
Subroutine Linkage

We now begin discussion of subroutine linkages for simple subroutines without
large argument blocks.

With the mechanisms discussed in this lecture, one can use either global variables
or general purpose registers to pass addresses, values, and results.

As the textbook notes, subroutines may be written to facilitate repetitive tasks.
Indeed, the “Wheeler Jump” (EDSAC, 1952) was developed for just this purpose.

Early operating systems began as collection of subroutines to facilitate handling
of input and output devices, mainly line printers.

When batch programming became common, the computer needed a control program to
automate the processing of a sequence of jobs, read and processed one after another.

This control program was merged with a set of subroutines for Input/Output handling and
routines for standard mathematical functions to create the first operating system.

Subroutines and/or functions can be invoked for side effect only or in order to compute
and return results. Many of the subroutines used in the book are called for side effect – to
manage print position on a page and issue a new page command when necessary.



Subroutine Linkage: Instructions

The language requires two instructions associated with subroutines: one to call the
subroutine and one to effect a return from the subroutine.

Calling the subroutine

The instruction used is either BAL (Branch and Link) or BALR.

The format of the instruction is BAL Reg,Address

An example of such an instruction is BAL 8,P10PAGE

The first argument is a register number to be used for subroutine linkage.
We explain this more fully in just a bit.

The second argument is the address of the first instruction in the subroutine. There are
other standards for this argument, but this is the one that IBM uses.

Returning from the subroutine

This instruction is used to return from execution of the subroutine. It is an unconditional
jump to an address contained in the register.

The format of the instruction is BR Reg

An example of such an instruction is BR 8



BAL and BALR

There are two forms of the Branch and Link instruction.

BAL Branch and Link

BALR Branch and Link, Register.

The difference lies in the handling of the entry point address of the called routine.

The BALR instruction uses an address placed in a general–purpose register.

Here are two equivalent code sequences.

Use BAL

BAL R8,P10PAGE

Use BALR

L R9,=A(P10PAGE)

BALR R8,R9

Later, we shall see that general–purpose registers R14 and R15 are favored
for use by BALR in this context.



Comments on the Subroutine Linkage

The first thing to note is that the register used in the BR will, under almost all
circumstances, be that used in the BAL instruction calling the subroutine.

A bit of reflection will show that this mechanism, by itself, will not allow
the use of recursive subroutines. Actually, there is a workaround, but it involves
the use of a separate register for each level of subroutine nesting.

Here is an example of subroutine usage in the standard of this discussion.

OPEN (FILEIN,(INPUT))
OPEN (PRINTER,(OUTPUT))
PUT PRINTER,PRHEAD
GET FILEIN,RECORDIN

*
A10LOOP BAL 8,B10DOIT

GET FILEIN,RECORDIN
B A10LOOP

A90END CLOSE FILEIN
CLOSE PRINTER
EXIT

*
B10DOIT MVC DATAPR,RECORDIN

PUT PRINTER,PRINT
BR 8



Functions and Subroutines

The assembly language programmer will generally speak of “subprograms”.

The concepts of subroutines and functions are generally associated with higher level
languages, though they are really just programming conventions placed
on the use of the assembly language.

Given a programming language, such as the IBM Assembler, that provides support for
subprogram linkage, all that is required to support functions is the designation of one or
more general–purpose registers to return values from the function.

In CDC–7600 FORTRAN, the two designated registers were X6 and X7. The usage:

Single–precision results Register X7 would return the value.

Double–precision results Register X7 would return the low–order 32 bits
Register X6 would return the high–order 32 bits.

As a result, any subroutine could be called as a function. What one got as a result would
be the value that the subroutine last placed in X7 or both X6 and X7. While this was
chancy, it was predictable.



Control Section: CSECT

A control section (CSECT) is, by definition, a block of coding that can be relocated
within the computer address space without affecting the operating logic of the program.

A large system may comprise a number of control sections, each independently
assembled and built using a link editor.

Every program contains a large number of references, either to variables or addresses.

In a large system, individual control sections may contain references to variables or
addresses not found locally. These are links to other control sections.

A link editor edits the links; it searches each CSECT for references that cannot be
resolved locally and attempts to find matches in other CSECTS in the system.

As an example, suppose your HLL program contains the following line of code.

Y = 100*SIN(X)

It is not likely that your program contains a function called SIN, presumably the sine.
The linkage editor will find the appropriate function in the RTS library and resolve the
reference by building the link from your program to the system routine.



