Handling of Arrays, Stringsand Other Data Structures

Up to this point, we have studied simple data types and basic arrays
built on those simple data types.

Some of the simple data types studied include.
a) Integers. both halfword and fullword.
b) Packed decimal
c) Character data.

This lecture will cover the following:

1. A generaized “self describing” array that includes limits on the
permitted index values. Only 1-D and 2-D arrays will be considered.

2. Options for astring data type and how that differs from a character array.

3. Useof indirect addressing with pointer structures generalized to
Include descriptions of the data item pointed to.

Structuresof Arrays

We first consider the problem of converting an index in a one—-dimensional
array into an byte displacement.

We then consider two ways of organizing atwo—dimensional array, and
proceed to convert the index pair into a byte displacement.

The simple array type has two variants:

O-based: Thefirst element in the array is either AR[O] for asingly
dimensioned array or AR[O][0] for a2-D array.

1-based: Thefirst element in the array is either AR[1] for asingly
dimensioned array or AR[1][1] for a2-D array.

We shall follow the convention of using only 0-based arrays.

Onereason isthat it allows for efficient conversion from a set of indices
Into a displacement from the base address.

By definition, the base address of an array will be the address of itsfirst
element: either the address of AR[0O] or AR[0][O].

Byte Displacement and Addressing Array Elements
The General Case

We first consider addressing issues for an array that contains either character
halfword, or fullword data. It will be constrained to one of these types.

The addressing issue iswell illustrated for a singly dimensioned array.

Byte o 123|456 78,910 11
Offset

Characters| C[0] | C[1] | C[2] | C[3] | C[4] | C[5] | C[6] | C[7] | C[8] | C[9] | C[10] | C[11]

Hafwords| HW[O] | HW[1] | HW[2] | HW[3] | HWI[4] HWI[5]

Fullwords FW[O] PW[1] FW[2]

For each of these examples, suppose that the array begins at address X.

In other words, the address declared for the array is that of its element O.
The character entrieswould be: C[0] at X, C[1] at X + 1, C[2] at X + 2, etC.
The halfword entries would be: HW[O] at X, HW[1] at X + 2, etc.

The fullword entries would be: FW[0] at X, FW[1] at X + 4, etc.

Byte Displacement and Addressing Array Elements
Our Case

| have decided not to write macros that handle the general case, but to
concentrate on arrays that store 4-byte fullwords.

The goal isto focus on array handling and not macro writing.

The data structure for such an array will be designed under
the following considerations.

1. It must have adescriptor specifying the maximum allowable index.
In this data structure, | store the size and derive the maximum index.

2. It might store a descriptor specifying the minimum allowable index.
For a O-based array, that index is 0.

3. It should be created by a macro that allows the size to be specified
at assembly time. Once specified, the array size will not change.

What Do We Need to Know About a 1-D Array?

Here, | assume the following:
1. Thearray isstatically allocated; once loaded, its size is set.

2. Thearray is“zero based’; itsfirst element has index O.

| decide to include this “base value’ in the array declaration, just
to show how to do it.

3. Thearray is self—describing for its maximum size.

Here is an example of the proposed data structure as it would be written
in System 370 Assembler. The array isnamed “ ARRAY”.

ARBASE DC F' 0O’ THE FIRST INDEX IS O
ARSI ZE DC F 100’ SI ZE OF THE ARRAY
ARRAY DC 100F° O’ STORAGE FOR THE ARRAY

| want to generalize this to allow for a macro construction that will specify
both the array name and its size.

The Constructor for a One-Dimensional Array

Here isthe macro | used to construct a one-dimensional array
while following the design considerations listed above.

33
34
35
36
37
38
39
40

MACRO
&L1 ARMAKE &NANE, &SI ZE
&L1 B X&SYSNDX
&NAME. B DC F' O ZERO BASED ARRAY
&NAME. S DC F' &SI ZE

&NAME. V. DC &Sl ZE. F' O
X&SYSNDX SLA R3, 0
VEND

Line34: The macroisnamed “ARMAKE” for “Array Make’.

It takes two arguments: the array name and array size.
A typical invocation: ARVAKE XX, 20 creates an array called XX.

