
Data Definition, Movement, and Comparison

Topics covered include:

1. Data Definition: the DS and DC statements.

2. The use of literals as statements to define constants.

3. Data movement commands

4. Data comparison commands

5. Data conversion commands

Each of the last three topics will be covered again in a future lecture.
It never hurts to mention some things twice.



The DC and DS Declaratives

These declaratives are statements that assign storage locations.

The DC declarative assigns initialized storage space, possibly used to define constants.
This should be read as “Define Initialized Storage”; assembly language does not support
the idea of a constant value that cannot be changed by the program.

The DS assigns storage, but does not initialize the space.

The assembler recognizes a number of data types. There are many others.
Those of importance to this course are as follows:

A address (an unsigned binary number used as an address)

B binary (using the binary digits 0 and 1)

C character

F 32–bit word (a binary number, represented by decimal digits)

H 16–bit half–word

P packed decimal

X hexadecimal number



DS (Define Storage)

The general format of the DS statement is as follows.

Name DS dTLn ‘comments’

The name is an optional entry, but required if the program is to refer to
the field by name. The standard column positions apply here.

The declarative, DS, comes next in its standard position.

The entry “dTLn” is read as follows.

d is the optional duplication factor. If not specified, it defaults to 1.

T is the required type specification. We shall use A, B, C, F, P, or X.
note that the data actually stored at the location does not need to be
of this type, but it is a good idea to restrict it to that type.

L is an optional length of the data field in bytes.

The next field does not specify a value, but should be viewed as a comment.
This comment field might indirectly specify the length of the field, if the L
directive is not specified.



Examples of the DS Statement

Consider the following examples.

C1 DS CL5 A CHARACTER FIELD OF LENGTH 5 BYTES.
THIS HOLDS FIVE CHARACTERS..

C2 DS 1CL5 EXACTLY THE SAME AS THE ABOVE.
THE DEFAULT REPETITION FACTOR IS 1.

P1 DS PL2 A PACKED DECIMAL FIELD OF LENGTH TWO
BYTES. THIS HOLDS THREE DIGITS.

P2 DS 5PL4 FIVE PACKED DECIMAL FIELDS, EACH OF
LENGTH 4 BYTES AND HOLDING 7 DIGITS.

F1 DS F‘23’ ONE 32-BIT FULL WORD. THE FIELD HAS
LENGTH 4 BYTES. THE ‘23’ IS TREATED
AS A COMMENT; NO VALUE IS STORED.

DS C AN ANONYMOUS FIELD FOR ONE CHARACTER.
THE LENGTH DEFAULTS TO 1. THERE IS
NO NEED TO NAME EVERY DECLARATION.



Input Records and Fields

Data are read into records. You may impose a structure on the record by
declaring it with a zero duplication factor.

Here is a declaration of an 80–byte input area that will be divided into fields.

CARDIN DS 0CL80
NAME DS CL30
YEAR DS CL10
DOB DS CL8
GPA DS CL3

DS CL29

The idea is that the entire record is read into the 80–byte field CARDIN.
The data can be extracted one field at a time. Here is the COBOL equivalent.

01 CARDIN.
10 NAME PIC X(30).
10 YEAR PIC X(10).
10 DOB PIC X(08).
10 GPA PIC X(3).
10 FILLER PIC X(29).



More on the Zero Repetition Factor

Consider the previous example, used to define fields in a card image input.

As in all of this type of programming the input is imagined as an 80–column card.

CARDIN DS 0CL80
NAME DS CL30
YEAR DS CL10
DOB DS CL8
GPA DS CL3
FILLER DS CL29

Because of the zero repetition factor the line CARDIN DS 0CL80 can be viewed
almost as a comment. It declares that a number of statements that follow will actually
allocate 80 bytes for 80 characters, and associate data fields with that input.

Here we see that 30 + 10 + 8 + 3 + 29 = 80. In this case, it is the five statements
following the CARDIN DS 0CL80 that actually allocate the storage space.

