

Page 345 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Chapter 8 Appendix – Design of the 11011 Sequence Detector

Design of Sequential Circuits

We now do the 11011 sequence detector as an example. We begin with the formal problem

statement, repeat the design rules, and then apply them.

A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when

a target sequence has been detected. There are two basic types: overlap and non-overlap.

In a sequence detector that allows overlap, the final bits of one sequence can be the start of

another sequence. Our example will be a 11011 sequence detector. It raises an output of 1

when the last 5 binary bits received are 11011. At this point, a detector with overlap will

allow the last two 1 bits to serve at the first of a next sequence. By example we show the

difference between the two detectors. Suppose an input string 11011011011.

11011 detector with overlap X 11011011011

 Z 00001001001

11011 detector with no overlap Z 00001000001

The sequence detector with no overlap allowed resets itself to the start state when the

sequence has been detected. Write the input sequence as 11011 011011. After the initial

sequence 11011 has been detected, the detector with no overlap resets and starts searching

for the initial 1 of the next sequence. The detector with overlap allowed begins with the final

11 of the previous sequence as ready to be applied as the first 11 of the next sequence; the

next bit it is looking for is the 0.

Here is an overview of the design procedure for a sequential circuit.

 1) Derive the state diagram and state table for the circuit.

 2) Count the number of states in the state diagram (call it N) and calculate the

 number of flip-flops needed (call it P) by solving the equation

 2
P-1

 < N 2
P
. This is best solved by guessing the value of P.

 3) Assign a unique P-bit binary number (state vector) to each state.

 Often, the first state = 0, the next state = 1, etc.

 4) Derive the state transition table and the output table.

 5) Separate the state transition table into P tables, one for each flip-flop.

 WARNING: Things can get messy here; neatness counts.

 6) Decide on the types of flip-flops to use. When in doubt, use all JK’s.

 7) Derive the input table for each flip-flop using the excitation tables for the type.

 8) Derive the input equations for each flip-flop based as functions of the input

 and current state of all flip-flops.

 9) Summarize the equations by writing them in one place.

 10) Draw the circuit diagram. Most homework assignments will not go this far,

 as the circuit diagrams are hard to draw neatly.

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 346 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Problem: Design a 11011 sequence detector using JK flip-flops. Allow overlap.

Step 1 – Derive the State Diagram and State Table for the Problem

The method to be used for deriving the state diagram depends on the problem. I show the

method for a sequence detector. At this point in the problem, the states are usually labeled

by a letter, with the initial state being labeled “A”, etc.

Step 1a – Determine the Number of States

It can be proven that an N-bit sequence detector requires at least N states to function

correctly. It can also be shown that a circuit with more than N states is unnecessarily

complicated and a waste of hardware; thus, an N-bit sequence detector has N states.

We are designing a sequence detector for a 5-bit sequence, so we need 5 states. We label

these states A, B, C, D, and E. State A is the initial state.

Step 1b – Characterize Each State by What has been Input and What is Expected

 State Has Awaiting

 A -- 11011

 B 1 1011

 C 11 011

 D 110 11

 E 1101 1

Step 1c – Do the Transitions for the Expected Sequence

Here is a partial drawing of the state diagram. It has only the sequence expected. Note that

the diagram returns to state C after a successful detection; the final 11 are used again.

Note the labeling of the

transitions: X / Z. Thus

the expected transition

from A to B has an input

of 1 and an output of 0.

The transition from E to

C has an output of 1

denoting that the desired

sequence has been

detected.

B

C

E

1/0
1 / 0

0 / 0

1 / 0

1 / 1

A

D

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 347 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 1d – Insert the Inputs That Break the Sequence

Each state has

two lines out

of it – one

line for a 1

and another

line for a 0.

The notes

below explain

how to handle

the bits that

break the

sequence.

A State A is the initial state. It is waiting on a 1. If it gets a 0, the machine remains

 in state A and continues to remain there while 0’s are input.

B If state B gets a 0, the last two bits input were “10”. This does not begin the

 sequence, so the machine goes back to state A and waits on the next 1.

C If state C gets a 1, the last three bits input were “111”. It can use the last two

 of these 1’s to be the first two 1’s of the sequence 11011, so the machine stays

 in state C awaiting a 0. We might have something like 1111011, etc.

