
Why Study
Assembler?

Why Should a
Computer Science Major

Learn
Assembler Language?

(Nobody uses it!)

Edward L. Bosworth, PhD
Columbus State University

Columbus, GA

Outline of Talk

● Introduce self

● Discuss levels of languages: high-level
and assembler are the levels of interest here.

● Give a history of reasons to study assembler.

● “Behind the scenes” in a high-level language

Background

● Columbus State University (CSU) teaches
IBM 370 Assembler Language to all of
its Computer Science Majors

● Your speaker (that's me) has taught this
course (CPSC 3121) four times and has
great enthusiasm for it.

● Some students like the course, most tolerate
it, and a few find it silly.

More Background

● I have programmed assembly language on:
PDP-11, VAX-11/780, CDC-6600/7600,
Xerox Sigma-7, IBM 7090, and now
IBM 360/370 (but not professionally)

● I dislike Intel x86 Assembly language; it
is too complex. Some have called it
“baroque”, but this does not fit the standard
use of that word.

Languages:
High-Level & Low-Level

● High-level languages focus on expression
in terms that fit the problem. Some are
compiled, and some interpreted.

● Low-level languages (mostly assembler)
focus on instructions that fit the architecture
of the target machine.

● We examine a part of a standard hierarchy.

High-Level Example 1: SQL

● SQL (Structured Query Language) example:
SELECT Company, Country FROM
Customers WHERE Country <> 'USA'

● Note that this states what is to be done,
and does not prescribe a procedure to
accomplish the task.

● SQL is a high-level language.

HLL Example 2:
Procedural Language

● SELECT Company, Country FROM
Customers WHERE Country <> 'USA'

● The SQL suggests this procedural code
Count = 0
For Rec = 1 To Max_Rec_Number
If (Table[Rec].Country <> 'USA') Then

Count = Count + 1 ;
Company[Count] = Table[Rec].Company ;
Country [Count] = Table[Rec].Country ;

End If ;
End For ;

Assembly Language Example
● At this level, we must assume a record size.

Make it 80 (a standard size for card input).

● Here is a fragment of code to start the loop
SR 4,4 Register 4 is counter
LH 5,=H'1' Register 5 is loop index
LH 6,=H'1' Count by one's
L 7,REC_COUNT Number of records
LA 8,TABLE Load table address

LP Start the comparison and do work
More stuff: blah, blah!!
BXLE 5,6,LP Loop again, if proper.

First: Why Study
Any Assembly Language

● This depends on the decade in which
you might first have studied assembly.

1940’s You cannot study assembly language.
It does not exist yet.

1950’s You study assembly language because,
other than raw binary machine language,
it is the only way to program a computer.

Ref: The Preparation of Programs for An
Electronic Digital Computer, 1951
Maurice Wilkes, David Wheeler, et al.

Why Study An Assembler?

1960’s & 1970’s Compilers are not that good.

 You study assembly language in order to
recode time–critical parts of your code
generated by a high-level language compiler.

 In 1972, on a PDP–9, I could write assembly
code that executed at least twice as fast as
the equivalent compiled FORTRAN code.

 The trick was to have the FORTRAN
compiler emit assembly language, and then
to edit that assembly language.

Compilers: Simplistic & Modern

● High level code (FORTRAN, etc.)
M = J + K
N = L + J + K

● We consider the assembler language
emitted by a modern compiler and an
older simplistic compiler.

● I do not wish to characterize IBM/360
FORTRAN compilers, as I have not
worked that much with them.

Simplistic Compilers

● M = J + K
L 8,J
A 8,K
ST 8,M // Register 8 has J + K

● N = L + J + K
L 9,L
A 9,J
A 9,K // Register 9 has L + J + K
ST 9,N

Modern Compilers

● M = J + K
L 8,J
A 8,K
ST 8,M // Register 8 has J + K

● N = L + J + K
A 8,L // Register 8 now has L + J + K
ST 8,N

● The “bad code” reason to avoid compilers
and compiled languages is no longer valid.

Why Study Assembly Now

1980’s You study assembly language in order
to maintain the large base of legacy
code, written in assembly language.

Today Legacy code is still an issue, though a
minor one. Study assembly language
in order to understand the architecture
of the computer and the nature of the
software services provided.

Focus on compilers and the run–time system.

Why Study IBM Assembler?

Didactically speaking:
 Every CS Major should study some assembly language.

 Assembler language illustrates the ISA (Instruction Set
Architecture) of a stored-program computer.

 Assembler language is a functional specification for the
computer architecture; it is a good prerequisite for that course.