Remember that it is not the number of statements that is important, but the
number of bytes allocated.



Another Card Definition

Suppose that we have a program that is to read a list of integers, one per card
and do some processing with those integers.

The same logic will apply to numbers in any format (fixed point, floating point, etc.),
but the example is most easily made with positive integer data.

At this point, we cannot process a sign bit; “+” and “–” are out.

The first choice is how many digits are to be used for the positive integer.

The second choice is where to place those digits.

Here we choose to use five digits, placed in the first five columns of the card.
The appropriate declaration follows.

RECORDIN DS 0CL80 THE CARD HAS 80 COLUMNS

DIGITS DS CL5 FIVE BYTES FOR FIVE DIGITS

FILLER DS CL75 THE NEXT 75 COLUMNS ARE IGNORED.

Notice that the first statement does not allocate space. The next two statements
allocate a total of 80 bytes for 80 characters.



Sample Input Data Record: Reading Positive Integers

Suppose that we wanted to read a list of five–digit numbers, one number per “card”.
Each digit is represented as a character, encoded in EBCDIC form.

The appropriate declaration might be written as follows.

RECORDIN DS 0CL80 THE CARD HAS 80 COLUMNS

DIGITS DS CL5 FIVE BYTES FOR FIVE DIGITS

FILLER DS CL75 THE NEXT 75 COLUMNS ARE IGNORED.

In this, the first five columns of each input line hold a character to be interpreted as a
digit. The other 75 are not used. This input is not free form.

Based on the above declaration, one would characterize the first five columns as follows:



Sample Code and Data Structure

Consider the code fragment below, containing operations not yet defined. This
uses the above declarations, specifically the first five columns as digits.

PACK PACKIN,DIGITS CONVERT TO PACKED DECIMAL

AP PACKSUM,PACKIN ADD TO THE SUM.

Given the definition of DIGITS, the PACK instruction expects the input to be
right justified in the first five columns. The input below will be read as “23”.

23 Note the three spaces before the digits.
2 is in the tens column and 3 is in the units.

The following input is not proper for this declaration.

37 “3” in column 3, “7” in column 4, column 5 blank.

The PACK instruction will process the first five columns, and result in a number that
does not have the correct format. The AP (an addition instruction) will fail because its
input does not have the correct input, and the program will terminate abnormally.



DC (Define Constant)

Remember that this declarative defines initialized storage, not a constant in the
sense of a modern programming language. For example, one might declare an
output area for a 132–column line printer as follows:

PRINT DS 0CL133
CONTROL DC C’ ’ The single control character
LINEOUT DC CL132’ ’ Clear out the area for data output

One definitely wants to avoid random junk in the printer control area.

The data to be output should be moved to the LINEOUT field.

NOTE: One might have to clear out the output area after each line is printed.

Character constants are left justified. Consider the following.

B1 DC CL4‘XYZ’ THREE CHARACTERS IN 4 BYTES

WHAT IS STORED? ANSWER E7 E8 E9 40 (hexadecimal)

The above is the EBCDIC for the string “XYZ ”



DC: Define Initialized Storage

Consider the following assembly language code and associated data declarations.

Again, this uses assembly language operators that have yet to be defined.

L R5,=F‘2234’ PUT THE VALUE 2234 INTO REGISTER
R4. IT IS A 32-BIT INTEGER.

ST R5,FW01 STORE INTO THIS LOCATION.

More code here.

FW01 DC F‘0’ A 32-BIT FULLWORD WITH VALUE
INITIALIZED TO ZERO.

There is no problem with changing the value of this “constant”, called FW01.

The DC declaration just sets aside storage space (here four bytes for a fullword)
and assigns it an initial value. The program is free to change that value.

There is nothing in this assembler language that corresponds to a constant, as
the term is used in a higher level language such as Java, C++, or Pascal.



More On DC (Define Constant)

The general format of the DC statement is as follows.

Name DC dTLn ‘constant’

The name is an optional entry, but required if the program is to refer to
the field by name. The standard column positions apply here.