D If state D gets a 0, the last four bits input were 1100. These 4 bits are not part of

 the sequence, so we start over.

E If state E gets a 0, the last five bits input were 11010. These five bits are not part of the

 sequence, so start over.

More precisely we should be discussing prefixes and suffixes. At state C with input 111, the

two bit suffix to the sequence input is 11 which is a two bit prefix of the desired sequence, so

we stay at C. At E, getting a sequence 11010, we note that the 1–bit suffix is a 0, which is

not a prefix of the desired sequence; the 2–bit suffix is 10, also not a prefix, etc.

Step 1e – Generate the State Table with Output

Present State Next State / Output

 X = 0 X = 1

A A / 0 B / 0

B A / 0 C / 0

C D / 0 C / 0

D A / 0 E / 0

E A / 0 C / 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 348 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 2 – Determine the Number of Flip-Flops Required

We have 5 states, so N = 5. We solve the equation 2
P-1

 < 5 2
P
 by inspection, noting that it

is solved by P = 3. So we need three flip-flops.

Step 3 – Assign a unique P-bit binary number (state vector) to each state.

The simplest way is to make the following assignments

 A = 000

 B = 001

 C = 010

 D = 011

 E = 100

Occasionally, a better assignment can be detected by inspection of the next state table. I note

that the next states in the table cluster into two disjoint sets for X = 0 and X = 1.

 For X = 0 the possible next states are A and D

 For X = 1 the possible next states are B, C, and E.

For this reason, I elect to give even number assignments to states A and D, and to give odd

number assignments to states B, C, and E. Being somewhat traditional, I want to assign the

state numbers in increasing order so that we don’t get totally confused. The assignment is

 A = 000

 B = 001

 C = 011 Note that states 010, 110, and 111 are not used.

 D = 100

 E = 101

Step 4 – Generate the Transition Table With Output

Note that in many designs, such as counters, the states are already labeled with binary

numbers, so the state table is the transition table. We shall label the internal state by the three

bit binary number Y2Y1Y0 and use the three-bit vectors defined above.

Present State Next State / Output

 X = 0 X = 1

 Y2Y1Y0 Y2Y1Y0 / Z Y2Y1Y0 / Z

A 0 0 0 0 0 0 / 0 0 0 1 / 0

B 0 0 1 0 0 0 / 0 0 1 1 / 0

C 0 1 1 1 0 0 / 0 0 1 1 / 0

D 1 0 0 0 0 0 / 0 1 0 1 / 0

E 1 0 1 0 0 0 / 0 0 1 1 / 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 349 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 4a – Generate the Output Table and Equation

The output table is generated by copying from the table just completed.

 The output equation can be obtained from inspection.

 As is the case with most sequence detectors, the

 output Z is 1 for only one combination of present state

 and input. Thus we get Z = X Y2 Y1’ Y0.

 This can be simplified by noting that the state 111 does

 not occur, so the answer is Z = X Y2 Y0.

Step 5 – Separate the Transition Table into Three Tables, One for Each Flip-Flop

We shall generate a present state / next state table for each of the three flip-flops; labeled Y2,

Y1, and Y0. It is important to note that each of the tables must include the complete present

state, labeled by the three bit vector Y2Y1Y0.

Y2 Y1 Y0

PS Next State PS Next State PS Next State

Y2Y1Y0 X = 0 X = 1 Y2Y1Y0 X = 0 X = 1 Y2Y1Y0 X = 0 X = 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 1 0 1 0 0 1 0 1

0 1 1 1 0 0 1 1 0 1 0 1 1 0 1

1 0 0 0 1 1 0 0 0 0 1 0 0 0 1

1 0 1 0 0 1 0 1 0 1 1 0 1 0 1

Match Y1 Y2Y0’ 0 Y0 0 1

Before trying step 6, I shall note a quick, but often messy, implementation. We look at an

implementation using D flip-flops only. For each flip-flop, we have the desired next state for

each combination of present state and input. Remember that the D flip-flop equation is

D = Q(T + 1); i.e., input to the flip-flop whatever the next state is to be. Thus, this design is

 D2 = X’Y1 + XY2Y0’

 D1 = X Y0

 D0 = X

While this may be an acceptable implementation, it is important to complete the original

design problem using JK flip-flops. What we want is input equations for J2, K2, J1, K1,

J0, and K0. Inspection of the above gives little clue for the first two flip-flops, but any

student recalling the use of a JK flip-flop to implement a D flip-flop will see immediately

that the input equation for flip-flop 0 is J0 = X and K0 = X’.

