

Page 193 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

Chapter 5 – Minimization of Boolean Functions

We now continue our study of Boolean circuits to consider the possibility that there might be

more than one implementation of a specific Boolean function. We are particularly focused

on the idea of simplifying a Boolean function in the sense of reducing the number of basic

logic gates (NOT, AND, and OR gates) required to implement the function.

There are a number of methods for simplifying Boolean expressions: algebraic, Karnaugh

maps, and Quine-McCluskey being the more popular. We have already discussed algebraic

simplification in an unstructured way. We now study Karnaugh maps (K-Maps). The

tabular methods, known as Quine-McCluskey, area interesting but will not be covered in this

course. Most students prefer K-Maps as a simplification method.

Logical Adjacency

Logical adjacency is the basis for all Boolean simplification methods. The facility of the

K-Map approach is that it transforms logical adjacency into physical adjacency so that

simplifications can be done by inspection.

To understand the idea of logical adjacency, we review two simplifications based on the

fundamental properties of Boolean algebra. For any Boolean variables X and Y:

 XY + XY’ = X(Y + Y’) = X1 = X

 (X + Y)(X + Y’) = XX + XY’ + YX +YY’

 = XX + XY’ + XY +0

 = X + X(Y’ + Y) = X + X = X

Two Boolean terms are said to be logically adjacent when they contain the same variables

and differ in the form of exactly one variable; i.e., one variable will appear negated in one

term and in true form in the other term and all other variables have the same appearance in

both terms. Consider the following lists of terms, the first in 1 variable and the others in 2.

 X X’

 XY XY’ X’Y’ X’Y

 (X + Y) (X + Y’) (X’ + Y’) (X’ + Y)

The terms in the first list are easily seen to be logically adjacent. The first term has a single

variable in the true form and the next has the same variable in the negated form.

We now examine the second list, which is a list of product terms each with two variables.

Note that each of the terms differs from the term following it in exactly one variable and thus

is logically adjacent to it: XY is logically adjacent to XY’, XY’ is logically adjacent to

X’Y’, X’Y’ is logically adjacent to X’Y, and X’Y is logically adjacent to XY. Note

that logical adjacency is a commutative relation thus XY’ is logically adjacent to both XY

and X’Y’. Using the SOP notation, we represent this list as 11, 10, 00, 01.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 194 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

The third list also displays logical adjacencies in its sequence: (X + Y) is logically adjacent to

(X + Y’), which is logically adjacent to (X’ + Y’), which is logically adjacent to (X’ + Y).

Using POS notation, we represent this list as 00, 01, 11, 10.

Consider the list of product terms when written in the more usual sequence

 X’Y’ X’Y XY’ XY, or 00, 01, 10, 11 in the SOP notation.

In viewing this list, we see that the first term is logically adjacent to the second term, but that

the second term is not logically adjacent to the third term: X’Y and XY’ differ in two

variables. This is seen also in viewing the numeric list 00, 01, 10, and 11. Note that each of

the digits in 01 and 10 is different, so that 01 and 10 can’t represent logically adjacent terms.

Karnaugh Maps for 2, 3, and 4 variables

All books seem to define K-Maps for 2, 3, 4, 5, and 6 variables. It is this author’s opinion

that K-Maps for 5 and 6 variables are a waste of time, so he will not discuss them. The

reason for this opinion is that K-Maps are designed to be a simple tool for simplifying

Boolean expressions; K-Maps with 5 or more variables are hopelessly complex.

This figure shows the basic K-Maps for 2, 3, and 4 variables. Note that there are two

equivalent forms of the 3-variable K-Map; the student should pick one style and use it.

We now examine three equivalent forms of the K-Map of an unspecified function. We show

these K-Maps only to comment on the form of K-Maps and not to discuss simplification.

Each of these K-Maps represents the same function, shown at right in

the truth-table form. One way to view a K-Map is as a truth-table with

the main exception of the ordering 00, 01, 11, 10 seen on the top. For

those interested, this ordering is called a Gray code.

The full K-Map is shown at left, with each square filled in either with a

0 or a 1. K-Maps are never written in this fashion – either one omits the

0’s or one omits the 1’s. The form omitting the 0’s is used when

simplifying SOP expressions; to simplify POS one omits the 1’s.