The declarative, DC, comes next in its standard position.

The entry “dTLn” is read as follows.

d is the optional duplication factor. If not specified, it defaults to 1.

T is the required type specification. We shall use A, B, C, F, P, or X.
Note that the data actually stored at the location does not need to be
of this type, but it is a good idea to restrict it to that type.

L is an optional length of the data field in bytes.

The ‘constant’ entry is required and is used to specify a value.
If the length attribute is omitted, the length is specified implicitly by this entry.



The Duplication Factor

The duplication factor is used in both the DC and DS statements.
Here are a few examples.

P1 DS 3PL4 Three 4–byte fields for packed decimal

C1 DS 1CL5 ONE 5-CHARACTER FIELD.

C2 DS CL5 ANOTHER 5-CHARACTER FIELD.

H1 DS 4H FOUR HALF WORDS (8 BYTES)

F2 DS 5F FIVE FULL WORDS (20 BYTES)

F3 DC 2F‘32’ TWO FULL WORDS, EACH = 32
EIGHT BYTES OF STORAGE ARE ALLOCATED,
WITH CONTENTS 00 00 00 20 00 00 00 20.

TPL DC 3C‘1234’ THREE COPIES OF THE CONSTANT ‘1234’
TWELVE BYTES OF STORAGE ARE ALLOCATED:
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

NOTE: The address associated with each label is the leftmost byte allocated.
For TPL, this would be the byte containing the F1 (the first one).



More on the Duplication Factor

Consider again the declaration of the three character strings.

TPL DC 3C‘1234’ THREE COPIES OF THE CONSTANT ‘1234’

Here is the explicit allocation of the twelve bytes, for the twelve characters.

Address Contents

TPL F1

TPL+1 F2

TPL+2 F3

TPL+3 F4

TPL+4 F1

TPL+5 F2

TPL+6 F3

TPL+7 F4

TPL+8 F1

TPL+9 F2

TPL+10 F3

TPL+11 F4



Some Trick Questions

Consider the following two statements.

To what value is each label initialized?

DATE1 DS CL8‘DD/MM/YY’

DATE2 DC CL8‘MM/DD/YY’

ANSWER:

1. DATE1 is not initialized to anything. The string ‘DD/MM/YY’ is
treated as a comment. I view this as a trick.

2. DATE2 is initialized as expected.

What about the following?

DATE3 DC CL8 ‘MM/DD/YY’ Note the space after CL8.

This is an error, likely to cause a problem in the assembly process.
The space after the “CL8” initiates a comment, so the label is not initialized.



Hexadecimal Constants

Two hexadecimal digits can represent any of the 256 possible values that can
appear in a byte or represented as an EBCDIC character.

This is handy for specifying character strings that are otherwise hard to
code in the assembly language.

Consider the following example.

ENDLINE DC X’0D25’ Carriage return / line feed.

WARNING

Do not confuse hexadecimal constants with other formats. For example:

Format Constant Bytes Hex Representation

Character DC C’ABCD’ 4 C1C2C3C4

Hexadecimal DC X’ABCD’ 2 ABCD

Packed DC P’123’ 2 123C

Hexadecimal DC X’123’ 2 0123



More Confusion: All Storage Can Be Seen as Hexadecimal

The trouble is that all data types are stored as binary strings, which can easily
be represented as hexadecimal digits.

Consider the positive binary number 263. Now 263 = 256 + 4 + 2 + 1, so we have
its binary representation as 01 0000 0110. The table below uses standard bit numbering.

Bit No. 9 8 7 6 5 4 3 2 1 0
Value 0 1 0 0 0 0 0 1 1 1
Hex 1 0 7

Suppose that we have two data declarations

BINCON DC H’263’

PACKCON DC P’263’

What would be stored. Recall that each form takes two bytes, or four hexadecimal
digits for storage. Recall also that a memory map shows the contents in hexadecimal.