Declaring External References

There are two possibilities if your code contains a reference that cannot be
found within the local CSECT:

1. You forgot to declare the reference and have an error in your program.

2. The reference is to a variable or address in another CSECT.

In order to distinguish between the two cases, one must explicitly declare a reference as
external if it is not declared within the local CSECT.

The data type for such a reference is V (external defined address). Recall that all
“variable” references are really address references that access the contents of the address.

Presumably, one could write something like the following.

PROGB DC V‘0000’

But this seems to be done rarely, if at all.

Invocation of a subroutine found in a separate CSECT is achieved by use of the standard
system macro, CALL. We give an example, and its expansion.

CALL PROGB

+ L 15,=V(PROGB) LOAD ADDRESS OF EXTERNAL REFERENCE

+ BALR 14,15 STORE RETURN ADDRESS INTO R14



Call By Reference vs. Call By Value

Two of the more common methods for passing data between CSECTs are call by
reference and call by value. Note that there are several other common methods.

In call by value, the calling program delivers the actual values of the data to the
subroutine. This can alter the values of those data, but the altered values will not
be returned to the calling routine. Some languages call these “in parameters”.

In call by reference, the calling program delivers the addresses of the data items to the
subroutine. The values of these data can be changed by the called subroutine and those
values propagated back to the calling program.

Note that the return address for the subroutine can also be changed.

This is an old hacker trick.

The next question we must ask is how these values and/or addresses
will be passed to the subroutine.



Mechanisms for Passing

By this title, we mean either the passing of values or the passing of addresses.

Basically, there are three mechanisms for passing values to a subroutine.

Each of these has been used.

1. Pass the values in registers specifically designated for the purpose.

2. Pass the values on the stack.

3. Pass the values in an area of memory and pass a pointer to that area
by one of the other methods.

Remember that a pointer is really just an address in memory; it is an unsigned integer.

In some high–level languages, a pointer may be manipulated as if it were an unsigned
integer (which it is). In others, standard arithmetic cannot be applied to pointers.

Languages, such as Java and C#, provide for pointers but do not allow direct arithmetic
manipulation of these addresses. For that reason, the term “pointer” is not used.



Subroutines, Separate Assemblies and Linkage

The first example of a subroutine was the B10DOIT routine a few slides back.

B10DOIT MVC DATAPR,RECORDIN
PUT PRINTER,PRINT
BR 8

While this is a valid subroutine, we note two facts of importance.

1. It is in the same assembly as the calling module.

2. It is in the same CSECT as the calling module.

In general, we would like to link modules that are not assembled at the same time.

It might even be necessary to link assembled code with code written in a higher–level
language and compiled. Thus COBOL programs might call assembler language routines.

We have already encountered the external declaration, which is used to declare that:

1. A label corresponds to an address declared in another module, and

2. The linking loader will have to resolve that address by loading the called module,
assigning an address to this label, and updating that reference in the calling code.

IBM has established a set of conventions for use by all modules when calling separately
assembled modules. These insure that each module can work with any other module.



The Save Areas

One key design feature when developing subroutines and functions is the minimization
of side effects. One particular requirement concerns the general purpose registers.

This design requirement is that after the return from a called subprogram, the contents of
the general purpose registers be exactly the same as before the call.

The only exception to this rule is the use of a general purpose register for the return of a
function value. In this case, each of the calling routine and the called routine explicitly
allows for the value of that one specified register to be changed.

Save and Restore

The strategy used is that each routine (including the main program) will save the contents
of all but one of the general purpose registers on entry and restore those on exit.

This has evolved from an earlier strategy in which a developer would save the contents of
only those registers to be used explicitly in the subprogram.

In the statically allocated, non–recursive world of IBM assembler programs, each routine
will declare an 18–fullword “save area”, used to save important data.



The Save Area

Each assembler module should have a save area, which may be declared as follows.
The important feature is that eighteen full words are allocated.

SAVEA DS 18F

The structure of the save area is shown in the table below.

Word Displacement Contents of the Word
1 0 This is no longer used.

It was once used by PL/I programs.
2 4 The address of the save area of the calling program.

Saved here to facilitate error processing.
3 8 The address of the save area of any subprogram called.

