
Writing Macros

This lecture will focus on writing macros, and use stack handling
as an example of macro use.

Macros differ from standard subroutines and functions.

Functions and subroutines represent separate blocks of code to which
control can be transferred. Linkage is achieved by management of
a return address, which is managed in various ways.

A macro represents code that is automatically generated by the assembler
and inserted into the source code.

Macros are less efficient in terms of code space; each invocation
of the macro will generate a copy of the code.

Macros are more efficient in terms of run time;
they lack the overhead associated with subroutine call and return.

Before discussing macros, let’s discuss an application.

Dynamic Memory: Stacks and Heaps

The first thing we note is that the IBM 370 supports neither in native mode.

A stack is a LIFO (Last–In / First–Out) data structure with three basic

operations: PUSH places an item onto the stack,

POP removes an item from the stack

INIT initializes the stack.

A heap is a dynamic structure used by a RTS (Run–Time System) to allocate
memory in response to object creators, such as New.

A modern RTS will allocate an area of memory for use by both the stack and
the heap. By convention in system design:

The stack starts at high memory addresses and moves toward lower addresses.

The heap starts at low memory addresses and moves toward higher addresses.

NOTE: IBM has macros called “PUSH” and “POP”, associated with handling
print output. We must pick other names for our stack macros.

Division of the Dynamic Memory Space

This shows how the available space is divided between the stack and the heap.

There is no fixed allocation to either, just a limit on the total space used.

A stack is often managed using a stack pointer, SP, that locates its top.

Our Stack Implementation

Our goal in this lecture is to examine the basic stack structure,
and its implementation using macros.

Our implementation will use a fixed–size array to hold the stack.
The stack will grow towards higher addresses.

The stack pointer will point to the location into which the
next item will be pushed.

PUSH
STACK[SP] = ITEM

SP = SP + 1 // Moves toward higher addresses

POP
SP = SP – 1

ITEM = STACK[SP]

This non–standard approach is easier for me to code.

A Stack Example

Here we push four integers, one after the other. We then pop the values.

Push onto the stack

Pop from the stack: note the order is reversed.

Our Stack Implementation: Macro or Subroutine?

We have a choice of implementation method to use for our stack handler.

I have chosen to use an approach using macros for two reasons.

1. I wanted to discuss macros.

2. I wanted to use a stack to illustrate the subroutine call mechanism.
That makes it difficult to use a subroutine for the stack.

We shall write three macros for the stack.

STKINIT This is a macro without parameters.

It will initialize the stack count; hence, the stack pointer.

STKPUSH This is a macro with a single parameter.

It pushes the 32–bit contents of a register onto the stack.

STKPOP This is a macro with a single parameter.

It pops the contents of the stack top into a 32–bit register.

AGAIN: These names are chosen to avoid name conflicts with existing macros.

Mechanics of Writing Macros

The MACRO definitions should occur very early in the program text.

Only comments and assembler control directives may precede a
MACRO definition. This commonly includes the PRINT directive.

A MACRO begins with the key word MACRO, includes a prototype and
a macro body, and ends with the trailer keyword MEND.

Parameters to a MACRO are prefixed by the ampersand “&”.

Here is an example.

Header MACRO

Prototype DIVID ",&DIVIDEND,&DIVISOR

Model Statements ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR

Trailer MEND

Note that the header and trailer must appear as is. Each of the terms “MACRO”
and “MEND” begin in column 10. Nothing else is allowed on either line.

Example of Macro Expansion

In assembly language, a macro is a single statement that causes the assembler
to emit a sequence of other statements specified by the macro definition.

Consider the above example, with prototype
DIVID ",&DIVIDEND,&DIVISOR.

The macro body is

ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR

Here is an example of the macro expansion. We assume that the labels
used as “parameters” have been properly defined by DS or DC statements.

DIVID MPG,MILES,GALS MACRO INSTRUCTION

+ ZAP MPG,MILES ITS EXPANSION

+ DP MPG,GALS

Symbolic Parameters

The macro prototype contains a list of symbolic parameters.

Each symbolic parameter is written as follows:

1. The name begins with an ampersand (&).

2. The ampersand is followed by one to seven alphanumeric
characters, the first of which must be a letter.

3. Put another way, the first character of the name must be a “&”
and the second character of the name must be a letter.

Note that this “seven character” rule limits the total length of the symbolic
parameter to eight characters: the “&” and the 1 – 7 others.

According to the IBM HLASM reference manual, “Symbolic parameters
have a local scope; that is, the name and value they are assigned only applies
to the macro definition in which they have been declared”.