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 195 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

One final note – K-Maps are used to simplify Boolean expressions written in canonical form.

K-Maps for Sum of Products (SOP)

Consider the Canonical SOP expression F(X,Y,Z) = X’YZ + XY’Z + XYZ’ + XYZ.

The first step in using K-Maps to simplify this expression is to use the SOP numbering to

represent these as 0’s and 1’s. The negated variable is written as a 0, the plain as a 1. Thus,

this function is represented as 011, 101, 110, and 111.

Place a 1 in each of the squares with the “coordinates” given in

the list above. In the K-Map at left, the entry in the top row

corresponds to 110 and the entries in the bottom row correspond

to 011, 111, and 101 respectively. Remember that we do not

write the 0’s when we are simplifying expressions in SOP form.

The next step is to notice the physical adjacencies. We group adjacent 1’s into “rectangular”

groupings of 2, 4, or 8 boxes. Here there are no groupings of 4 boxes in the form or a

rectangle, so we group by two’s. There are three such groupings, labeled A, B, and C.

The grouping labeled A represents

the product term XY. The B group

represents the product term YZ

and the C group represents the

product term XZ. Examine the B

grouping: it has 011 and 111. In

this we have Y and Z staying the

same and X having both values;

thus the product term YZ. This

function is XY + XZ + YZ.

The next example is to simplify F(A, B, C) = (3, 5). We shall consider use of K-Maps to

simplify POS expressions, but for now the solution is to convert the expression to the SOP

form F(A, B, C) = (0, 1, 2, 4, 6, 7). We could write each of the six product terms, but the

easiest solution is to write the numbers as binary: 000, 001, 010, 100, 110, and 111.

The top row of the K-Map corresponds

to the entries 000, 010, 100, and 110,

arranged in the order 000, 010, 110, and

100 to preserver logical adjacency. The

bottom row corresponds to the entries

001 and 111. The top row simplifies to

C’. The first column simplifies to A’B’

and the third column to AB. Thus we

have F(A, B, C) = A’B’ + AB + C’.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 196 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

We next consider a somewhat offbeat example not in a canonical form.

 F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’.

The trouble with K-Maps is that the technique is designed to be used only with expressions in

canonical form. In order to use the K-Map method we need to convert the term WX’Y’ to

its equivalent WX’Y’Z’ + WX’Y’Z, thus obtaining a four-term canonical SOP.

Before actually doing the K-Map, we first apply simple algebraic simplification to F.

 F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’

 = W’X’Y’(Z’ + Z) + WX’Y’

 = W’X’Y’ + WX’Y’

 = (W’ + W)X’Y’ = X’Y’

Now that we see where we need to go with the tool, we draw the four-variable K-Map.

F(W, X, Y, Z) = W’X’Y’Z’ + W’X’Y’Z + WX’Y’Z’ + WX’Y’Z. Using the

SOP encoding method, these are terms 0000, 0001, 1000, and 1001. The K-Map is

The first row in the K-Map represents the entries

0000 and 1000. The second row in the K-Map

represents the entries 0001 and 1001. The trick

here is to see that the last column is adjacent to the

first column The four cells in the K-Map are thus

adjacent and can be grouped into a square. We

simplify by noting the values that are constant in

the square: X = 0 and Y = 0. Thus, the expression

simplifies to X’Y’, as required.

We close the discussion of SOP K-Maps with the

example at right, which shows that the four

corners of the square are adjacent and can be

grouped into a 2 by 2 square. This K-Map

represents the terms 0000, 0010, 1000, 1010 or

W’X’Y’Z’ + W’X’YZ’ +

WX’Y’Z’ + WX’YZ’. The values in the

square that are constant are X = 0 and Z = 0, thus

the expression simplifies to X’Z’.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 197 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

K-Maps for POS

K-Maps for Product of Sums simplification are constructed similarly to those for Sum of

Products simplification, except that the POS copy rule must be enforced: 1 for a negated

variable and 0 for a non-negated (plain) variable.

As our first example we consider F(A, B, C) = (3, 5) = (A + B’ + C’)(A’ + B + C’).

Recall that the term (A + B’ + C’) corresponds to 011 and that (A’ + B + C’) to 101.

