

Page 412 CPSC 5155 Last revised on July 4, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Chapter 9 Appendix – Interfacing the CPU to SDRAM

In this chapter, we consider the interface between the Boz–7 CPU and the more modern memory

technology that we have postulated in the previous chapter. There are two reasons for this

chapter. The primary reason is to illustrate the nature of such an interface. Another reason is

that your author is too lazy to change the design of the CPU control unit to be compatible with

the more modern memory designs, so he must provide an interface.

There are two parts to this interface.

 1. The interface for the memory control signals, especially the generation of the

 memory address and control signals. In the more modern terminology, the

 control signals are CAS# and RAS# (Column Address Select and Row Address

 Select, each active low).

 2. The design of the MBR (Memory Buffer Register) as an interface between the

 internal CPU busses and the memory bus.

The original Boz series of computers was designed to accommodate 64 M 32–bit words. That is

2
26

 words, each of 32 bits. Another way to put this is that the memory has size 256 MB. The

memory is addressed with a 26–bit address A[25:0].

The memory is controlled by two signals, both active high, according to the following table.

Note that READ = 1 and WRITE = 1 would seem to indicate that the memory is to be read and

written at the same time. Only one option at a time is allowed; the tie was broken arbitrarily.

READ WRITE Action

0 0 Nothing happens

0 1 CPU writes to memory

1 0 CPU reads from memory,

an arbitrary choice. 1 1

This diagram represents the address interface problem. It will be revised later in the chapter.

Immediately, we can derive equations for WE# and CS#, assuming that there is only one chip.

In actual fact there will be more than one memory chip, but the CS# developed here will be an

input to the values sent to each of the multiple chips.

READ WRITE CS# WE#

0 0 1 d

0 1 0 0

1 0 0 1

1 1 0 1

Page 413 CPSC 5155 Last revised on July 4, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Given the fact that WE# is not used when CS# = 1, we have the following equations.

Note that WE# = 0 when READ = 0 and WRITE = 0. In that case CS# = 1, so none of the

memory chips are active. If multiple memory banks are used, then the signal CS# is modified.

Here is the circuit as it would appear were we to use 4–way low–order interleaved memory.

The next step is to devise a circuit that produces the memory bus clock from the CPU clock. Just

to show that powers of two are not sacrosanct, we show a divide–by–three circuit.

This is a one–hot modulo–3 counter. On every third pulse, the input to the T flip–flop is set to 1

and that flip–flop toggles. The bus clock output from the T has frequency 1/3 of the CPU clock.

All that is generally true is the CPU clock frequency is some integer multiple of the bus clock

frequency, as the bus clock is derived from the CPU clock by methods similar to that above.

The next step is to derive RAS# and CAS# from the bus clock. The memory for our design will

be controlled in a manner similar to the MT47H128M16 discussed in the previous chapter.

CS# RAS# CAS# WE# Command / Action

1 d d d Deselect / Continue previous operation

0 1 1 1 NOP / Continue previous operation

0 0 1 1 Select and activate row

0 1 0 1 Select column and start READ burst

0 1 0 0 Select column and start WRITE burst

When CS# = 1, neither RAS# nor CAS# is important. When CS# = 0, each of RAS# and

CAS# will be driven by the memory bus, as follows.

Page 414 CPSC 5155 Last revised on July 4, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

This suggests the following truth table for determining RAS# and CAS#.

CS# Bus Clock RAS# CAS#

1 d d d

0 0 1 0

0 1 0 1

The more robust set of equations for RAS# and CAS# are as follows.

We now consider the circuitry for delivering the address to the memory chip. This is based on

the use of a number of two–to–one multiplexers that are enabled low. Just for reference, here is

a diagram of such a device as it might be fabricated from basic gates.

When E# = 0, the output of the multiplexer depends on the value of the control signal, C. When

E# = 1, the OR gate of the multiplexer is disconnected from the output.

The following table illustrates the output of this circuit when CS# = 0.

Bus Clock B3 B2 B1 B0 Comment

0 A3 A2 A1 A0 Column Address

1 A7 A6 A4 A4 Row Address

Page 415 CPSC 5155 Last revised on July 4, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The next circuit to design is one that allows the Memory Buffer Register (MBR) to be interfaced

to both the internal CPU busses and the memory bus. The CPU design, discussed in a later

chapter, calls for the MBR to take data from CPU bus B3 and place data onto CPU bus B2.

Here are the two interface scenarios for the MBR, illustrated for a single bit. In the Boz series of

computers, the MBR has 32 bits. It transfers a 32–bit word each time. The function of the MBR

is, as its name suggests, to serve as a buffer between the CPU and the memory bus. On a CPU

write to memory, the buffer holds data written by the CPU for transfer to the memory system.

On a CPU read from memory, the buffer holds data taken from memory until the CPU can

transfer the data to a register. The main issue in the data buffering is the timing difference

between the CPU clock and the memory bus clock.

 CPU Writes Data to Memory CPU Reads Data from Memory

The solution to this design problem is called a transceiver. Here is one implementation.

First consider the connection of the output of the flip–flop in the MBR.

 When WE# = 0, the output is connected to the data line in the memory bus.

 When WE# = 1, the output is connected to the bit line in the CPU bus B2.

Now consider how the flip–flop is loaded. It is a negative edge–triggered device, which loads on

the falling edge of the clock input to the flip–flop.

 When WE# = 0, the input of the flip–flop is connected to CPU bus B3.

 When WE# = 1, the input of the flip–flop is connected to the memory bus,

 which is disconnected from the output of the flip–flop.

The diagram at left shows the timing of the control signals.

The signal CS# is asserted as 0 some time during the high

phase of the bus clock and remains low until some time in the

next high phase. The clock signal to the flip–flop has a well

defined negative edge, allowing it to be loaded properly.

Putting It All Together

At this time, your author has too many questions about the design to continue. The main

question relates to how to interleave DDR2 memory chips that transmit in burst mode.