Step 6 – Decide on the type of flip-flops to be used.

The problem stipulates JK flip-flops, so we use them. As an aside, we examine the

difficulties of designing the circuit with D flip-flops.

Present State X = 0 X = 1

Y2Y1Y0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 350 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 7 – Derive an Input Table for Each Flip-Flop using its Excitation Table

and

Step 8 – Produce the Input Equations for Each Flip-Flop

It is at this point that we first use the fact that we have specified JK flip-flops for the design.

We have already considered a D flip-flop implementation. Because we are using JK flip-

flops, we show the excitation table for a JK flip-flop.

 Q(T) Q(T + 1) J K

 0 0 0 d We shall see shortly how the presence of the

 0 1 1 d d (Don’t Care) state simplifies design.

 1 0 d 1

 1 1 d 0

It is at this point that neatness counts. For each flip-flop we shall write out the complete

present state and the next state of the specific flip-flop. We then use the present state and

next state of the specific flip-flop to determine its required input. The problem here is

comparing the next state of the flip-flop to the correct present state.

First we do Y2.

Probably the easiest way to

generate this table is to do all

of the “0 to 0” transitions first,

then the “0 to 1”, etc. For this

flip-flop, be sure to refer back

to the Y2 part of the PS.

We now try to produce the input equations for J2 and K2 by simplifying the above columns.

The best way is to consider first the X = 0 columns, then the X = 1 columns and finally to

combine the two. There are formal ways to do this, but I try simple matching.

 1) If a column has only 0 and d, it is matched by 0.

 2) If a column has only 1 and d, it is matched by 1.

 3) If this does not work, try a match to one of Y2, Y1, or Y0.

 Remember, the d entries do not have to match anything.

Consider X = 0. In the above, for J2, we have only 001 as a real pattern. These copy the

pattern seen in Y1, so we make the assignment that for X = 0, J2 = Y1. For X = 0, the only

pattern seen is a pair of 1’s, so for X = 0 we set K2 = 1.

X = 0 X = 1

 J2 = Y1 J2 = 0 thus, J2 = X’Y1

 K2 = 1 K2 = Y0 thus, K2 = X’ + XY0 = X’ + Y0.

Note the combination rule X’(expression for X= 0) + X(expression for X = 1).

Applied to J2, the rule gives J2 = X’Y1 + X0 = X’Y1

The second simplification uses the absorption law: X’ + XY = X’ + Y for any X and Y.

Y2Y1Y0 X = 0 X = 1

 Y2 J2 K2 Y2 J2 K2

0 0 0 0 0 d 0 0 d

0 0 1 0 0 d 0 0 d

0 1 1 1 1 d 0 0 d

1 0 0 0 d 1 1 d 0

1 0 1 0 d 1 0 d 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 351 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

We now derive the input equations for flip-flop 1.

Y2Y1Y0 X = 0 X = 1

 Y1 J1 K1 Y1 J1 K1

0 0 0 0 0 d 0 0 d

0 0 1 0 0 d 1 1 d

0 1 1 0 d 1 1 d 0

1 0 0 0 0 d 0 0 d

1 0 1 0 0 d 1 1 d

The patterns are detected first for X = 0 and X = 1 separately and then combined.

X = 0 X = 1

J1 = 0 J1 = Y0

K1 = 1 K1 = 0 thus J1 = XY0 and K1 = X’.

We now derive the input equations for flip-flop 0.

Y2Y1Y0 X = 0 X = 1

 Y0 J0 K0 Y0 J0 K0

0 0 0 0 0 d 1 1 d

0 0 1 0 d 1 1 d 0

0 1 1 0 d 1 1 d 0

1 0 0 0 0 d 1 1 d

1 0 1 0 d 1 1 d 0

The patterns are detected as above

X = 0 X = 1

J0 = 0 J0 = 1

K0 = 1 K0 = 0 thus J0 = X and K0 = X’, as expected.

Step 9 – Summarize the Equations

The purpose of this step is to place all of the equations into one location and facilitate

grading by the instructor. Basically we already have all of the answers.

