Printing Packed Data

The unpack command, UNPK, has an unfortunate side effect.
Two commands to convert binary to printable EBCDIC.
CVD Convertsthe binary to packed decimal.
UNPK Almost convertsto EBCDIC.

Consider the decimal number 42, represented in binary in register R4.
CVD R4,PACKOUT produces the packed decimal 042C.

When this is unpacked it should become FOF4 F2

Unpack just swaps the sign half byte: FO F4 C2.

This prints as 04B, because 0xC2 is the EBCDIC code for the letter ‘B’.
We have to correct the zone part of the last byte. See pages 167 & 175.

Printing Packed Data (Part 2)

Here is the code that works.
NUMOUT CVD R4, PACKOUT CCNVERT THE NUMBER TO PACKED

UNPK THESUM PACKOUT PRODUCE FORMATTED NUVBER
WZ THESUM+7(1), =X FO’

THESUM has eight characters stored as eight bytes. The addresses are:

MOVE 1 BYTE

TO ADDRESS THESUMt7
BR 8 RETURN ADDRESS | N REQ STER 8
PACKOUT DS PL8 HOLDS THE PACKED OUTPUT

SUM

SUM +1

SUM +2

SUM +3

SUM +4

SUM +5

SUM +6

SUM +7

Hundreds

Tens

Units

Again, the expression THESUMt7 is an addr ess, not avalue.

If THESUM holds C' 01234567’ , then THESUM+7 holds C ‘7’

A Problem with the Above Routine

Consider the decimal number —42, stored in a register
In binary two’ s—complement form.

CVD produces 042D
UNPK produces FOF4 D2
The above MV Z will convert thisto FO F4 F2, a positive number.

There are some easy fixes that are guaranteed to produce the correct
representation for a negative number.

Most of the fixes using CVD and UNPK depend on placing the minus sign
to theright of the digits. So that the negative integer —1234 would be
printed as“1234-".

My Version of NUMOUT (Number Out)

This routine avoids packed decimal numbers.
We are given a binary number (negative or non—negative) in register R4.

1. Isthe number negative?
If so, set the signto ‘—’' and take the absolute value.
Otherwise, leavethe sign aseither ‘+ or * .

We now have a hon—negative number. Assume it is not zero.

2. Divide the number by 10, get a quotient and a remainder.
The remainder will become the character output.

3. The remainder is a positive number in the range [0, 9].
Add =X"'FO’ to produce the EBCDIC code.

4. Place this digit code in the proper output slot.
|s the quotient equal to 07 If so, quit.

If it is not zero, place the quotient in the dividend and return to 2.

NUMOUT: Example

Consider the positive integer 9413. We want to print this out.

Do repeated division by 10 and watch the remainders.

9413 divided by 10: Quotient = 941
941 divided by 10: Quotient = 94
94 divided by 10: Quotient =9

9 divided by 10: Quotient =0

Quotient is zero, so the process stops.

Remainder = 3. Generate digit “3”.
Remainder = 1. Generatedigit “1”.
Remainder = 4. Generatedigit “4”.
Remainder = 9. Generate digit “9”.

Asthey are generated, the digits are placed right to left, so that the result

will print asthe string 9413.

NUMOUT: Specifications

The code processes a 32-hit two’ s—complement integer, stored as a fullword
In register R5 and printsit out as a sequence of EBCDIC characters.

The specification calls for printing out at most 10 digits, each asan EBCDIC
character. Thesign will be placed in the normal spot, just before the number.

For no particular reason, positive numbers will be prefixed witha“+”.
| just thought | would do something different.

Thiswill use repeated division, using the even—odd register pair (R4, R5),
which contains a 64-bit dividend.

As apart of our processing we shall insure that the dividend is a 32-bit
positive number. In that case, the “high order” 32 bits of the number are all 0.

For that reason, we initialize the “high order” register, R4, to 0 and initialize the
“low order” register, R5, to the absolute value of the integer to be output.

The EBCDIC characters output will be placed in a 12—-byte area associated with
the label CHARSQOUT, at byte addresses CHARSOUT through CHARSOUT+11.

Two New Instructions: LCR and STC

The code below will use two instructions that have not yet been discussed.

LCR (Load Complement Register)

Example LCR R1, R2
Thisloads register R1 with the negative (two’ s—complement) of the
valuein register R2. Thisisalso used in my routine NUMIN.

STC (Store Character)

Example STC R8,CHARSOUT(R3) PLACE THEDIGIT
Thistransfers the EBCDIC character, with code in the low order 8 bits of the
source register, to the target address. None of the bits in the register are changed.