Page 251, High Level Assembler for z/OS & z/VM & z/VSE Language
Reference Manual, Release 6 (July 2008), SC26–4940–05

A Potential Problem with Macros.

It might appear that a macro invocation cannot be the target of a branch
instruction. Here is some of my early code.

I had defined a macro, STKPOP, in the proper place. It was used by
a routine, called DOFACT, to be discussed later.

I tried the following code:

B DOFACT CALL THE FACTORIAL CODE

Here is the branch target.

DOFACT STKPOP 4 POP THE ARGUMENT INTO R4

STKPOP 8 POP THE RETURN ADDRESS

BR 8 BRANCH TO RETURN ADDRESS

That did not assemble. The complaint was that the symbol DOFACT was not
defined. What happened? The label was clearly there in the source code.

Here is What Happened.

Consider the following expansion from a macro call. It has been edited for clarity.

0000BA 4840 C4AE 134 A92POP LH 4,STKCOUNT
0000BE 4940 C5B4 135 CH 4,=H'0'
0000C2 47D0 C0FE 136 BNP A98DONE

137 STKPOP 4
0000C6 4830 C4AE 138+ LH 3,STKCOUNT
0000CA 4B30 C5B2 139+ SH 3,=H'1'
0000CE 4030 C4AE 140+ STH 3,STKCOUNT
0000D2 8B30 0002 141+ SLA 3,2
0000D6 4120 C4B2 142+ LA 2,THESTACK
0000DA 5843 2000 143+ L 4,0(3,2)
0000DE The next instruction

Note that the STKPOP instruction on line 137 is not assigned an address.

The instruction on line 136 is at address C2 and has length 4. The next instruction
will be at address C6. Only the expanded code is “real”.

In other words, we note two facts:

1. The expansion code is what counts for code accuracy.
2. The label DOFACT does not “make it” into the expanded code.

The Solution to the Branch Target Problem

In order to solve the above problem, we need to focus on a more precise statement
of the form of a macro definition. We must focus on the prototype and body.

The general form of a prototype statement is as follows.

Symbolic Name Name of macro Zero or more symbolic parameters

If the symbolic name is to be used, it has the form of a symbolic parameter.

If the symbolic name is to be used, it must be duplicated on the first line of the body.

Here is an example, using the DIVID macro.

MACRO

&LABEL DIVID ",&DIVIDEND,&DIVISOR

&LABEL ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR

MEND

Note that the symbolic parameter “&LABEL” is treated as any other such parameter.

Code Example to Illustrate the Solution

MACRO

&LABEL DIVID ",&DIVIDEND,&DIVISOR

&LABEL ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR

MEND

B10DIV DIVID X,Y,Z

+B10DIV ZAP X,Y

DP X,Z

B20DIV DIVID A,B,C

+B20DIV ZAP A,B

DP A,C

Note that each of the labels B10DIV and B20DIV now appears in the expanded code
and can be used as a branch target address.

Concatenation: Building Operations

In a model statement, it is possible to concatenate two strings of characters.

Consider the macro prototype to load a register from one of several sources.
Note the use of the string “&NAME” to allow this to be a branch target.

MACRO

&NAME LOAD ®,&TYPE,&ARG

&NAME L&TYPE ®,&ARG

MEND

Consider a number of invocations.

LOAD R7,R,R6 becomes LR R7,R6

LOAD R7,H,HW becomes LH R7,HW

LOAD R7,,FW becomes L R7,FW

Note here: the second argument is empty. The empty string is concatenated to “F”.

As soon as I can verify a few particulars, I shall extend the stack operations to
push and pop contents of half–words and full–words.

Our Stack Data Structure

The stack is implemented as an array of full words, with two
auxiliary counters.

There is a halfword that counts the number of items on the stack.

There is a halfword constant that gives the maximum stack capacity.
This is not changed by the code.

There is the fixed–size array that holds the stack elements.

Here is the declaration of the stack.

STKCOUNT DC H’0’ NUMBER OF ITEMS STORED ON STACK
STKSIZE DC H’64’ MAXIMUM STACK CAPACITY
THESTACK DC 64F’0’ THE STACK HOLDS 64 FULLWORDS

Note that the elements are full–words while the addresses are byte addresses.

The elements of the stack will be stored at the following addresses.

THESTACK, THESTACK + 4, THESTACK + 8, THESTACK + 12
up to a full word starting at THESTACK + 252.

Initialize the Stack

Here is the macro that initializes the stack.

*STKINIT
MACRO

&L1 STKINIT
&L1 SR 4,4 CLEAR R4 – SUBTRACT FROM SELF

STH 4,STKCOUNT STORE AS THE STACK COUNT
MEND

*

Note the standard trick of clearing a register by subtracting it from itself.

