
Declaring Floating Point Data

There are three ways to declare floating–point storage. These are

E Single–precision floating point,

D Double–precision floating point, and

L Extended–precision floating point.

The lengths of these data types are as follows:

E 32 bits or 4 bytes.

D 64 bits or 8 bytes.

L 128 bits or 16 bytes.

We shall focus on the first two data types (E and D). These evolved from the
48–bit floating point data type used on the IBM 7094, a predecessor of the
IBM 360.

The creation of two related data types was a compromise necessary to
drop the 48–bit data type.

Details of the Format

The floating–point number consists of a sign, characteristic (exponent), and
a fraction. The bit allocations for each of the three formats is shown below.

Format Length Sign bit Characteristic Fraction
E 4 bytes 0 1 – 7 8 – 31
D 8 bytes 0 1 – 7 8 – 63
L 16 bytes 0 1 – 7 8 – 127

Recall that IBM numbers bits from left to right.

The sign bit, in bit position 0, applies to the fraction. The two values are:

0 the number is not a negative number;
it is either positive or zero.

1 the number is a negative number.

Byte 0 (the most significant byte) or each representation holds both

the sign for the fraction, and

the characteristic field, which holds the exponent.

Details of the Exponent Field

Bits 1 – 7 of each format hold the characteristic field, which is defined to be
the exponent in excess–64 notation; it is (exponent + 64).

As a seven–bit unsigned integer can store values in the range 0 through 127,
we have 0 (exponent + 64) 127, or

–64 exponent 63.

The leftmost byte of the format stores both the sign and exponent.

Bits 0 1 2 3 4 5 6 7
Field Sign Exponent in Excess–64 format

Examples

Positive number, Exponent = –8 E + 64 = 56 = 48 + 8 = X’38’ = B’011 1000’.

0 1 2 3 4 5 6 7
Sign 3 8

0 0 1 1 1 0 0 0

The value stored in the leftmost byte is 0011 1000 or 38.

Normalized Formats

All floating point formats are of the form (S, E, F) representing (–1)SBEF

S the sign bit, 1 for negative and 0 for non–negative.

B the base of the number system; one of 2, 10, or 16.

E the exponent.

F the fraction.

The IBM 370 format uses base 16.

Each of the formats represents the numbers in normalized form.

For IBM 370 format, this implies that 0.0625 < F 1.0. Note (1/16) = 0.0625.

In byte addressing, the layout of the E and D formats is as follows.

Byte 0 1 2 3 4 5 6 7
E Sign &

Exponent
Fraction
24 bits

D Sign &
Exponent

Fraction
56 bits

Converting Decimal to Hexadecimal

The first step in producing the IBM 370 floating point representation
of a real number is to convert that number into hexadecimal format.

The process for conversion has two steps,
one each for the integer and fractional part.

Example: Represent 123.90625 to hexadecimal.

Conversion of the integer part is achieved by repeated division with remainders.

123 / 16 = 7 with remainder 11 X’B’

7 / 16 = 0 with remainder 7 X’7’.

Read bottom to top as X’7B’. Indeed 123 = 716 + 11 = 112 + 11.

Conversion of the fractional part is achieved by repeated multiplication.

0.90625 16 = 14.5 Remove the 14 (hexadecimal E)

0.5 16 = 8.0 Remove the 8.

The answer is read top to bottom as E8.

The answer is that 123.90625 in decimal is represented by X’7B.E8’.

Converting Decimal to IBM 370 Floating Point Format

The decimal number is 123.90625.

Its hexadecimal representation is 7B.E8.

Normalize this by moving the decimal point two places to the left.

The number is now 162 0.7BE8.

The sign is 0, as the number is not negative.

The exponent is 2, E + 64 = 66 = X’42’. The leftmost byte is X’42’.

The fraction is 7BE8.

The left part of the floating point data is 427BE8.