Notethe“&L1” on line 34 and repeated on line 35. Thisalows amacro
definition to be given alabel that will persist into the generated code.

33
34
35
36
37
38
39
40

Moreon the 1-D Constructor

MACRO
&L1 ARMAKE &NANE, &SI ZE
&L1 B X&SYSNDX
&NAMVE. B DC F' O ZERO BASED ARRAY
&NAME. S DC F &Sl ZE

&NAME. V. DC &Sl ZE. F' O
X&SYSNDX SLA R3, 0
IVEND

Line35: A macro isused to generate a code sequence. Sincel amusing it

to create a data structure, | must provide code to jump around the
data, so that the data will not be executed.

While it might be possible to place all invocations of this macro
In aprogram location that will not be executed, | do not assume that.

Line36: | putinthelower bound on the index just to show what such a

declaration might look like.

Line37 Thisholdsthe size of the array.

33
34
35
36
37
38
39
40

L abel Concatenationsin the Constructor

MACRO
&Ll ARMAKE &NANVE, &SI ZE
&Ll B X&SYSNDX
&NAMVE. B DC F' O ZERO BASED ARRAY
&NAME. S DC F &Sl ZE

&NAME. V DC &SI ZE. F' O
X&SYSNDX SLA R3, 0
VEND

Recall that the system variable symbol &SYSNDX in a counter that contains
afour digit number unique to the macro expansion.

Line 39 uses one style of concatenation to produce a unigue label.
Suppose that this is the third macro expansion; the label would be “X0003”.

Lines 36, 37, and 38 use another type of concatenation, based on the dot.
If &NAME is XX, then the labels are XXB, XXS, and XXV.

Sample Expansions of the 1-D Constructor Macro

000014 47F0 COGA

000018 00000000

00001C 00000014

000020 0000000000000000
000070 8B30 0000

000074 47F0 C11A

000078 00000000

00007C 00000028

000080 0000000000000000
000120 8B30 0000

Notice the labels generated.

00070

00000

00120

00000

90

91+
92+XXB
93+XXS
94+ XXV
95+X0003

96

97+

98+YYB

99+YYS
100+YYV
101+X0004

ARVAKE XX, 20
B X0003

DC F' O’

DC F' 20

DC 20F' O
SLA R3,0

ARMAKE YY, 40
B X0004

DC F' O

DC F' 40

DC 40F' O
SLA R3,0

Two MoreMacrosfor 1-D Arrays

| now define two macros to use the data structure defined above.
| call these ARPUT and ARGET. Each will use R4 as aworking register.

Macro ARPUT &NAME, &l NDX stores the contents of register R4
into the indexed element of the named 1-D array.

Consider the high-level language statement A2[10] = .

This becomes L R4,Y
ARPUT A2, =F' 10’ GET ELEMENT 10

Consider the high—level language statement Y = A3[20] .

This becomes ARGET A3, =F' 20’ CHANGE ELENMENT 20
ST R4, Y

NOTE: For some reason, | decided to implement the index as a fullword
when | wrote the code. | just continue the practice in this dide.

Design of the M acros

The two macros, ARPUT and ARGET, share much of the same design.

Much is centered on proper handling of the index, which is passed as a
fullword. It would probably make more sense to use a halfword for the index.

Here are the essential processing steps.
1. Theindex valueisexamined. If it isnegative, the macro exits.

2. If thevaluein theindex is not less than the number of elementsin the
array, the macro exits. For N elements, valid indicesare 0 < K < N.

3. Using the SLA instruction, the index value is multiplied by 4
In order to get a byte offset from the base address.

4. ARPUT storesthe valuein R4 into the indexed address.
ARGET retrieves the value at the indexed address and |oads R4.

The ARPUT Macro

Here i1s the macro definition.

44 MACRO

45 &L2 ARPUT &NANE, & NDX
46 &L2 ST R3, S&SYSNDX
47 L R3, & NDX

48 C R3, &NAME. B
49 BL Z&SYSNDX

50 C R3, &NAME. S
51 BNL Z&SYSNDX

52 SLA R3,?2

53 ST R4, &AME. V(R3)
54 B Z&SYSNDX

55 S&SYSNDX DC F' 0

56 Z&SYSNDX L R3, S&SYSNDX
57 MEND

Note the two labels, S&SYSNDX and Z&SYSNDX, generated by concatenation
with the System Variable Symbol &SYSNDX.