This is really somewhat of a trick

question used only to illustrate placing

of the terms for POS. Place a 0 at each

location, rather than the 1 placed for

SOP. Note that the two 0’s placed are

not adjacent, so we cannot simplify the

expression.

For the next example consider F2 = (A + B + C)(A + B + C’)(A + B’ + C)(A’ + B + C).

Using the POS copy rule, we translate this to 000, 001, 010, and 100.

Before we attempt to simplify F2, we note that it is a very good candidate for simplification.

Compare the first term 000 to each of the following three terms. The term 000 differs from

the term 001 in exactly one position. The same applies for comparison to the other two

terms. Any two terms that differ in exactly one position can be combined in a simplification.

We begin the K-Map for POS

simplification by placing a 0 in each of

the four positions 000, 001, 010, 100.

Noting that 000 is adjacent to 001, just

below it, we combine to get 00– or

(A + B). The term 000 is adjacent to

010 to its right to get 0–0 or (A + C).

The term 000 is adjacent to 100 to its

“left” to get –00 or (B + C). As a

result, we get the simplified form. F2 = (A + B)(A + C)(B + C)

Just for fun, we simplify this expression algebraically, using the derived Boolean identity

XXX = X for any Boolean expression X.

F2 = (A + B + C)(A + B + C’)(A + B’ + C)(A’ + B + C)

 = (A + B + C)(A + B + C’)(A + B + C)(A + B’ + C)(A + B + C)(A’ + B + C)

 = (A + B)(A + C)(B + C)

It is encouraging that we get the same answer.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 198 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

We now consider simplification of a POS function specified by a truth table.

A B C F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

We plot two 0’s for the POS representation of the function – one at 010 and one at 110. The

two are combined to get –10, which translates to (B’ + C).

More Examples of K-Maps

The sample at left, based on an earlier

design shows a particularly simple

problem. We find that all the entries in

the K-Map are covered with a single

grouping, thus removing all three

variables. Since the entire K-Map is

covered, the simplification is F = 1.

The K-Map at right shows an example

with overlap of two groupings of 1’s.

All 1’s in the map must be covered and

some should be covered twice. The top

row corresponds to X’. We then form

the 2-by-2 grouping at the right to

obtain the term Y1. Thus F = X’ + Y1.

There is another simplification that

should be considered. This corresponds

to two 2-by-2 groupings. The 2-by-2

grouping at the right still corresponds to

Y1. The new 2-by-2 grouping in the

middle gives rise to Y0, so we get

another simplification F = Y0 + Y1.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 199 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

Just One More K-Map: Overlapping Circles

We close the discussion of K-Maps with a technique that applies to both SOP and POS

simplifications. We shall apply it to SOP simplification.

Consider the following K-Map.

The six ones can be grouped in a number of ways. Consider the following.

This grouping of four and two covers the six one’s

in the K-Map.

The four ones in the square form the term W’Z.

The two ones in the rectangle form the term

WXZ.

The K-Map simplifies to W’Z + WXZ.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 200 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

Another way to consider the simplification of the

K-Map is to group the rectangle and the square as

in the figure at right.

The rectangle corresponds to the term W’X’Z.

The square corresponds to the term XZ.

This simplification yields W’X’Z + XZ.

It is important to note that the groupings can overlap if this yields a simpler reduction.

Here we show two overlapping squares.

The square at left corresponds to the term W’Z.

The square at right corresponds to the term XZ.

This simplification yields W’Z + XZ, which is

simpler than either of the other two forms validly

produced by the K-Map method.

Try 1: W’Z + WXZ

Try 2: W’X’Z + XZ

Try 3: W’Z + XZ. This seems better.

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 201 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

Simplification with Don’t-Care Conditions

We now consider the use of K-Maps to simplify expressions that include the “d” or Don’t-

Care condition often generated when considering digital designs using flip-flops. We give a

number of examples related to our previous designs of sequential circuits.

The general rule in considering a simplification with the Don’t-

Care conditions is to count the number of 0’s and number of 1’s

in the table and to use SOP simplification when the number of

1’s is greater and POS simplification when the number of 0’s is

greater. Again we admit that most students prefer the SOP

simplification. With a two-two split, we try SOP simplification.