In single precision, this would be represented in four bytes as 42 78 E8 00.

Floating–Point Registers

In addition to the 16 general–purpose registers, the IBM System/370 supports four
floating–point registers. Later models support more.

Each floating–point register is a 64 bit register, suitable to hold the D data type.

These registers are numbered 0, 2, 4, and 6.

The even numbering was probably intended to reinforce the idea that each of
these registers has twice the length of a general–purpose register.

It is the type of the instruction that determines that a register number refers to
a floating–point register rather than a general–purpose register.

Consider the following code.

R4 EQU 4

AR R4,R4 ADD REGISTER, REFERING TO A
GENERAL-PURPOSE INTEGER REGISTER.

ADR R4,R4 ADD DOUBLE PRECISION FLOAT REGISTER,
REFERING TO THE FLOATING POINT REG.

Conversion Between Single and Double Precision

Recall that the structure of the two precisions is quite similar.

Byte 0 1 2 3 4 5 6 7
E Sign &

Exponent
24 bit fraction

6 hexadecimal digits
D Sign &

Exponent
56 bit fraction

14 hexadecimal digits

To convert single–precision floating point to double–precision floating–point,
just add eight hexadecimal zeroes at the end.

Thus single precision 42 78 E8 00

becomes double precision 42 78 E8 00 00 00 00 00

Conversion from double–precision to single–precision might involve loss of
accuracy. It might be done by rounding or truncation.

Thus, double precision 42 78 E8 04 A8 00 00 00

might become 42 78 E8 04

or it might become 42 78 E8 05

Loading a Floating Point Register

When a floating–point register is loaded from a double–precision floating–point
value, the process is simple: copy the 64–bit value into the 64–bit register.

When a floating–point register is loaded from a single–precision floating–point
value, the process involves implicit conversion to double precision as shown above.

The 32–bit value represented by the single–precision float is loaded into the leftmost
32 bits of the floating point register and the right 32 bits are set to 0.

Consider the process of loading the decimal number 123.90625, represented as
42 78 E8 00 into a floating point register.

The value stored in the floating–point register is 42 78 E8 00 00 00 00 00,
which is the double–precision equivalent to the value loaded.

Range of the Standards

Given that the base of the exponent is 16, the range for these IBM formats is impressive.

The range is from somewhat less than 16–64 to a bit less than 1663.

Note that 1663 = (24)63 = 2252, and
16–64 = (24)–64 = 2–256 = 1.0 / (2256)

Recall that log10(2) = 0.30103.

Using this, we compute the maximum number storable at about
(100.30103)252 1075.86 91075.

We may approximate the smallest positive number at 1.0 / (361075) or about 3.010–77.

The following non–negative real numbers can be represented in this standard:

X = 0.0 and

3.010–77 < X < 91075.

Precision of the Standards

The precision is dependent on the format used, depending on the
number of bits used to represent the fraction.

We can summarize the precision for each format as follows.

Single precision F = 24 1 part in 224.

Double precision F = 56 1 part in 256.

Extended precision F = 120 1 part in 2120.

The first power of 2 is easily computed; we use logarithms to approximate the others.
224 = 16,777,216
256 (100.30103)56 = 1016.85 91016.
2120 (100.30103)120 = 1036.12 1.21036.

Summary
Format Type Positive Range Precision
Single Precision E 3.010–77 < X < 91075 7 digits

Double Precision D 3.010–77 < X < 91075 16 digits

Extended Precision L 3.010–77 < X < 91075 36 digits

Examples of Floating Point Format (Page 1)

Example 1: True 0
The number 0.0, called “true 0” by IBM, is stored as all zeroes.

In single precision it would be 0000 0000.

In double precision it would be 0000 0000 0000 0000.

Example 2: Positive exponent and positive fraction.
The decimal number is 128.50. The format demands a representation in the
form X16E, with 0.625 X < 1.0.