This allows the macro to use conditional branching.

ARPUT Expanded

Here is an invocation of ARPUT and its expansion.

107 ARPUT XX, =F' 10'
000126 5030 C146 0014C 108+ ST R3, S0005
00012A 5830 CAGA 00470 109+ L R3, =F' 10°
00012E 5930 C012 00018 110+ C R3, XXB
000132 4740 Cl4A 00150 111+ BL Z0005
000136 5930 CO16 0001C 112+ C R3, XXS
00013A 47B0 Cl4A 00150 113+ BNL Z0005
00013E 8B30 0002 00002 114+ SLA R3,2
000142 5043 CO1A 00020 115+ ST R4, XXV(R3)
000146 47F0 Cl4A 00150 116+ B Z0005
00014A 0000
00014C 00000000 117+S0005 DC F' O
000150 5830 C146 0014C 118+z0005 L R3, SO0005

Note the labels generated by use of the System Variable Symbol &SYSNDX.

Actionsfor ThisMacro | nvocation

We now examine the actions of the macro ARPUT.

108+ ST R3, SO005

Register R3 will be used to hold the index into the array. Thisline saves
the value so that it can be restored at the end of the macro.

109+ L R3, =F' 10'
Register R3 isloaded with the index to be used for the macro.

Asthe index was specified as aliteral in the invocation, this
IS copied in the macro expansion.

ARPUT: Checking theIndex Value

The value of the array index is now in register R3.

110+ C R3, XXB
111+ BL Z0005
112+ C R3, XXS
113+ BNL Z0005

This code checks that the index value is within permissible bounds.
The requirement is that XXB < Index < XXS.
If thisis not met, the macro restores the value of R3 and exits.

If the requirement is met, the index is multiplied by 4
In order to convert it into a byte displacement from element O.

114+ SLA R3,2

ARPUT: Storing the Value

Here is the code to store the value into the array, called XXV.

115+
116+

ST R4, XXV(R3)
B Z0005

117+S0005 DC F' O
118+Z20005 L R3, SO0005

Line 115
Line 116

Line 117
Line 118

Thisisthe actua store command.

Note the necessity of branching around the stored value,
so that the data will not be executed asiif it were code.

The save area for the macro.

Thisrestores the origina value of R3, the register
used to hold the index value.

The ARGET Macro

Here i1s the macro definition.

61
62
63
64
65
66
67
68
69
70
71
72
73
74

&L3
&L3

S&SYSNDX
Z&SYSNDX

MACRO
ARGET &NAME, & NDX
ST R3, S&SYSNDX

L R3, & NDX

C R3, &NAME. B

BL Z&SYSNDX

C R3, &NAME. S
BNL Z&SYSNDX

SLA R3,?2

L R4, &NAME. V(R3)
B Z&SYSNDX

DC F O

L R3, S&SYSNDX

VEND

ARGET Expanded

Here is an invocation of the macro and its expansion.

000154
000158
00015C
000160
000164
000168
00016C
000170
000174
000178
00017C

5030 C172
5830 C4A6E
5930 Q072
4740 Cl176
5930 QG076
47B0 Cl176
8B30 0002
5843 CO7A
47F0 C176
00000000

5830 C172

00178
00474
00078
0017C
0007C
0017C
00002
00080
0017C

00178

119

120+

121+

122+

123+

124+

125+

126+

127+

128+
129+S0006
130+Z0006

ARGET YY, =F' 20'

ST
L

C
BL
C
BNL
SLA
L

B
DC
L

R3, S0006
R3, =F' 20'
R3, YYB
70006

R3, YYS
70006
R3, 2

R4, YYV(R3)
70006
=}

R3, S0006

The only difference between this macro and ARPUT occursin line 127
of the expansion. Here the value isloaded into register R4.

Row-Major and Column-Major 2-D Arrays

The mapping of aone—dimensional array to linear address space is simple.

How do we map atwo—dimensional array? There are three standard options.
Two are called row—major and column—major order.

Consider the array declared as| NT A[2] [3], using 32-hit integers.

In this array the first index can have values O or 1 and the second O, 1, or 2.