First we should explain the above table in some detail. The first

thing to say about it is that we shall see similar tables again when

we study flip-flops. For the moment, we call it a “folded over”

truth table, equivalent to the full truth table at right. The function

to be represented is J1. Lines 0, 1, 4, and 5 of the truth table

seem to be standard, but what of the other rows in which J1 has a

value of “d”. This indicates that in these rows it is equally

acceptable to have J1 = 0 or J1 = 1. We have four “Don’t-Cares”

or “d” in this table; each can be a 0 or 1 independently of the

others – in other words we are not setting the value of d as a

variable.

Design with flip-flops is the subject of another course.

When attempting a K-Map for SOP

simplification, we drop the 0’s and

plot the 1’s and d’s. We then attempt

to group the 1’s into 2-by-1, 2-by-2

groupings, etc. We use the d’s as are

convenient and have no requirement

to cover any or all of them. Note that

3-by-1 groupings are not valid and

that the 2-by-2 grouping of d’s does

not add anything to the

simplification, but only adds an extra useless term.

The terms in the top row, labeled 001 and 011 for X’Y1’Y0 and X’Y1Y0, simplify to 0–1 for

X’Y0, and the terms in the bottom row, labeled 100 and 110 for XY1’Y0’ and XY1Y0’,

simplify to 1–0 for XY0’, so the simplified expression is X’Y0 + XY0’= XY0.

 X = 0 X = 1

Y1Y0 J1 J1

0 0 0 1

0 1 1 0

1 0 d d

1 1 d d

Y1 Y0 X J1

0 0 0 0

0 0 1 1

0 1 0 d

0 1 1 d

1 0 0 1

1 0 1 0

1 1 0 d

1 1 1 d

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 202 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

The sample at left, based on an earlier

design shows a particularly simple

problem. We find that using the d’s to

combine with the 1’s to produce a

4-by-2 grouping of 1’s. Since the entire

K-Map is covered, the simplification is

F = 1.

The K-Map at right corresponds to an

input table with one 0 and three 1’s.

This immediately suggests a SOP

approach to the K-Map; we plot the 1’s

and d’s and drop the 0. The top row

corresponds to X’. We then form the

2-by-2 grouping at the right to obtain

the term Y1. Thus F = X’ + Y1.

There is another simplification that

should be considered. This corresponds

to two 2-by-2 groupings. The 2-by-2

grouping at the right still corresponds to

Y1. The new 2-by-2 grouping in the

middle gives rise to Y0, so we get

another simplification F = Y0 + Y1.

As a final example, we consider the input table, which contains

two 0’s and two 1’s. According to the theory, this could be

simplified equally well either as a SOP or POS expression. To

gain confidence, we do both simplifications, with the SOP first.

Considered as a SOP problem, we plot

the 1’s and d’s, then form the largest

possible group that covers all of the 1’s.

Note that 3-by-2 is not a valid grouping,

so we go with the 2-by-2 grouping. The

square corresponds to Y0. The top row

simplifies to 0–1 and the bottom to 1–1,

thus we have – – 1 or Y0.

 X = 0 X = 1

Y1Y0 K0 K0

0 0 d d

0 1 d d

1 0 0 0

1 1 1 1

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 203 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

The POS simplification is shown at

left. The top row simplifies to 0–0

and the bottom row simplifies to 1–0

so the K-Map simplifies to – – 0.

Using the POS copy rule, this

translates to Y0, as before. It’s a good

thing that the two methods agree.

A Diversion: Application of Simplification Techniques to Programming

This next section attempts to apply some of the Boolean simplification techniques to issues

sometimes seen in software development, especially C++ programming.

Consider the Boolean expressions in C++ that relate to equality. For variable x, we can have

expressions such as (x == 0), (x != 0), and !(x == 0). The last two are logically identical, and

all are distinct from the assignment statement (x = 0), which evaluates to False.

In our diversion, we consider three variables: x, y, and z. The only assumption made here is

that each of the three is of a type that can validly be compared to 0; assuming that all are

integer variables is one valid way to read these examples. Each of the expressions (x == 0),

(y == 0), and (z == 0) evaluates to either T (True) or F (False).