Here is what we would see:

Hexadecimal Assembly Code

0107 BINCON DC H’262

263C PACKCON DC P’263’



An Important Difference from High–Level Languages

Note that each of BINCON and PACKCON can represent perfectly a perfectly good
binary number. Each can be viewed as a half–word.

The value in a location depends on the instruction used to process the bits in that location.

Consider the following code fragments, each of which defines RESULT as necessary.
In each case, RESULT occupies two bytes: either a half–word or 3 packed digits.

Case 1: Packed decimal arithmetic

ZAP RESULT, PACKCON COPY PACKCON TO RESULT

AP RESULT, PACKCON RESULT NOW HOLDS 526C

As 263 + 263 = 526, the value in RESULT is now 526 (represented as 526C).

Case 2: Two’s–Complement Integer Arithmetic

LH R3, PACKCON LOAD HEXADECIMAL 263C

AH R3, PACKCON 263C + 263C = 4C78

STH R3, RESULT RESULT NOW HOLDS 4C78.

In hexadecimal: C + C = 18 and 6 + 6 = C
(12 + 12 = 24 = 16 + 8 and 6 + 6 = 12)



Declarations: High Level vs. Assembler

It is important to re–emphasize the difference between data declarations in
a high level language and data declarations in assembler language.

High–Level Languages
Suppose a declaration such as the following in Java.

int a, b ; // Declares each as a 32-bit integer

The compiler does a number of things.

1) It creates two four–byte (32 bit) storage areas and associates one of the areas
with each of the labels. The labels are now called “variables”.

2) It often will clear each of these storage areas to 0.

3) It will interpret each arithmetic operator on these variables as an integer
operation. Thus “a + b” is an invocation to the integer addition function.

Assembler
A DS H Set aside two bytes for label A

B DS H and two bytes for label B.

It is the actual assembly operation that determines the interpretation of the data
associated with each label. Note that neither is actually initialized to a value.



Literals

The assembler provides for the use of literals as shortcuts to the DC declarative.
This allows the use of a constant operand in an assembly language instruction.

The immediate operand, another option, will be discussed later.

The assembler processes the literal statement by:

1. Creating an object code constant,

2. Assigning the value of the literal to this constant,

3. Assigning an address to this constant for use by the assembler, and

4. Placing this object in the literal pool, an area of storage
that is managed by the assembler.

The constants created by the literal are placed at a location in the program indicated
by the LTORG directive.

Your instructor’s experience is that the assembler cannot process any use of a literal
argument if the LTORG directive has not been used.



Setting Up the Literal Pool

The easiest way to do this is to “uncomment” the LTORG declaration in the sample
program and change the comment. The sample program has the following. Note the
“*” in column 1 of the line containing the declaration.

****************************************************************
*
* LITERAL POOL - THIS PROGRAM DOES NOT USE LITERALS.
*
****************************************************************
* LTORG *

Here is the changed declaration, with a new comment that is more appropriate.

****************************************************************
*
* LITERAL POOL – THE ASSEMBLER PLACES LITERALS HERE.
*
****************************************************************

LTORG *

Note that the only real change is to remove the “*” from line 1 of the last statement.



More on Literals

A literal begins with an equal (=) sign, followed by a character for the type of
constant to be used and then the constant value between single quotes.

Here are two examples that do the same thing.

Use of a DC: HEADING DC‘INVENTORY’
MVC PRINT,HEADING

Use of a literal MVC PRINT,=C‘INVENTORY’

Here is another example of a literal, here used to load a constant into a register.
We begin with the instruction itself: L R4,=F'1' Set R4 equal to 1.

000014 5840 C302 00308 47 L R4,=F'1'

Here is the structure of the literal pool, after the assembler has inserted the constant 1.

240 * LITERAL POOL
241 ***************************

000308 242 LTORG *
000308 00000001 243 =F'1'
000000 244 END LAB1



Organization of the Literal Pool

The literal pool is organized into sections in order to provide for efficient use of memory.

Consider the following plausible placement, which is not used.