The subprogram called will update this value.
4 12 The contents of general–purpose register 14,

which contains the return address to the calling program.
5 16 The contents of general–purpose register 15, which

contains the address of the entry point in this program.
6 20 The contents of general–purpose register 0.

7 – 18 24 These twelve fullwords contain the contents of
general–purpose registers 1 through 12.



Register Usage in Subprogram Calling

The following is the Standard Linkage Convention for the use of
general–purpose registers.

Register Use

1 Address of the parameter list

13 Address of calling routine’s save area

14 Address in the calling routine to which
control is to be returned.

15 The address of the entry point
in the called subprogram.

We have already seen an example of the use of registers 14 and 15.
Consider the following code.

L 15,=V(PROGB) LOAD ADDRESS OF EXTERNAL REFERENCE

BALR 14,15 STORE RETURN ADDRESS INTO R14



The SAVE Macro

Often the first executable instruction of a program will be SAVE (14,12). Here is
the actual code from the second lab assignment, in which I chose to expand macros.

31 LAB02 CSECT
32 SAVE (14,12) SAVE CALLER’S REGISTERS
34+ DS 0H
35+ STM 14,12,12(13)
36 BALR R12,0 ESTABLISH ADDRESSABILITY
37 USING *,R12
38 LA R2,SAVEAREA LINK THE SAVE AREAS
39 ST R2,8(,R13)
40 ST R13,SAVEAREA+4
41 LR R13,R2

On entry, general–purpose register 13 contains the address of the supervisor’s
save area. The SAVE macro is written under this assumption.

The program executes as a subprogram of the supervisor (Operating System).

Recall that the address designated 12(13) corresponds to an offset of 12
from the value stored in register 13.

If R13 contains address S0, then 12(13) corresponds to address (S0 + 12).



The User Program Saves the Registers

In this illustration, assume the following.

1. The save area of the supervisor begins at address S0.

2. The user main program is PA, with save area starting at address SA.

3. The user program calls program PB, which has save area starting at SB.

This is the case on entry to main program PA. Register 13 points to the start of
the save area for the supervisor and 12(13) points to the start of its register save area.

The instruction STM 14,12,12(13) is then executed. The contents of the
supervisor’s save area is now as follows.



The User Program Links the Save Areas

The next step is to establish addressability in the user program, so that addresses
such as that of the save area can be used. The user program then forward links
the supervisor’s save area. Before that happens, we just have two save areas.

Here is the code to do the forward link. The address of the start of the user save area
is placed in the fullword at offset 8 from the start of the supervisor’s save area.

38 LA R2,SA LINK THE SAVE AREAS
39 ST R2,8(,R13) OFFSET 8 FROM S0



The User Program Links the Save Areas (Part 2)

The program now executes the following code to establish the backward link
from the user program to the supervisor’s save area.

40 ST R13,SA+4

At this point, register R13 contains the address of the supervisor’s save area.
The result of this instruction is the completion of the two–way links.

Now R2 holds the address of the user save area. Note that this could have been
any of the registers in the range 2 – 12, excepting 12 which was used for addressability.

The next instruction established R13 as once again holding the address of the
save area of the current program.

41 LR R13,R2



The Chain Continues

Suppose the user program calls a subprogram.
The chain is continued.



The Return Process

The return process restores the general–purpose registers to their values
before the call of the subroutine.

R13 is first restored to point to the save area for the calling program.
Then the other general–purpose registers are restored.

Here is the situation on return from Subprogram PB.

The code is as follows.

L R13,SB+4 GET ADDRESS OF CALLER’S SAVE AREA

LM R14,R12,12(R13) RELOAD THE REGISTERS. R14 IS
LOADED WITH THE RETURN ADDRESS

BR R14 RETURN TO THE CALLER



Entry/Exit Considerations

Consider how a program or subprogram starts and exits.

The start code is something like the following.

SUB02 CSECT
SAVE (14,12) SAVE CALLER’S REGISTERS

+ DS 0H
+ STM 14,12,12(13)

BALR R12,0 LOAD R12 WITH THE ADDRESS
USING *,R12 OF THE NEXT INSTRUCTION

Here is the standard exit code. Assume the save area is at address SB.

L R13,SB+4 ADDRESS OF CALLERS SA
LM R14,R12,12(R13) CALLER’S REGISTER VALUES
BR R14 RETURN

Note that the next to last instruction in the second section causes addressability in the
called program to be lost. This is due to the fact that the value that had been loaded into
R12 to serve as the base register for this code’s addressability has been overwritten.