 IBM Mainframe Assembler can be taught in a variant that
is simple and low level. Students see basic operations.

Geographically Speaking:
 Several companies in the area use IBM Mainframe computers.

Compilation vs. Assembly

● Compilers convert
high-level language
to machine language
(maybe assembler
as intermediate).

● Assemblers convert
assembly language
to machine language

Assembly Language: Traditional Goals

These focus on the assumption that the student will soon be writing
programs in assembly language. Today, this is rarely true.

1. The binary representations used for character, integer, floating point
and other decimal data. Floating point is usually given little attention.

2. Organization of program data into fields, records and files.
The assembler statements that support record definition.

3. The basic functions of a two–pass Assembler.

4. The basic functions of a Link Editor.

5. Addressing modes in the computer; the use of base registers.

6. How to write and test simple assembler language programs.

Assembly Language: Additional Goals

Pay attention to the services provided by the compiler and RTS.

If we have to “do it ourselves”, we shall understand these services better.

Compiler and Loader Services:
Allocation of memory for variables.

Register allocation for more efficient program execution.

Resolution of external references in independently compiled programs.

Adjustment of memory addresses to reflect placement by the loader.

Run–Time Services
Creation and maintenance of dynamic data structures, such
as stacks and linked lists.

Support for recursion, including management of the stack.

Sample of Assembler Language Code

Consider the assignment statement Z = X + Y.
We use the old FORTRAN typing standard; these are real numbers.
In the code below, they are double-precision real numbers.

We are using IBM® 370 Series Assembler Language as an example.
Here is a possible translation of the high–level language above.

This uses floating-point register 0, not GPR 0.

LD 0,X LOAD REGISTER 0 FROM ADDRESS X

AD 0,Y ADD VALUE AT ADDRESS Y

STD 0,Z STORE RESULT INTO ADDRESS Z

The first question in examining this text is to determine what it does.
I have already told you much of what it does, but let’s start at the beginning.

A Two – Pass Assembler

Here, we shall focus only on the first pass of either a compiler or assembler.
The goal is to read and interpret the symbols found in the text of the code.

Here is what a two–pass assembler would first do with this text.

LD 0,X LOAD REGISTER 4 FROM ADDRESS X

AD 0,Y ADD VALUE AT ADDRESS Y

STD 0,Z STORE RESULT INTO ADDRESS Z

The symbols LD, AD, and STD would be identified as assembler language
operations, and the symbol 0 would be identified as a reference to register 0,
in this context it is floating-point register 0.

The symbols X, Y, and Z would be identified properly only if those symbols
had been properly identified. Here is the way to do it for this code.

X DC D‘3.0’ DOUBLE-PRECISION FLOAT

Y DC D‘4.0’

Z DS D Declare without initial value

Rereading the Assembler Text
A Somewhat Literal Translation

LD 0,X Load with 8-byte value from address X,
treat as double-precision floating point.

AD 0,Y Add 8-byte value from address Y,also
treating as double-precision float.

STD 0,Z Store result into 8 bytes at address Z

X DC D‘3.0’ Set aside eight bytes (64 bits)
at an address to be associated with
the label X, initialize it to 3.0

Y DC D‘4.0’ Set aside eight bytes (64 bits)
at an address to be associated with
the label Y, initialize it to 4.0

Z DS D Set aside eight bytes (64 bits)at an
address to be associated with the
label Z; do not initialize the storage.

Cautions on the Assembler Process

In the above fragments, we see two independent processes at work.

1) Use of data declarations to reserve space in memory to
be associated with labeled addresses.

2) Use of assembly code to perform operations on these data.

Note that these are inherently independent. It is the responsibility of the
human coder to apply the operations to the correct data types.

Occasionally, it is proper to apply a different (and apparently
inconsistent) operation to a data type. Consider the following.

XX DS D Double-precision floating point

All that really says is “Set aside an eight–byte memory area, and
associate it with the symbol XX.”

Any eight–byte data item could be placed here,
even a 15–digit packed decimal format. (This is commonly done)

Reading Some BAD Assembler Text

To show what could happen, and commonly does in student programs,
lets rewrite the above fragment.

LD 0,X LOAD REGISTER 0 FROM ADDRESS X

AD 0,Y ADD VALUE AT ADDRESS Y

STD 0,Z STORE RESULT INTO ADDRESS Z

X DC E‘3.0’ SINGLE-PRECISION FLOAT, 4 BYTES

Y DC E‘4.0’ ANOTHER SINGLE-PRECISION

Z DC D‘0.0’ A DOUBLE PRECISION

The first instruction “LD 0,X” will go to address X and extract the next
eight bytes. This will be four bytes for 3.0 and four bytes for 4.0.