H1 DC X’CDEF’

C1 DC CL3’123’ At address H1 + 4

F1 DC F’1728’ At address H1 + 7

If the assembler must place F1 at an address that is a multiple of four,
it would have to add a useless single byte as a “pad”.

The rules for allocation of the literal pool minimize the fragmentation of memory.
The literals are organized in four sections, which appear in the following order.

1. All literals whose length is a multiple of 8.

2. All literals whose length is a multiple of 4.

3. All literals whose length is a multiple of 2.

4. All other literals.

The implicit statement is the literal pool begins on an address that is a multiple of 8.



Data Movement

The MVC instruction is designed to move character data.

As it moves a number of bytes from a source to a destination, it can
be used to move data of any type.

We shall discuss the effect of this instruction at a later time, focusing especially
on moving characters between fields of unequal length.

Packed Data

The ZAP (Zero Add Packed) instruction can be used to transfer packed decimal data.

Fullword (and Address) Data

Most commonly, moves of this type involve a general–purpose register as either
the source, the destination, or both.

L 6, F1 Load a register from a fullword

L 8, =A(TABLE) Load an address

LR 8, 3 Register to register copy

ST 8, F2 Place the value into a fullword



Data Comparison and Branching

One important tool in programming is the ability to compare the contents of two
fields and branch conditionally based on the result of these comparisons.

The comparison strategy calls for a two–step process:

1) Do an operation, such as a comparison or arithmetic operation,
that sets a standard condition.

2) Then invoke a conditional branch based on one of the standard conditions.

The four standard conditions recognized by the System/360 architecture are:

00 Equal or zero

01 Low or minus

10 High or plus

11 Arithmetic overflow

These numbers are reflected in a two–bit field in the System/360 PSW,
the Program Status Word.

The contents of the PSW are set by specific comparison instructions, to be
discussed later.



Branch Instructions

The assembler provides two sets of conditional branch statements, one for general
comparisons and another (exactly equivalent) for arithmetic comparisons.

General Conditional Branch Instructions

BE Branch equal BNE Branch not equal

BL Branch low BNL Branch not low

BH Branch high BNH Branch not high

Arithmetic Comparison Branch Instructions

BZ Branch zero BNZ Branch not zero

BM Branch minus BNM Branch not minus

BP Branch plus BNP Branch not plus

BO Branch overflow BNO Branch not overflow

Unconditional Branch

B Branch



Comparing Character Data

The CLC instruction is used to compare data encoded as EBCDIC, or
equivalently in Zoned Data format.

Comparison is made on a character by character basis, left to right, following
the sort order corresponding to the EBCDIC code.

The example in the book (page 95) is slightly misleading due to its focus on
business processing of numeric account codes represented as zoned data.

CLC NEW, PREV

BH B20HIGH NEW sorts higher than PREV

BE B21EQUAL The two are equal

* HERE IF NEW SORTS LESS

The problem here is that the comparison is treating the numbers as zoned data.

If the number of digits in the two numbers is the same, then the comparison will be
the same as for an arithmetic comparison.



Numeric Comparisons

The comparison discussed above treats the fields as unsigned sequences of characters.

The next two make algebraic comparisons; negative always is less than positive.

Packed Data

The CP instruction is used to compare packed data.

Binary Data

There are three binary comparison instructions.

C compare a register to a 32–bit fullword,

CH compare a register (as a halfword) to a 16–bit halfword

CR compare two registers.



Data Conversions

Recalling that numeric data has the same representation as either character
data or zoned data, we have four conversion instructions.

Character to Packed Format

Use the PACK instruction, as in PACK PACKFLD, ZONEFLD

Packed to Binary Format

Use the CVB instruction, as in CVB 6, DBLWORD
This is an RX type instruction; the destination must be a register.

Binary to Packed Format

Use the CVD instruction, as in CVD 8, DBLWORD
This is also an RX type instruction; the source must be a register.

Packed to Character (Zoned) Format

Use the UNPK instruction, as in UNPK ZONEFLD, PACKFLD


