Type RS Instruction For mat
Thisis afour—byte instruction of the form OP R1,R3,D2(B2).

Type | Bytes Operands 1 2 3 4
RS 4 | R1,R3,D2(B2) OP R1R3 B, D, D.D;

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. Some

RS format instructions use only one register, here R3isset to 0. Thisinstruction format

follows the IBM architecture standard that “0” is taken as no register, rather than register RO.

The third and fourth byte contain a 4-bit register number and 12-bit displacement, used to
specify the memory address for the operand in storage. Recall that each label in the
assembly language program references an address.

Any addressin the format of base register and displacement will appear in the form.

| BD: | D;D3 |
B isthe hexadecimal digit representing the base register.

The three hexadecimal digits D; D, D3 form the 12-hit displacement, which isto be
interpreted as a non—negative integer in the range from 0 through 4095, inclusive.

As an example of the type, we consider the BXH instruction with opcode X' 86’ .

A standard use of the instruction would be as follows.
BXH R6, R8, L10LOCP

It isimportant to remember that the above could be written in source code in this form.
LA R4, L10LOOP ADDRESS OF LABEL L10LOOP I NTO R4
BXH R6, R8, 0(4) BRANCH TARGET ADDRESS | N R4.

One might have an instruction of the following form as well.
BXH R6, R8, 12(4) BRANCH TARGET ADDRESS | S DI SPLACED
12 (X C) FROM ADDRESS | N R4.

RX (Register—Indexed Storage) For mat
Thisis afour-byte instruction of the form OP R1,D2(X2,B2).

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP Ri X, | BoDy | D2D2

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. The
first hexadecimal digit, denoted R, identifies the register to be used as either the source or
destination for the data. The second hexadecimal digit, denoted X5, identifies the register to
be used astheindex. If thevalueisO, indexed addressing is not used.

The third and fourth bytes contain a standard address in base/displacement format.

As an examples of thistype, we consider the two following instructions:
L Load Fullword Opcodeis X' 58’
A Add Fullword Opcodeis X' 5A

We consider a number of examples based on the following data declarations. Note that the
data are defined in consecutive fullwords in memory, so that fixed offset addressing can be
employed. Each fullword has a length of four bytes.

DAT1 DC F 1111’
DAT2 DC F* 2222’ AT ADDRESS (DAT1 + 4)
DAT3 DC F* 3333’ AT ADDRESS (DAT2 + 4) OR (DAT1 + 8)
A standard code block might appear as follows.
L R5, DAT1
A R5, DAT2
A R5, DAT3 NOW HAVE THE SUM
One variant of this code might be the following. See page 92 of R_17.
LA R3, DAT1 GET ADDRESS | NTO R3
L R5,0(,3) LOAD DAT1 I NTO R5
A R5,4(,3) ADD DAT2, AT ADDRESS DAT1+4.
A R5,8(,3) ADD DAT3, AT ADDRESS DAT1+8.

Note the leading comma in the construct (, 3) , which is of the form (Index, Base). This
indicates that no index register is being used, but that R3 is being used as a base register. Itis
equivalent to the construct (0, 3) , which might be preferred.

Hereis another variant of the above code.

LA R3, DAT1 GET ADDRESS | NTO R3
LA R8, 4 VALUE 4 | NTO REG STER 8
LA R9, 8 VALUE 8 | NTO REG STER 9

L R5,0(0,3) LCAD DAT1 I NTO R5
A R5,0(8,3) ADD DATZ2, AT ADDRESS DAT1+4.
A R5,0(9,3) ADD DAT3, AT ADDRESS DAT1+8.

Explicit Base Addressing for Character I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 271 — 273].

Assume that general—purpose register 4 is being used as the base register, as assigned at
the beginning of the CSECT. Assume also that the following statements hold.

1.
2.

Genera purpose register 4 contains the value X* 8002’ .

The label PRI NT represents an address represented in base/offset form as 401A; that
isitisat offset X 01A’" from the value stored in the base register, which is R4.
The addressthenis X' 8002’ + X' 01A’ =X 801C .

Given that the decimal number 60 is represented in hexadecimal as X' 3C'
the address PRI NT+60 must then be at offset X* 01A" + X' 3C =X' 56’ from
the addressin the baseregister. X' A' + X' C ,indecimal,is10+ 12=16+ 6.

Note that this gives the address of PRI NT+60 as X' 8002’ + X' 056’ = X' 8058’ ,
whichisthesameas X' 801C' + X' 03C'. Thesum X' C + X' C' ,indecimdl, is
represented as 12 + 12 =24 =16 + 8.

The label ASTERS is associated with an offset of X' 09F’ from the valuein the
base register; thusit islocated at address X' 80A1’ . Thislabel references a storage
of two asterisks. Asadecimal value, the offset is 159.

That only two characters are to be moved by the MV C instruction examples to be
discussed. Since the length of the move destination is greater than 2, and since the
length of the destination is the default for the number of charactersto be moved, this
implies that the number of characters to be moved must be stated explicitly.

Thefirst example to be considered has the simplest appearance. It is asfollows:

MVC PRI NT+60(2) , ASTERS

The operands here are of theform Dest i nati on(Lengt h), Sour ce.

The destination is the address PRI NT+60. The length (number of characters
to move) is2. Thiswill be encoded in the length byteas X* 01’ , as the length
byte stores one less than the length. The source is the address ASTERS.