As 128 X < 256, the number is converted to the form X162.
Note that 128 = (1/2)162 = (8/16)162 , and 0.5 = (1/512)162 = (8/4096)162.
Hence, the value is 128.50 = (8/16 + 0/256 + 8/4096)162; it is 1620x0.808.

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010. The
first two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 1 0
Hex value 4 2

The fractional part comprises six hexadecimal digits, the first three of which are 808.
The number 128.50 is represented as 4280 8000.

Examples of Floating Point Format (Page 2)

Example 3: Positive exponent and negative fraction.
The decimal number is the negative number –128.50. At this point, we would normally
convert the magnitude of the number to hexadecimal representation. This number has the
same magnitude as the previous example, so we just copy the answer; it is 1620x0.808.

We now build the first two hexadecimal digits, noting that the sign bit is 1.

Field Sign Characteristic
Value 1 1 0 0 0 0 1 0
Hex value C 2

The number 128.50 is represented as C280 8000.
Note that we could have obtained this value just by adding 8 to the first hex digit.

Examples of Floating Point Format (Page 3)

Example 4: Negative exponent and positive fraction.
The decimal number is 0.375. As a fraction, this is 3/8 = 6/16. Put another way, it is
1600.375 = 160(6/16). This is in the required format X16E, with 0.625 X < 1.0.

The exponent value is 0, so the characteristic value is either 64 or 0x40 = 100 0000. The
first two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 0 0
Hex
value

4 0

The fractional part comprises six hexadecimal digits, the first of which is a 6.
The number 0.375 is represented in single precision as 4060 0000.
The number 0.375 is represented in double precision as 4060 0000 0000 0000.

Examples of Floating Point Format (Page 4)

Example 5: A Full Conversion
The number to be converted is 123.45. As we have hinted, this is a non–terminator.

Convert the integer part.
123 / 16 = 7 with remainder 11 this is hexadecimal digit B.
7 / 16 = 0 with remainder 7 this is hexadecimal digit 7.

Reading bottom to top, the integer part converts as 0x7B.

Convert the fractional part.

0.45 16 = 7.20 Extract the 7,

0.20 16 = 3.20 Extract the 3,

0.20 16 = 3.20 Extract the 3,

0.20 16 = 3.20 Extract the 3, and so on.

In the standard format, this number is 1620x0.7B33333333…...

Examples of Floating Point Format (Page 5)

Example 5: A Full Conversion (Continued)
The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010. The
first two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 1 0
Hex value 4 2

The number 123.45 is represented in single precision as 427B 3333.
The number is represented in double precision as 427B 3333 3333 3333.

Example 6: One in “Reverse”
We are given the single precision representation of the number. It is 4110 0000.
What is the value of the number stored? Begin by examination of the first two hex digits.

Field Sign Characteristic
Value 0 1 0 0 0 0 0 1
Hex value 4 1

The sign bit is 0, so the number is positive. The characteristic is 0x41, so the exponent is

1 and the value may be represented by X161. The fraction field is 100 000, so the

value is 161(1/16) = 1.0.

More On DC (Define Constant)

The general format of the DC statement is as follows.

Name DC dTLn ‘constant’

The name is an optional entry, but required if the program is to refer to
the field by name. The standard column positions apply here.

The declarative, DC, comes next in its standard position.

The entry “dTLn” is read as follows.

d is the optional duplication factor. If not specified, it defaults to 1.

T is the required type specification; usually either E and D.
Note that the data actually stored at the location does not need to be
of this type, but it is a good idea to restrict it to that type.

L is an optional length of the data field in bytes.

The ‘constant’ entry is required and is used to specify a value.
If the length attribute is omitted, the length is specified implicitly by this entry.

Again, it is rarely desirable to specify a length for the E and D data types.

Examples of Floating–Point Declaratives

Here are some examples of floating–point declaratives.

FL1 DS E This defines a 4–byte storage area, aligned
on a fullword boundary. Presumably, it
will store Single Precision Data.