Suppose the first element is found at address A. The following table shows
the allocation of these elements to the linear address space.

Address | Row Major | Column Major
A A[0][C] A[O][Q]
A+4 A[O][1] A[1][O]
A+8 A[0][2 A[O][1]
A+12 A[1][O] A[1][1]
A + 16 A[1][1] A[Q][2]
A+20 A[1][2] Al1][2]

The mechanism for Java arrays is likely to be somewhat different.

Addressing Elementsin Arraysof 32-Bit Fullwords

Consider first asingly dimensioned array that holds 4—-byte fullwords.
The addressing issimple.

Address (A[K]) = Address (A[0]) + 4eK.

Suppose that we have atwo dimensional array declaredas Al M [N] ,
where each of M and N has afixed positive integer value.

Again, we assume O0—-based arrays and ask for the address of an element
Al K] [J] ,assumingthat 0 <K<NMand0 <J <N.

At this point, | must specify either row—major or column—major ordering.

As FORTRAN isthe only maor language to use column—major ordering,
| shall assume row—major. The formulais asfollows.

Element offset = KeN + J, which leadsto
Address (Al K] [J]) = Address(A] 0] [O]) + 4¢(KeN + J)

Example: Declare A[2][3]

Suppose that element A[O] [O] isat addressA.

Address(A[K] [J]) =Address(A] 0] [0]) + 4e(Ke3 + J).
Element Al O] [O] isat offset 4¢(O3 + 0) = 0, oraddress A + O.
Element A] O] [1] isat offset 4¢(063 + 1) = 4, oraddress A + 4.

Element Al O] [2] isat offset 4e¢(003 + 2)

1

2 8, oraddress A + 8.
Element Al 1] [O] isat offset 4¢(163 + 0) = 12, oraddress A + 12.
Element Al 1][1

Element Al 1] [2

] isat offset 4e(13 + 1) = 16, oraddress A + 16.
] isat offset 4e¢(163 + 1) = 20, oraddress A + 20.

2—-D Arrays. An Example Data Structure

Hereisafirst cut at what we might want the data structure to look like.

ARRB DC F O’ ROW | NDEX STARTS AT O
ARRCNT DC F 30’ NUMBER OF ROWNS

ARCB DC F' O’ COLUWN | NDEX STARTS AT O
ARCCNT DC F' 20° NUVMBER OF COLUWNS

ARRAY DC 600F° O’ STORAGE FOR THE ARRAY

NOTE: The number 600 in the declaration of the storage for the array
IS not independent of the row and column count.

It is the product of the row and column count.

We need away to replace the number 600 by 3020, indicating that the
size of the array is a computed value.

Thisleads us to the Macro feature called “SET Symbols’.

SET Symbols

The feature called “SET Symbols’ allows for computing values in a macro,
based on the values or attributes of the symbolic parameters.

There are three basic types of SET symbols.
1. Arithmetic These are 32-bit numeric values, initialized to O.
2. Binary These are 1-hit values, initialized to O.

3. Character These are strings of characters, initialized to the null string.

Each of these comes in two varieties: Loca and Global.

Thelocal SET symbols have meaning only within the macro in which
they are defined. Declarations in different macro expansions are independent.

The global SET symbols specify valuesthat are to be known in other macro
expansions within the same assembly.

A proper use of aglobal SET symbol demands the use of conditional assembly
to insure that the symbol is defined once and only once.

L ocal and Global Set Declar ations

Here are the instructions used to declare the SET symbols.

Type Locd Global
Instruction Example Instruction Example
Arithmetic LCLA LCLA &F1 GBLA GBLA &Gl
Binary LCLB LCLB &F2 GBLB GBLB &G2
Character LCLC LCLC &F3 GBLC GBLC &G3

Each of these instructions declares a SET symbol that can have its value
assigned by one of the SET instructions. There are three SET instructions.

SETA SET Arithmetic

SETB SET Binary

Usewith LCLA or GBLA SET symbols.

Usewith LCLB or GBLB SET symboals.
SETC SET Character String Usewith LCLC or GBLC SET symbols.