Z = XY2Y0

J2 = X’Y1 and K2 = X’ + Y0

J1 = XY0 and K1 = X’

J0 = X and K0 = X’

Step 10 – Draw the Circuit

I usually do not ask for this step as it tends to be messy and is always hard to grade.

The figure on the next page has been added to show a typical drawing of this circuit as

implemented by JK flip-flops.

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 352 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Here is the circuit for the 11011 sequence detector as implemented with JK flip-flops.

The equations implemented in this design are:

 Z = XY2Y0

 J2 = X’Y1 K2 = X’ + Y0

 J1 = XY0 K1 = X’

 J0 = X K0 = X’

Here is the same design implemented with D flip-flops.

The equations for this design are D2 = X’Y1 + XY2Y0’

 D1 = X Y0

 D0 = X

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 353 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

More on Overlap – What it is and What it is not

At this point, we need to focus more precisely on the idea of overlap in a sequence detector.

For an extended example here, we shall use a 1011 sequence detector.

The next figure shows a partial state diagram for the sequence detector. The final transitions

from state D are not specified; this is intentional.

Here we focus on state C and the X=0

transition coming out of state D. By

definition of the system states,

State C – the last two bits were 10

State D – the last three bits were 101.

If the system is in state D and gets a 0

then the last four bits were 1010, not

the desired sequence. If the last four

bits were 1010, the last two were 10 –

go to state C. The design must reuse

as many bits as possible.

Note that this decision to go to state C when given a 0 is state D is totally independent of

whether or not we are allowing overlap. The question of overlap concerns what to do

when the sequence is detected, not what to do when we have input that breaks the sequence.

Just to be complete, we give the state diagrams for the two implementations of the sequence

detector – one allowing overlap and one not allowing overlap.

The student should note that the decision on overlap does not affect designs for handling

partial results – only what to do when the final 1 in the sequence 1011 is detected.

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 354 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Solved Problems

1. Construct a 1101 sequence detector using JK flip-flops.

 a) This is a four state machine. You must label the states as

 A, B, C, and D. Start at state A. Make the following assignments.

 A 00 C 10

 B 01 D 11

 b) Follow my steps fairly closely. Be sure to group your answers

 at the end of the problem so that I can find them.

 c) The circuit diagram is optional.

CRITICISM: The problem does not specify whether or not overlap is allowed. This is a

serious omission, so I shall have to present two solutions and accept either one.

ANSWER: As requested of you, I shall follow the steps in my method fairly closely.

Step 1 – Derive the State Diagram and State Table for the Problem

Step 1a Determine the Number of States

 This is a four-bit sequence detector, so the Finite State Machine (FSM) has four states.

 As indicated in the assignment, we label the states as A, B, C, and D.

Step 1b Characterize Each State

 State Has Needs For overlap analysis, note the following

 A --- 1101

 B 1 101 1101 1101 1101

 C 11 01 1101 1101 1101

 D 110 1 OK No Good No Good

 The overlap causes a return to state B.

Step 1c Do the Transitions for the Expected Sequence

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 355 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 1d Insert the Inputs That Break the Sequence

State A needs a 1 to cause a transition to state B.

Given a 0 in state A, the FSM remains in state A.

State B has a 1 and needs a 1 to transition to state C.

If state B gets a 0, the last two bits input are 10 – not a part of the sequence.

Given a 0 in state B, the FSM returns to state A.

State C has the last two bits input as 11 and needs a 0 to transition to state D.

If state C gets a 1, the last three bits input are 111 and the last two input are 11.

Given a 1 in state C, the FSM remains in state C.

State D has the last three bits input as 110 and needs a 1 to complete the sequence.

If state D gets a 0, the last four bits input are 1100 – not a part of the sequence.

Given a 0 in state D, the FSM returns to state A.

The complete state diagram for the detector is thus the following.

Step 1e Generate the State Table with Output

 Overlap Not Allowed With Overlap

PS NS / Z

 X = 0 X = 1

A A / 0 B / 0

B A / 0 C / 0

C D / 0 C / 0

D A / 0 B / 1

PS NS / Z

 X = 0 X = 1

A A / 0 B / 0

B A / 0 C / 0

C D / 0 C / 0

D A / 0 A / 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 356 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 2 – Determine the Number of Flip-Flops Required

Solve the equation 2
P-1

 < N 2
P
, for N = 4. It is seen by inspection that P = 2 is the solution

of this equation, as 2 < 4 4, or 2
1
 < 4 2

2
. We need two flip-flops.