Setting the Return Code

The IBM linkage standard calls for general–purpose register R15 to be loaded with a
return code indicating success or failure. A value of 0 usually denotes a success.

It is common to set the return code just before the terminating BR instruction, just
after the restoration of the calling routine’s registers.

The following is typical code. Here, I am setting a return code of 3.

L R13,SB+4 ADDRESS OF CALLERS SA
LM R14,R12,12(R13) CALLER’S REGISTER VALUES
LA R15,3 LOAD CODE INTO R15
BR R14 RETURN

This uses the LA (Load Address) instruction in its common sense as a way to
load a non–negative constant less than 4,096 into a general–purpose register.

Note that an instruction such as L R15,=H‘3’ would require access to an element
in the subprogram’s literal pool. However, the value of the subprogram’s base
register has been overwritten, and addressability has been lost.

Another way to set the return code to 0 would be to execute the instruction
SR R15,R15.



The Dummy Section (DSECT)

Recall that parameters are passed by reference when it is desired to allow the called
program to change the values as stored in the calling program.

Call by reference involves passing an address for a parameter. This address is then
used as a target for a new value to be passed back to the calling program.

For passing large quantities of data, it is convenient to use a dummy section.

This process is best considered as passing a record structure to the called subprogram.

1. All the data items to be passed to the called program are grouped in a
contiguous data block.

2. The address of this data block is passed to the called subprogram.

3. The called subprogram accesses items in the data block by offset from
the address passed to it.

The DSECT is used in the called subprogram as a template for the assembler to
generate the proper address offsets to be used in accessing the original data.



Example of Linkage Using a DSECT

Suppose that I want to pass customer data from PROGA (the calling program, in
which the data are defined) to subprogram PROGB, in which they are used.

Here is a sketch of code and declarations in the calling program, which is PROGA.
This uses the calling convention that R1 holds the address of the parameters.

PROGA CSECT

* SECTION TO CALL PROGB
LA R1,=A(CREC) LOAD RECORD ADDRESS
L R15,=V(PROGB) LOAD ADDRESS OF PROGB
BALR R14,R15 CALL THE SUBPROGRAM
Next Instruction

CREC DS 0CL96 THE RECORD WITH ITS SUBFIELDS
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87



The Dummy Section Itself

The dummy section will be declared in the called subprogram using a DSECT.

Here is the proper declaration for our case.

CRECB DSECT
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87

The DSECT is a convenient means that can be used to describe the layout of a
storage area without actually reserving storage.

In use of a DSECT, it is assumed that the storage has been reserved elsewhere and
that the base address of that storage will be passed as a parameter.

The DSECT is just a mechanism to instruct the assembler on generation of offsets
from the base address into this shared data area.



Use of the DSECT in PROGB

Here is a sketch of the use of the DSECT in PROGB, assembled independently.

Recall that general–purpose register R1 contains the address of the customer record.

PROGB CSECT
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12

LR R10,R1 GET THE PARAMETER ADDRESS
USING CRECB,R10 ESTABLISH ADDRESSABILITY FOR

THE DUMMY SECTION

MVC OUTC,CCITY THIS ACCESSES THE DATA IN
THE CALLING PROGRAM

CCITY DS CL15 DATA BELONGING TO PROGB
CRECB DSECT
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87



A Detailed Look at Addresses

Here we recall two facts relative to the one instruction MVC OUTC,CCITY.

The label OUTC belongs to the called subprogram PROGB. It is accessed using
base register R12, which is the basis for addressability in this subprogram.

The label CCITY belongs to the dummy section. It is accessed using the base
register explicitly associated with the DSECT; here it is R10.

Suppose that OUTC has address X‘100’ (decimal 256) within PROGB, it is at that
displacement from the value contained in the base register R12.

From the DSECT it is clear that the label CCITY is at displacement 70 (X‘46’)
from the beginning of the data record. The field has length 15, or X‘0F’

The instruction MVC OUTC,CCITY

could have been written as MVC 256(15,R12),70(R10).

The object code is thus D2 0E C1 00 A0 46

D2 is the operation code for MVC. 0E encodes decimal 14, one less than the length.

C1 00 represents an address at displacement X‘100’ from base register 12.

A0 46 represents an address at displacement X‘46’ from base register 10.