DL1 DS D An 8-byte storage area, aligned on a double
word boundary. It could store data in
Double Precision format.

FL2 DC E‘12.34’ Define a single precision value.

FL3 DC E‘-12.34’ The negative of the above value.

DL2 DC D‘0.0’ The constant 0.0, in double precision.

DL3 DS D‘0.0’ Just another storage allocation.
Value is not initialized.
‘0.0’ is just a comment.

Load Instructions

The Load Instructions
The load instructions load a 64–bit floating point register from either storage or
another floating–point register. The valid register numbers are 0, 2, 4, or 6.

LE R1,D2(X2,B2) Load R1 single precision from memory
Operand 2 is an aligned fullword;
its address is a multiple of 4.

LD R1,D2(X2,B2) Load R1 double precision from memory
Operand 2 is an aligned double word;
its address is a multiple of 8.

LER R1,R2 Load the leftmost 32 bits of R1
from the leftmost 32 bits of R2.

LDR R1,R2 Load the 64-bit register R1 from
the 64-bit register R2.

The first two instructions are type RX and the last two are type RR.

Type RX Floating–Point Loads

The opcodes for the two type RX instructions are as follows:
LE X‘78’ LD X‘68’

Each is a four–byte instruction of the form OP R1,D2(X2,B2).

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

R1 is the floating point register to be loaded.

X2 is the general–purpose register used as an index register.

The third and fourth bytes contain an address in the standard base/displacement
with index register format.

The load instructions do not set any condition code.

Type RR Floating–Point Loads

The opcodes for the two type RR instructions are as follows:
LER X‘38’ LDR X‘28’

The object code format for these type RR instructions follows the standard.
Each is a two–byte instruction of the form OP R1,R2.

Type Bytes Operands

RR 2 R1,R2 OP R1 R2

The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

This instruction format is used to process data between registers.

The Store Instructions

The Store Instructions
There are two store instructions for storing either the leftmost 32 bits or all 64 bits
of the 64 bit floating–point registers. Again, the valid register numbers are 0, 2, 4, or 6.

STE R1,D2(X2,B2) Store the 32 leftmost bits of register R1
as a single precision result into the
aligned fullword address.

STD R1,D2(X2,B2) Store the 64 bits of register R1 as a
double precision result into the aligned
double word address.

The opcodes for these two instructions are as follows: STE X‘70’ STD X‘60’.

Each is a four–byte instruction of the form OP R1,D2(X2,B2).

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code.
The second byte contains two 4–bit fields, each of which encodes a register number.
The third and fourth bytes contain an address in the standard base/displacement with
index register format.

Sample Code

LOAD1 LE 0,FL1 LOAD FP REG 0 FROM ADDRESS FL1

LOAD2 LD 2,FL2 LOAD DOUBLE PRECISION

LOAD3 LER 4,0 COPY SINGLE PRECISION INTO FP REG 4

LOAD4 LDR 6,2 COPY DOUBLE PRECISION INTO FP REG 6

STORE1 STE 6,FL3 STORE THE SINGLE PRECISION INTO FL3

STORE2 STD 6,FL4 STORE DOUBLE PRECISION INTO FL4

FL1 DC E‘123.45’ A SINGLE PRECISION FLOATING POINT

CONSTANT. ADDRESS IS MULTIPLE OF 4.

FL2 DC D‘45678.90’ A DOUBLE PRECISION FLOATING POINT
CONSTANT. ADDRESS IS MULTIPLE OF 8

FL3 DS E JUST RESERVE AN ALIGNED FULLWORD
FL4 DS D RESERVE AN ALIGNED DOUBLE WORD.

The DS E and DC E declaratives align the address of the memory area as
a multiple of 4.

The DS D and DC D declaratives align the address of the memory area as
a multiple of 8.