Consider a function that is to be called conditionally based on the values of three variables:

x, y, and z. We write the Boolean expression as follows

 if (((x != 0) && (y != 0) && (z != 0))

 || ((x != 0) && (y != 0) && (z == 0))

 || ((x != 0) && (y == 0) && (z == 0))

 || ((x == 0) && (y != 0) && (z != 0))

 || ((x == 0) && (y != 0) && (z == 0))

 || ((x == 0) && (y == 0) && (z == 0))) y = fzero()

We can apply the truth-table approach to analysis of the conditions under which the function

fzero is invoked. The following table illustrates when the function is to be called.

If this looks a bit like a truth table, it is

because it is equivalent to a truth table and can

be converted to one. Consider the following

definitions of Boolean variables A, B, and C.

 A = (x == 0)

 B = (y == 0)

 C = (z == 0)

(x == 0) (y == 0) (z == 0) Call fzero

F F F Yes

F F T Yes

F T F No

F T T Yes

T F F Yes

T F T Yes

T T F No

T T T Yes

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 204 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

Consider the expression A = (x == 0) in the C++ programming language. It may seem a

bit strange, but is perfectly legitimate. The expression (x == 0) is a Boolean expression –

it evaluates to True or False. The variable A is a Boolean variable, it also takes on one of the

Boolean values. In order to translate the table above into a truth table that we recognize, we

replace the expressions (x == 0), (y == 0), and (z == 0) by their equivalents – the

Boolean variables A, B, and C. We are beginning to construct a Truth Table.

In order to apply the truth table approach to this problem, we must define a Boolean function.

For our purpose, we define F(A, B, C) as follows

 F(A, B, C) = 1 if fzero is called

 = 0 if fzero is not called

Returning to our convention of 0 for False and 1 for True, we have the truth table.

This is a truth table that we have considered and simplified in

an earlier section of the work. Using terminology we have

already discussed, we see that this function F(A, B, C) can be

expressed as either a SOP with six product terms or a POS with

two sum terms. Reading this as a POS, we get

 CBACBAC,B,AF , which simplifies

to CBC,B,AF .

We now convert back to the original notation. Recalling that

B = (y == 0) and C = (z == 0), we note that B’ = (y != 0) and the condition for calling the

function fzero becomes ((y != 0) || (z == 0)). So the equivalent (and much simpler)

expression is
 if ((y != 0) || (z == 0)) y = fzero()

Consider now the Boolean expression ((x == 0) || ((x != 0) && (y == 0))). In an attempt to

simplify this expression we define two Boolean variables

 A = (x == 0)

 B = (y == 0)

Recall that (x != 0) = !(x == 0) = A . In our terminology, the expression is

 F(A, B) = BAA

There are a number of ways to simplify this expression. The first, and least obvious, is to

invoke the theorem of absorption, which states that the formula equals A + B.

A B C F(A, B, C)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Chapter 5 Boz–7 Minimization of Boolean Functions

Page 205 CPSC 5155 Last Revised on July 2, 2011

 Copyright © 2011 by Ed Bosworth

To illustrate other options, we expand the above to canonical SOP and then examine it by

means of both a truth table and a K-map. To expand the expression into canonical SOP, we

need to have the first term contain a literal for the variable B.

 BABABABABBABAA

The truth table for this expression is

A B F(A, B)

0 0 0

0 1 1

1 1 1

1 1 1

Representing this as a POS formula, we immediately get F(A, B) = (A + B), which translates

to the C++ expression ((x == 0) || (y == 0)).

As a final example, consider the following Boolean expression in C++

 ((x == 0) || (y == 0) || (z == 0)) && ((x == 0) || (y == 0) || (z !=0)) &&

 ((x == 0) || (y != 0) || (z == 0)) && ((x != 0) || (y == 0) || (z == 0))

Define A = (x == 0)

 B = (y == 0)

 C = (z == 0)

With these definitions our expression becomes

 CBACBACBACBAC,B,AF

This is known to simplify to

 F(A, B, C) = (A + B)(A + C)(B + C)

So our Boolean expression in C++ simplifies to

 ((x == 0) || (y == 0)) && ((x == 0) || (z == 0)) && (y == 0) || (z == 0))

Inspection of the above shows that we want at least two of (x == 0), (y == 0), and (z == 0) to

be true. Compare this with the original derivation of the function

 F(A, B, C) = (A + B)(A + C)(B + C)

used for the carry-out of a Full-Adder, which is 1 if two or three of the inputs are 1.