The ideabehind NUMOUT isto compute the numerical value of adigitina
source register, convert it to an EBCDIC code, and move it to the print line.

NUMOUT: Part 1

Thefirst part checksthe sign of the integer in register R4 and sets the
sign character appropriately.

NUMOUT MVC CHARSQUT, ZEROQUT DEFAULT TO O

WI THESI GN, C + DEFAULT TO A PLUS SI GN
C R5, =F' O’ COVPARE RS TO O
BE DONE VALUE IS 0, NOTHI NG TO DC
BH | SPCS VALUE | S POCsSI TI VE
WI THESI GN, C -’ PLACE A M NUS SI GN
LCR R5, RS 2’ S COVPLEMENT R5 TO MAKE PGS
| SPOS SR R4, R4 CLEAR REAQ STER 4
Here are some data declarations used with this part of the code.
* 123456789012
ZEROOUT DC C 0’ 11 SPACES AND A ZERC

CHARSQUT DS CL12 UP TO 11 DIG@ TS AND A SI CGN

Division (Specifically D — Divide Fullword)

Thisinstruction divides a 64-bit dividend, stored in an even—odd register pair,
by afullword, and places the quotient and remainder back into the register pair.

Thiswill use the even—odd register pair (R4, R5). The specifics of the

divide instruction are as follows.

R4

RS

Before division | Dividend (high order 32 bits)

Dividend (low order 32 hits)

After divison | Remainder

Quotient

There are specific methods to handle dividends that might be negative.
Aswe are consdering only positive dividends, we ignore these general methods.

Our Example of Division

Start with abinary number in register R5.

We assume that register R4 has been cleared to 0, as this example
IS limited to a 32-bit positive integer.

This code will later be modified to process the remainder, and store
the result as a printable EBCDIC character.

DI VI DE D R4, =F 10’ DI VIDE (R4, R5) BY TEN

*

* THE REMAI NDER, | N R4, MJST BE PROCESSED AND STORED
*

SR R4, R4 CLEAR R4 FOR ANOTHER LOOP

C R5 =F0 CHECK THE QUOTI ENT

BH DI VI DE CONTINUE | F QUOTI ENT > O

Placing the Digits

At this point, our register and storage usage is as follows:

Register R3 will be used as an index register.
Register pair (R4, R5) is being used for the division.
Register pair (R6, R7) isreserved for use by the BXH instruction.

CHARSOQUT DS CL12 contains the twelve characters that form
the print representation of the integer.

The strategy calls for first placing adigit in the units slot (overwriting the ‘0’)
and then moving left to place other digits. To allow for asign, no digit
ISto be placed in dlot O, at address CHARSOUT.

0

Place digits right to left

The ideawill be to place the character into a byte specified by CHARSOUT(R3) .
Theregister isinitialized at 11 and decremented by 1 using the BXH instruction.

The Digit Placement Code

Here is a sketch of the digit placement code. It must be integrated into
the larger DIVIDE loop in order to make sense.

The register pair (R6, R7) isused for the BXH instruction.
R6 holds the increment value
R7 holds the limit value

L R6, =F" -1 SET | NCREMENET TO -1

SR R7,R7 CLEAR R/. LIMT VALUE IS 0.

L R3, =F 171’ SET I NDEX TC 11 FOR LAST DAT.
A R4, =X FO’ ADD TO CGET EBCDIC CODE FOR DA T

STC R4, CHARSQUT(R3) PLACE THE CHARACTER
BXH R3, R6, DI VI DE GO BACK TO TOP OF LOOP
MVC CHARSQUT(R3), THESIGN PLACE THE SI GN

The Complete Divide L oop

Here is the complete code for the divide loop. Note the branch out of the loop.

L
SR
L

*

Dl VI DE D
A
STC
SR
C
BNH
BXH

*

PUTSI GN WC

R6, =F' - 1’ SET | NCREMENET TO -1

R7, R7 CLEAR R7. LIMT VALUE IS 0.

R3, =F* 11’ SET I NDEX TO 11 FOR LAST DIG T.
R4, =F* 10’ DI VI DE (R4, R5) BY TEN

R4, =X* FO’ ADD TO GET EBCDIC CODE FOR DIG T
R4, CHARSOUT(R3) PLACE THE CHARACTER

R4, R4 CLEAR R4 FOR ANOTHER LOOP

R5, =F* O’ CHECK THE QUOTI ENT

PUTSI GN EXIT LOOP | F QUOTI ENT <= 0

R3, R6, DI VI DE GO BACK TO TOP OF LOOP

CHARSQUT(R3), THESIGN PLACE THE SI GN