The value retrieved will be 0x4130 0000 4140 0000, which represents
a double–precision number with value slightly larger than 3.0.

Had X and Y been properly declared, the value retrieved would have been
0x4130 0000 0000 0000.

What A Modern Compiler Does

Consider the following fragments of Java code.

double x = 3.0; // 64 bits or eight bytes

double y = 4.0; // 64 bits or eight bytes

double z = 0.0; // 64 bits or eight bytes

// More declarations and code here.

z = x + y; // Do the addition that is
// proper for this data type.

// Here, it is double-precision
// floating point addition.

Note that the compiler will interpret the source–language statement
“z = x + y” according to the data types of the operands.

Another Java Code Fragment

Here is more code, similar to the first fragment.

float a = 3.0; // 32 bits or four bytes

float b = 4.0; // 32 bits or four bytes

float c = 0.0; // 32 bits or four bytes

double x = 3.0; // 64 bits or eight bytes

double y = 4.0; // 64 bits or eight bytes

double z = 0.0; // 64 bits or eight bytes

// More declarations and code here.

c = a + b; // Single-precision floating-point
// addition is done here

z = x + y; // Double-precision floating-point
// addition is done here

The operations “c = a + b” and “z = x + y” have no meaning, apart
from the data types recorded by the compiler.

More on This Code: IBM® 370 Assembler Equivalents

Here is the sort of thing that might happen. Assume the data declarations
given above, and repeated here is somewhat altered fashion.

float a = 3.0, b = 4.0, c = 0.0 ;

double x = 3.0, y = 4.0, z = 0.0 ;

c = a + b ; // LE 0,A Instructions appropriate
// AE 0,B for single-precision
// STE 0,C floating point data.

z = x + y ; // LD 2,X Instructions appropriate
// AD 2,Y for double-precision
// STD 2,Z floating point data.

IMPORTANT POINT
The assembler code emitted is entirely dependent on the data types for
the operands, as declared earlier in the program.

The meaning of “+” depends on the context.

Writing Recursive Subprograms

● IBM Assembler provides mechanisms and
conventions to link separately assembled
programs. These are impressive.

● My version of the Assembler appears not to
support recursive subprograms.

● That's good. It forces my students to address
issues of recursion explicitly.

Managing Recursion

● In order to allow recursion, one has to create
and manage a stack. This is an opportunity to
learn how to write non-trivial macros.

● Use the stack to manage return addresses for
each subprogram.

● Use the stack to pass arguments and results.

● Use the stack to manage local variables.

System Routines

● IBM Assembler provides the basic operations
of addition, subtraction, multiplication, and
division.

● How does a language provide the other
standard functions, such as sine, cosine,
logarithm, and exponent.

● Integer powers of numbers are handled easily
and are covered in my class.

Transcendental Functions

● Strictly speaking, there are no algorithms to
calculate the sine or cosine of an angle.

● What makes an algorithm possible is a
statement of the precision required in the
answer; say 7 digits or 16 digits.

● We illustrate the computation of the sine of an
angle in radians, using only basic operations.

Calculating SIN()

● Begin with the series expansion from calculus

● Show how to compute the number of terms to
achieve the required accuracy.

● Write the code in assembler, using
LD, STD, AD, SD, MD, and DD.

HLL vs. Assembler: Summary 1

The most obvious conclusion is that it is not appropriate to discuss
assembler language code in terms of variables.

The name “variable” should be reserved for higher–level compiled
languages in which a data type is attached to each data symbol.

Another way to see this is to view the symbol table used for each tool.

In the assembler, the symbol table associates the following with a symbol:
1. an address,
2. nothing else

In a compiler, the symbol table associates the following with a symbol;
1. an address,
2. a storage size, and
3. a data type for use by the compiler in creating operations on the data.

HLL vs. Assembler: Summary 2

Symbols, Addresses, and Variables

Language Assembler Compiled

Data type determined by Operation Data
Declaration

Attributes of the symbol Address Address

Storage size Storage size
(the operation
may override this)

Data type as
declared

Add operators A, AH, AD, AE, “+”
AP, etc.

HLL vs. Assembler: Summary 3

● The compiler for a modern HLL (High Level
Language) and its RTS (Run Time System)
provide significant support for the modern
program.

● It benefits the student to understand these
services by attempting to replicate them using
only the basic Assembler operations.

● Challenge: Convert a D format floating point
number to its print representation in EBCDIC