Placing the Conditional Assembly Instructions

The requirements for placement of these instructions depend on the Operating
System being run. The following standards have two advantages:

1. They arethe preferred practice for clear programming, and
2. They seem to be accepted by every version of the Operating System.

Here is the sequence of declarations.
1. The macro prototype statement.
The global declarations used: GBLA, GBLB, or GBLC
Thelocal declarationsused: LCLA,LCLB,or LCLC
The appropriate SET instructions to give values to the SET symbols

o k WD

The macro body.

Example of the Preferred Sequence

The following silly macro is not even complete. It illustrates the sequence
for declaration, but might be incorrect in some details.

&NAVE

&DATES
&DATEP
. N20
&LEN
&M D
&NAME

MACRC

HEDNG &HEAD, &PAGE
GBLC &DATES

GBLB &DATEP

LCLA &LEN, &M D

Al F (&DATEP) . N20
DC C &SYSDATE
SETB (1)

ANOP

SETA L’ &HEAD

SETA (120-&LEN)/ 2
Start of macro body.

HOLDS THE DATE
HAS DATES BEEN DEFI NED

| S DATE DEFI NED?
SET THE DATE
DECLARE | T SET

LENGTH OF THE HEADER
M D PO NT

A Constructor Macro for the2-D Array

This macro uses one arithmetic SET symbol to calculate the array size.
This has no line numbers because it has yet to be tested by assembling it.

MACRO

&lL1 ARMAK2D &NANE, &ROWS, &COLS
LCLA &SI ZE

&SI ZE ~ SETA (&ROWS* &COLS)

&L 1 B X&SYSNDX

&NAME. RB DC F' 0' ROW | NDEX

&NAME. RS DC F' &ROWS'

&NANME. CB DC F' 0' COL | NDEX

&NAME. CS DC F' &COLS

&NAME. V' DC &SI ZE. F' O

X&SYSNDX SLA R3, 0
IVEND

Stringsvs. Arrays of Character s

While a string may be considered an array of characters, this
IS not the normal practice.

A string is a sequence of characters with afixed length.

A string is stored in “ string space” , which may be considered to be
alarge dynamically allocated array that contains all of the strings used.

There are two ways to declare the length of a string.

1. Allot aspecial “end of string” character, such as the character with
code X' 00" , asdonein C and C++.

2. Store an explicit string length code, usually as a single byte that
prefixesthe string. A single byte can store an unsigned integer in
the range O through 255 inclusive.

In this method, the maximum string length is 255 characters.

There are variants on these two methods; some are worth consideration.

Example String

In this example, | used strings of digits that are encoded in EBCDIC.
The character sequence “12345” would beencodedasF1 F2 F3 F4 F5.

Thisisasequence of five characters. In either of the above methods, it
would require six bytes to be stored.

Here isthe string, as would be stored by C++.

Byte number

0

1

2

3

4

3

Contents

F1

F2

F3

F4

F5

00

Hereisthe string, as would be stored by Visua Basic Version 6.

Byte number

0

1

2

3

4

5

Contents

05

F1

F2

F3

F4

F5

Each method has its advantages. The main difficulty with the first approach,
asitisimplemented in C and C++, isthat the programmer is responsible for
the terminating X* 00’ . Failing to place it leads to strange run—time errors.

Sharing String Space

String variables usually are just pointers into string space.
Consider the following example in the style of Visual Basic.

C1
C2
C3

04

F1

F3

¥ O

F1

04

F1

¥F3

¥ O

K2

04

¥F2

F1

¥ O

FB8

Here, each of the symbols C1, C2, and C3
references a string of length 4.

C1 references the string “ 1301”
C2 references the string “1302”
C3 references the string “2108”

Using Indirect Pointerswith Attributes

Another string storage method uses indirect pointers, as follows.

P1

——

02

08

/

P2
P3
P4
Psx

03

08

C3

D7

E2

C3

F2

F1

o

IS

C3

D7

E2

C3

K2

F1

o

F8

Here the intermediate node has the
following structure.

1. A reference count
2. Thestring length
3. A pointer into string space.

There are two references to the first
string, of length 8: “CPSC 2105”.

There are three references to the second
string, also of length 8: “CPSC 2108”.

There are many advantages to this method of indirect reference, with attributes
stored in the intermediate node. It islikely the method used by Java.