Step 3 – Assign a Unique P-Bit Binary Number to Each State

As P = 2, we are to assign a unique 2-bit number to each state. The assignments specified in

the problem statement are A = 00, B = 01, C = 10, and D = 11. The flip-flops will be labeled

Y1 and Y0, so the state is labeled as Y1Y0.

Step 4 – Generate the Transistion Table with Output

 Overlap Not Allowed With Overlap

Step 4a – Generate the Output Table and Output Equation

This is the same for both the overlap and non-overlap case.

The only output occurs when X = 1, Y1 = 1, and Y0 = 1.

The output equation is thus Z = X Y1 Y0, a product term.

Step 5 – Separate the Transition Table into Two Tables, One for Each Flip-Flop

PS NS / Z

 X = 0 X = 1

A 00 00 / 0 01 / 0

B 01 00 / 0 10 / 0

C 10 11 / 0 10 / 0

D 11 00 / 0 01 / 1

PS NS / Z

 X = 0 X = 1

A 00 00 / 0 01 / 0

B 01 00 / 0 10 / 0

C 10 11 / 0 10 / 0

D 11 00 / 0 00 / 1

PS Z

Y1Y0 X = 0 X = 1

00 0 0

01 0 0

10 0 0

11 0 1

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 357 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 6 – Decide on the Type of Flip-Flops to Use

The problem specifies that JK flip-flops be used.

The table at right is the excitation table for a JK

flip-flop. We shall need to use the excitation table in

order to deduce the inputs to each flip-flop that will

make the circuit behave in the desired manner.

Step 7 – Derive an Input Table for Each Flip-Flop

Here we shall do first the no-overlap case and then the overlap case.

Without Overlap

With Overlap

Note that only one entry is different here.

Q(T) Q(T + 1) J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 358 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 8 – Produce the Input Equations for Each Flip-Flop.

What we are doing here is producing an equation that matches each 0 and 1 in a column. The

don’t-care conditions, signified by “d” in the columns, are ignored. We try matching in

increasing order of complexity. We must match to variables in the present state column.

 1) The first try should be 0 or 1. If a column has no 1’s in it, it is matched by 0.

 If the column has no 0’s in it, it is matched by 1.

 2) We next try to match to simple variables or their complements.

 3) The next step is combinations of the variables.

Step 8a – Produce the Equations for the X = 0 and X = 1 Parts of Each Flip-Flop

Step 8b – Use the “Combine Rule” to Produce the Equations

Without Overlap

For X = 0 J1 = 0 and K1 = Y0 For X = 0 J0 = Y1 and K0 = 1

For X = 1 J1 = Y0 and K1 = Y0 For X = 1 J0 = Y1’ and K0 = 1

Use the Combine Rule: Expression = X’(Expression for X = 0) + X(Expression for X = 1)

 J1 = X’0 + XY0 = XY0 J0 = X’Y1 + XY1’ = X Y1

 K1 = X’Y0 + XY0 = Y0 K0 = X’1 + X1 = X’ + X = 1

With Overlap

Note that only one entry is different. The Y0 table is different, the Y1 table is the same.

J1 = XY0 For X = 0 J0 = Y1 and K0 = 1

K1 = Y0 For X = 1 J0 = Y1’ and K0 = Y1’

Using the Combine Rule for J0 and K0, we get

 J0 = X’Y1 + XY1’ = X Y1

 K0 = X’1 + XY1’ = X’ + XY1’ = X’ + Y1’

We now prove the last equality for K0 – that X’ + XY1’ = X’ + Y1’.

 Let X = 0. Then LHS = 0’ + 0Y1’ = 1 + 0 = 1 and RHS = 0’ + Y1’ = 1 + Y1’ = 1

 Let X = 1. Then LHS = 1’ + 1Y1’ = Y1’ and RHS = 1’ + Y1’ = 0 + Y1’ = Y1’

Chapter 8 Appendix Boz–7 Design of a 11011 Sequence Detector

Page 359 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Step 9 – Summarize the Equations

The output equation is Z = X Y1 Y0.

For the case with no overlap.

J1 = XY0 J0 = X Y1

K1 = Y0 K0 = 1

For the case with overlap allowed

J1 = XY0 J0 = X Y1

K1 = Y0 K0 = X’ + Y1’