Asthe MV C instruction is encoded with opcode X* D2’ , the object code hereis as follows:

Type | Bytes Operands 1 2 3 4 5 6
SS(1) 6 D1(L,B1),D2(B2) OP L [B;D,| DD, | B,D, | D:D,
D2 01 40 56 40 9F

The next few examples are given to remind the reader of other ways to encode
what is essentially the same instruction.

These examples are based on the true nature of the source code for a MVC instruction, which
ismwC Di(L, Bl), D2(B2). Inthisformat, we have the following.

1. Thedestination addressis given by displacement D1 from the address stored in
the base register indicated by B1.

2. The number of charactersto moveis denoted by L.

3. Thesource addressis given by displacement D2 from the address stored in
the base register indicated by B2.

The second example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT+60 GET ADDRESS PRI NT+60 | NTO R8
MVC 0(2, 8), ASTERS MOVE THE CHARACTERS

Note the structure in the destination part of the source code, whichis0(2, 8) .

0(2,8)
Displac Ement T tB ase
Length
The displacement is 0 from the address X* 8058’ , which isstored in R8. The object codeis:
Type | Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | D:D,
D2 01 80 00 40 9F

The instruction could have been written as MWC 0(2, 8), 159(4) , asthelabel
ASTERS isfound at offset 159 (decimal) from the address in register 4.

The third example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT GET ADDRESS PRI NT | NTO R8
MVC 60(2, 8), ASTERS SPECI FY A DI SPLACEMENT

Note the structure in the destination part of the source code, whichis60(2, 8) .

60(2,8)

+.

Displacement TtBase

Length
The displacement is 60 from the address X' 801C' , stored in R8. The object codeis:
Type Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | DD,

D2 01 80 3C 40 9F

Theinstruction could have been written as \WC 60(2, 8), 159(4) , asthe label
ASTERS Iisfound at offset 159 (decimal) from the addressin register 4.

Explicit Base Addressing for Packed Decimal | nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 273 & 274].

Consider the following source code, taken from Abel. Thisisbased on aconversion of a
weight expressed in kilogramsto its equivalent in pounds; assuming 1kg. = 2.2 Ib. Physics
students will please ignore the fact that the kilogram measures mass and not weight.

ZAP POUNDS, KGS MOVE KGS TO POUNDS

MP POUNDS, FACTOR MJLTI PLY BY THE FACTOR
SRP POUNDS, 63, 5 ROUND TO ONE DECI MAL PLACE

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
PGUNDS DS PL5 LENGTH 5 BYTES, AT ADDRESS KGS+5

The value produced is 12.53¢2.2 = 27.566, which is rounded to 27.57.

The instructions we want to examine in some detail are the MP and ZAP, each of which
isatype SSinstruction with source code format OP D1(L1, B1), D2(L2, B2) . Each of
the two operands in these instructions has a length specifier.

In the first example of the use of explicit base registers, we assign a base register to
represent the address of each of the arguments. The above code becomes the following:

LA R6, KGS ADDRESS OF LABEL KGS
LA R7, FACTOR ADDRESS
LA R8, POUNDS

ZAP 0(5, 8), 0(3, 6)
MP 0(5,8),0(2,7)
SRP 0(5, 8), 63,5

Each of the argumentsin the MP and ZAP have the following form:

0{5,8) 0(3,6) 02,7}
DﬂsetTtBase DHSJ;TLBE[SE DHSETIZTLB&SE
Length Length Length

Recall the definitions of the three labels, seen just above. We anayze the instructions.

ZAP 0(5,8),0(3,6) Destination is at offset O fromthe address
stored in R8. The destination has length 5 bytes.

Source is at offset O fromthe address stored
in R6. The source has length 3 bytes.

MP 0(5,8),0(2,7) Destination is at offset O fromthe address
stored in R8. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R7. The source has length 2 bytes.

But recall the order in which the labels are declared. The implicit assumption that the labels
are in consecutive memory locations will here be made explicit.

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
PCUNDS DS PLS5 LENGTH 5 BYTES, AT ADDRESS KGS+5

In this version of the code, we use the label KGS as the base address and reference all other
addresses by displacement from that one. Hereisthe code.

LA R6, KGS ADDRESS OF LABEL KGS
ZAP 5(5, 6), 0(3, 6)

MP 5(5,6),3(2, 6)

SRP 5(5, 6), 63,5

Each of the argumentsin the MP and ZAP have the following form:

5(5,6) 0{3,6) 3(2,6)

+ + +
fosetTtBase fosetTtBase fosetTtBase

Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 5(5,6),0(3,6) Destination is at offset 5 fromthe address
stored in R6. The destination has Iength 5 bytes.

Source is at offset 0 fromthe address stored
in R6. The source has |ength 3 bytes.

MP 5(5,6),3(2,6) Destination is at offset 5 fromthe address
stored in R6. The destination has |length 5 bytes.

Source is at offset 3 fromthe address stored
in R6. The source has length 2 bytes.

In other words, the base/displacement 6000 refersto a displacement of O from the address
stored in register 6, which is being used as an explicit base register for this operation. As
the addressin R6 isthat of KGS, this value represents the address KGS. Thisis the object
code address generated in response to the source code fragment 0(3, 6) .

The base/displacement 6003 refers to a displacement of 3 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+3, which isthe address FACTOR. Thisis
the object code address generated in response to the source code fragment 3(2, 6) .

The base/displacement 6005 refers to a displacement of 5 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+5, which is the address POUNDS. Thisis
the object code address generated in response to the source code fragment 5(5, 6) .

It isworth notice, even at this point, that the use of asingle register as the base from which to
reference a block of data declarations is quite suggestive of what is done with a DSECT, aso
called a“Dummy Section”.