The register exists only for the purpose of placing a 0 into the stack count.

Following standard practice, the contents of the stack are not changed,
because the elements of interest will be overwritten before they are used.

Note that this macro does not have any symbolic parameters.

PUSH: Placing Items Onto the Stack

Here is the macro STKPUSH

*STKPUSH
MACRO

&L2 STKPUSH &R
&L2 LH 3,STKCOUNT GET THE CURRENT STACK SIZE
* SLA BY 2 TO MULTIPLY BY FOUR

SLA 3,2 BYTE OFFSET OF INSERTION POINT
LA 2,THESTACK GET ADDRESS OF STACK START
ST &R,0(3,2) STORE THE ITEM INTO THE STACK
LH 3,STKCOUNT GET THE (NOW) OLD STACK SIZE
AH 3,=H’1’ INCREASE THE SIZE BY ONE
STH 3,STKCOUNT STORE THE NEW SIZE
MEND

*

This macro has one symbolic parameter: &R. It is to be a register number.

When called as STKPUSH 4, the operative statement is changed by the
assembler to ST 4,0(3,2) and executed as such at run time.

POP: Removing Items From the Stack

Here is the macro STKPOP

*STKPOP
MACRO

&L3 STKPOP &R
&L3 LH 3,STKCOUNT GET THE STACK COUNT

SH 3,=H’1’ SUBTRACT 1 WORD OFFSET OF TOP
STH 3,STKCOUNT STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK BASE
L &R,0(3,2) LOAD ITEM INTO THE REGISTER
MEND

*

Again, this macro has one symbolic parameter: &R. Again, a register number.

When called as STKPOP 6, this is assembled with the last statement as

L 6,0(3,2).

NOTE: When invoked as STKPOP MYDOG, this will
assemble as L MYDOG,0(3,2); the assembler takes anything.

Using the Macros

Here is the part of the unexpanded source code that uses the macros.

STARTUP OPEN (FILEIN,(INPUT)) OPEN THE STANDARD INPUT
OPEN (PRINTER,(OUTPUT)) OPEN THE STANDARD OUTPUT
PUT PRINTER,PRHEAD PRINT HEADER
STKINIT INITIALIZE THE STACK
GET FILEIN,RECORDIN GET THE FIRST RECORD, IF THERE

*
* READ AND PROCESS LOOP
*
A10LOOP MVC DATAPR,RECORDIN MOVE INPUT RECORD

PUT PRINTER,PRINT PRINT THE RECORD
PACK PACKIN,FIELD01 CONVERT DIGITS INPUT TO PACKED
CVB R4,PACKIN CONVERT THE NUMBER TO BINARY
STKPUSH 4 PUSH THE NUMBER ONTO THE STACK
GET FILEIN,RECORDIN GET THE NEXT RECORD
B A10LOOP GO BACK AND PROCESS

*

Here, it is obvious that I have retained register R4 for communicating results
with macros and subroutines. That is an arbitrary choice.

Using the Macros (Page 2)

Here is the unexpanded source code that uses the stack pop.

* END OF INPUT PROCESSING
*
A90END CLOSE FILEIN

PUT PRINTER,ENDNOTE ANNOUNCE THE END OF INPUT DATA
A92POP LH 4,STKCOUNT GET THE STACK COUNT

CH 4,=H’0’ IS THE COUNT POSITIVE?
BNP A98DONE NO, WE ARE DONE
STKPOP 4 GET NEXT NUMBER INTO R4
MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
BAL 8,NUMOUT PRODUCE THE FORMATTED SUM
MVC DATAPR,THENUM AND COPY TO THE PRINT AREA
PUT PRINTER,PRINT PRINT THE RESULT
B A92POP GO AND GET ANOTHER OUTPUT

A98DONE CLOSE PRINTER

Expansion of the Stack Pop

Here is the expanded code, edited from the assembler listing.

136 A92POP LH 4,STKCOUNT
137 CH 4,=H'0'
138 BNP A98DONE
139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ SH 3,=H'1'
143+ STH 3,STKCOUNT
144+ SLA 3,2
145+ LA 2,THESTACK
146+ L 4,0(3,2)
147 MVC PRINT,BLANKS
148 BAL 8,NUMOUT
149 MVC DATAPR,THENUM
150 PUT PRINTER,PRINT
151 *

Note: There is no RETURN statement or the like.
The code is inserted in line.

A Problem with the Macros

There is a problem with each of the macros STKPUSH and STKPOP.

We show it for STKPOP, because it is easier to see in this macro.

Suppose we have code with the following two macro calls,
one immediately following the other.