Addition and Subtraction

There are four distinct addition instructions and four distinct subtraction instructions
for normalized floating–point numbers. These instructions are as follows:

Mnemonic Operation Opcode Operand Format
AE Add single precision 7A R1,D2(X2,B2)
AD Add double precision 6A R1,D2(X2,B2)

AER Add register single precision 3A R1,R2
ADR Add register double precision 2A R1,R2
SE Subtract single precision 7B R1,D2(X2,B2)
SD Subtract double precision 6B R1,D2(X2,B2)

SER Subtract register single precision 3B R1,R2
SDR Subtract register double precision 2B R1,R2

Subtraction functions by changing the sign of the second operand and then performing
an addition.

The first step in each is ensuring that the characteristics of both operands are equal. If
unequal, the field with the smaller characteristic is adjusted by shifting the fraction to
the right and incrementing the characteristic by 1 until the characteristics are equal.

Addition Example: Adjusting the Characteristic

Here is an example of adjusting the characteristic.

CharacteristicFraction
41 29000 = 41 29000
40 12000 = 41 01200

41 2A200

Suppose that the fraction overflows. If that happens, the fraction is shifted right by one
hexadecimal digit and the characteristic is incremented by 1. This last operation is
called normalization, in that it returns the result to the expected normal form.

CharacteristicFraction
41 940000
41 760000
41 10A0000 which becomes 42 10A000.

Recall that in hexadecimal addition we have 9 + 7 = 10.

Multiplication

There are four distinct floating–point multiplication operations.

Mnemonic Action Opcode Operands
ME Multiply single precision 7C R1,D2(X2,B2)
MD Multiply double precision 6C R1,D2(X2,B2)

MER Multiply single (register) 3C R1,R2
MDR Multiply double (register) 2C R1,R2

In each, the first operand specifies a register that stores the multiplicand and,
after the multiplication, stores the product.

The operation normalizes the product, which in all cases is a double–precision result.

Sample code segment

M1 LE 2,MULTCAN1 LOAD FIRS MULTIPLICAND

ME 2,MULTIPLIER DO A MULTIPLICATION

LE 4,MULTCAN2 LOAD ANOTHER VALUE

MER 4,2 REG 4 GETS THE PROCUCT OF
THE THREE VALUES.

Division

There are four distinct floating–point division operations.

Mnemonic Action Opcode Operands
DE Divide single precision 7D R1,D2(X2,B2)
DD Divide double precision 6D R1,D2(X2,B2)

DER Divide single (register) 3D R1,R2
DDR Divide double (register) 2D R1,R2

In each, the first operand specifies a register that stores the dividend and,
after the division, stores the quotient. There is no remainder.

The operation normalizes the quotient, which in all cases is a double–precision result.

Sample code segment

D2 LD 2,DIVIDND1 LOAD FIRST DIVIDEND

DD 2,DIVSOR FIRST DIVISION

LD 4,DIVIDND2 LOAD SECOND DIVIDEND

DDR 4,2 ANOTHER DIVISION

DIVIDND2 / (DIVIDND1 / DIVSOR)
or (DIVIDND2 * DIVSOR)/ DIVIDND1

Comparison

There are four distinct floating–point division comparison operations.

Mnemonic Action Opcode Operands
CE Compare single precision 79 R1,D2(X2,B2)
CD Compare double precision 69 R1,D2(X2,B2)

CER Compare single (register) 39 R1,R2
CDR Compare double (register) 29 R1,R2

In each, the comparison sets the condition codes as would be expected for comparisons
in the other formats. Each operation proceeds as a modified subtraction. The
characteristic fields of the two operands are checked, and the smaller exponent is
incremented while right shifting its fraction (denormalizing the number, but preserving
its value) before the comparison.

If both operands have fractions that are zero (all bits in the field are 0), the result is
declared to be equal without consideration of either the exponent or the sign.

The single precision operations compare only the leftmost 32 bits in each value.

