC has fewer types of instructions than CISC, a RISC instruction requires

less processing logic to interpret than a CISC instruction. The effect of such

simplification is to speed up the execution rate for RISC instructions. In a RISC

implementation it is theoretically possible to execute an instruction each time the

computer‟s logic clock ticks. In practice the clock rate of a RISC processor is

usually three times that of the instruction rate.”

We close this section by giving a comparison of some RISC and CISC computers and

quoting some of the experience of the Digital Equipment Corporation when it tried to

manufacture a RISC version of its Micro-VAX (a follow-on to the PDP-11). Here is the

table, taken from the IEEE tutorial on RISC architecture.

 CISC Type Computers RISC Type
 IBM 370/168 VAX-11/780 Intel 8086 RISC I IBM 801
Developed 1973 1978 1978 1981 1980
Instructions 208 303 133 31 120
Instruction size (bits) 16 – 48 16 – 456 8 – 32 32 32
Addressing Modes 4 22 6 3 3
General Registers 16 16 4 138 32
Control Memory Size 420 Kb 480 Kb Not given 0 0
Cache Size 64 Kb 64 Kb Not given 0 Not given

Note the control memory size on the two RISC type computers – each has no control

memory. This implies that the control unit is purely hardwired. Experience in the 1980‟s

and early 1990‟s suggested that microprogrammed control units were preferable, even if they

were a bit slower than hardwired units. It was argued that the speed of the control unit was

not the limiting factor in performance, and it probably was not. The plain fact, however, was

that implementing a hardwired control unit for some of the complex instruction sets was a

daunting challenge not willingly faced by the computer designers. Rather than spend a great

fortune on designing, building, and debugging such a unit, they elected to create control units

that could be managed – these were microprogrammed.

With the development of RISC architecture, hardwired control units again became feasible.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 464 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Another Look at Microprogrammed Control Units

In considering the RISC design, we should recognize the fact that it is not equivalent to use

of a hardwired control unit; only more compatible with such a unit. Many modern control

units might be considered as hybrid, with mostly hardwired control and provisions for the use

of micro-routines (in microcode) to handle useful, but complex, instructions.

It has been hinted above that microprogramming has been used as a tool to allow feasible and

cost-effective implementations of complex instruction sets. It is profitable to consider the

correlation between complex instructions and the use of a microprogrammed control unit;

specifically asking the question of the allocation of lines of microcode to assembly language

instructions.

Digital Equipment Corporation (DEC) undertook an experiment to investigate this

correlation and produced a design yielding interesting, but not surprising, results, which are

again quoted from the IEEE tutorial on RISC architecture.

“DEC reported a subsetting experiment on two implementations of the VAX

architecture in VLSI. The VLSI VAX has nine custom VLSI chips and

implements the complete VAX-11 instruction set. DEC found that 20.0 percent

of the instructions are responsible for 60.0 percent of the microcode and yet are

only 0.2 percent of all instructions executed. By trapping to software to execute

these instructions, the MicroVAX 32 was able to fit the subset architecture onto

only one chip, with an optional floating-point processor on another chip. .. The

VLSI VAX uses five to ten times the resources of the MicroVAX 32 to

implement the full instruction set, yet is only 20 percent faster.”

 VLSI VAX MicroVAX 32

VLSI Chips 9 2

Microcode 480K 64K

Transistors 1250K 101K

The result is obvious – a simple and cheaper computer will do most of what you want. The

rest can be better done in software.

The RISC/370

This is your authors name for a hardware / software architecture developed by David A.

Patterson [R104]. This experiment focused on the IBM S/360 and S/370 as targets for a

RISC compiler. One model of interest was the S/360 model 44. The S/360 model 44

implements only a subset of the S/360 architecture in hardware; the rest of the functions are

implemented in software. This allows for a simpler and cheaper control unit. The Model 44

was marketed as a low–end S/360, less powerful and less costly.

A compiler created for the RISC computer IBM 801 was adapted to emit code for the S/370

treated as a register–to–register machine, in the style of a RISC computer. Only a subset of

the S/370 instructions was used as a target for the compiler. Specifically, the type RX

(memory and register) arithmetic instructions were omitted, as were the packed decimal

instructions, all of which are designed to be memory to memory with no explicit register use.

This subset ran programs 50 percent faster than the previous best optimizing compiler that

used the full S/370 instruction set. Possibly the S/370 was an overly complex design.

Chapter 12 Boz–7 Overview of Computer Architecture

Page 465 CPSC 5155 Last Revised on July 11, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

RISC vs. CISC: Final Comments

We give the final word on the RISC versus CISC controversy to William Stallings [R06],

who ends his chapter on Reduced Instruction Set Computers with these comments.

“The work that has been done on assessing the merits of the RISC approach can be

grouped into two categories. Quantitative: Attempts to compare program size

and execution speed of programs on RISC and CISC machines that use

comparable technology. Qualitative: Examines issues such as high–level

language support and optimum use of VLSI real estate.”

“Most of the work on quantitative assessments has been done by those working on

RISC systems … and it has been, by and large, favorable to the RISC approach.”

“There are several problems with attempting such comparisons.

 1. There is no pair of RISC and CISC machines that are comparable in life–

 cycle cost, level of technology, gate complexity, sophistication of

 compiler, operating system support, and so on.

 2. No definitive test set of programs exists. Performance varies with the

 program.

 3. It is difficult to sort out hardware effects from effects due to skill in

 compiler writing.

 4. Most of the comparative analysis of RISC has been done on toy machines

 rather than commercial products. Moreover, most commercially available

 machines advertised as RISC possess a mixture of RISC and CISC

 characteristics. Thus, a fair comparison with a commercial „pure play‟

 CISC machine (e.g., VAX, Pentium) is difficult.” [R06]