STKINIT

STKPOP 6 NOTE: WE HAVE NOT PUSHED AN ITEM

The macro STKINIT will set the value at location STKCOUNT to 0.

Now look at the code in the expansion of macro STKPOP.

139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ SH 3,=H'1'
143+ STH 3,STKCOUNT

STKCOUNT will be set to –1, and the pop will reference the full word just
before the stack. This is the pair STKCOUNT, STKSIZE: an error.

Avoiding the Problem: A Flawed Solution

The obvious solution is to test the value of STKCOUNT and avoid
popping a value if the stack is empty.

Here is some code that appears to do just that.

*STKPOP
MACRO
STKPOP &R
LH 3,STKCOUNT GET THE STACK SIZE
CH 3,=H'0'
BNP NOPOP
SH 3,=H'1' SUBTRACT 1 WORD OFFSET OF LAST
STH 3,STKCOUNT WORD AND STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK START
L &R,0(3,2) LOAD ITEM INTO R4

NOPOP NOP A DO NOTHING TARGET FOR BNP
MEND

*

If the macro is written this way, the code will assemble and run correctly.

What Is the Flaw?

The macro definition given above works ONLY because the macro is
invoked only one time. If the macro is invoked twice, trouble appears.

In this modification of running code, the macro is called twice in a row.

A90END CLOSE FILEIN NO MORE INPUT TO PROCESS
PUT PRINTER,ENDNOTE NOTE THE END OF DATA INPUT

A92POP LH 4,STKCOUNT GET THE STACK COUNT
CH 4,=H'0' IS IT POSITIVE
BNP A98DONE NO - WE ARE DONE HERE
STKPOP 4 GET NEXT NUMBER INTO R4
STKPOP 5 **** BAD CALL
MVC PRINT,BLANKS CLEAR THE OUTPUT AREA
BAL 8,NUMOUT PRODUCE THE FORMATTED SUM
MVC DATAPR,THENUM AND MOVE TO PRINT AREA
PUT PRINTER,PRINT PRINT THE NUMBER
B A92POP GO GET ANOTHER

A98DONE CLOSE PRINTER

Listing for Double Use of the Macro

139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ BNP NOPOP
143+ SH 3,=H'1'
144+ STH 3,STKCOUNT
145+ SLA 3,2
146+ LA 2,THESTACK
147+ L 4,0(3,2)
148+NOPOP NOP
148 STKPOP 5
149+ LH 3,STKCOUNT
150+ CH 3,=H'0'
151+ BNP NOPOP
152+ SH 3,=H'1'
153+ STH 3,STKCOUNT
154+ SLA 3,2
155+ LA 2,THESTACK
156+ L 4,0(3,2)
157+NOPOP NOP
** ASMA043E Previously defined symbol - NOPOP

Avoiding the Problem: A Correct Solution

Here is a solution to the problem. It works, but it complex to write.

The solution is based on the current location operator, *.
It is a jump to a relative address in bytes. One has to count carefully.

*STKPOP
MACRO
STKPOP &R
LH 3,STKCOUNT GET THE STACK SIZE
SH 3,=H'1' SUBTRACT 1 TO GET WORD OFFSET

* OF THE TOP ITEM IN THE STACK
CH 3,=H'0' IS THE NEW SIZE NEGATIVE?
BM *+20 RX 4 YES, SO CANNOT POP AN ITEM
STH 3,STKCOUNT RX 4 WORD AND STORE AS NEW SIZE
SLA 3,2 RS 4 BYTE OFFSET OF STACK TOP
LA 2,THESTACK RX 4 ADDRESS OF STACK START
L &R,0(3,2) RX 4 LOAD ITEM INTO R4
SLA 3,0 A NO-OP TO SERVE AS A TARGET
MEND

I am looking into other solutions, but I don’t think they exist if one is using a
macro. Obviously, this can be done easily if one uses a subroutine.

Observations on the Solution

The complexity of the above instruction is based on the necessity of counting
bytes in the object code, not instructions in the source code.

The above example is simple, because all instructions to be skipped
have the same length. Let’s look at this again.

CH 3,=H'0' IS THE NEW SIZE NEGATIVE?
BM *+20 A type RX instruction, length 4 bytes
STH 3,STKCOUNT This instruction is at address *+4
SLA 3,2 A type RS instruction at address *+8
LA 2,THESTACK This is at address *+12
L &R,0(3,2) Another 4-byte instruction at *+16
SLA 3,0 The branch target at address *+20

This address is offset 20 bytes from
that of the BM instruction.

Given the expected frequency of branch instructions, even within macros,
there should be an easier way to handle a branch.

In the next lecture, we discuss that easier way.

