Looping and Use of Index Registers
This lecture discusses loop structures within assembly language, 
and the language constructs evolved to support loops.
We begin with a review of type RX instructions, which are the 
instructions that most naturally can use loop structures.

During these lectures, we shall follow a number of examples taken from a textbook 
by Mr. George W. Struble of the University of Oregon.
Struble’s textbook, published last in 1975, is out of print.
RX (Register–Indexed Storage) Format

This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2


The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

In order to illustrate this, consider the following data layout.


FW1  DC F‘31’


     DC F‘100’   Note that this full word is not labeled
Suppose that FW1 is at an address defined as offset X‘123’ from register 12.
As hexadecimal C is equal to decimal 12, the address would be specified as C1 23.

The next full word might have an address specified as C1 27, but we shall show 
another way to do the same thing.  The code we shall consider is


L  R4,FW1     Load register 4 from the full word at FW1

AL R4,FW1+4   Add the value at the next full word address
RX (Register–Indexed Storage) Format (Continued)

This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2


Consider the two line sequence of instructions


L  R4,FW1     Operation code is X‘58’.

AL R4,FW1+4   Operation code is X‘5E’.
The load instruction, remembering that the address of FW1 is specified as C1 23.
The base register is R12, the displacement is X‘123’, and there is no index register;
so we have




58 40 C1 23

The next instruction is similar, except for its operation code.




5E 40 C1 27
RX Format (Using an Index Register)

Here we shall suppose that we want register 7 to be an index register.

As the second argument is at offset 4 from the first, we set R7 to have value 4.

This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2


Consider the three line sequence of instructions


L  R7,=F‘4’   Register 7 gets the value 4.

L  R4,FW1     Operation code is X‘58’.


AL R4,FW1(R7)   Operation code is X‘5E’.
The object code for the last two instructions is now.


58 40 C1 23
This address is at displacement 123 




from the base address, which is in R12.

5E 47 C1 23
R7 contains the value 4. 




The address is at displacement 123 + 4 




or 127 from the base address, in R12.
Address Modification: Use of Index Registers
As noted above, a type RX instruction has the form OP R1,D2(X2,B2).

This implies that the effective address is the sum of three values:


1.
A displacement,


2.
An address in a base register, and

3.
A value in an index register.

Addresses may be modified by changing the values in any one of these three parts.  
The most natural of these choices is to change the value in the index register.

We now consider an example taken from a textbook Assembler Language Programming: 
the IBM System/360 and 370 (Second Edition) by George W. Struble.
The example concerns searching a list of numbers for a value that is specified in 
a given register.  Struble uses R3, as we also shall do.

Before considering the entire loop, we should first examine a few lines of code 
as written in Mr. Struble’s style.  These can be quite interesting.

The Structure of an Indexed Address
Consider this line of code taken from the loop example.

LOOP     C  R3,ARG(R10)

The instruction is a Compare Fullword, which is a type RX instruction used 
to compare the binary value in a register to that in a fullword at the indicated address.

As we shall see, the intent of this comparison is to set up for a BE instruction.
The item of real interest here is the second operand ARG(R10).
How does the assembler map this to the form D2(X2,B2)?

According to Struble (page 168) “The assembler inserts the address of an 
implied base register B2 for the second operand.  The assembler also 
calculates and inserts the appropriate displacement D2 so that D2 and B2 
together address ARG.  The assembler also includes X2 = 10 [hexadecimal A] 
without knowledge or thought of the contents of register 10.”

If register R12 (hexadecimal C) is being used as the implied base register, and if the 
label ARG is at displacement X‘234’ from the address in that register, the object 
code for the above instruction is 59 3A C2 34.
Incrementing an Indexed Register

Much of this lecture will be focused on methods to change the value in the index 
register and so change the value of the effective address of the second argument.

This set of slides, which follows Struble’s example closely, begins with an 
early example that he modifies to show the value of the really interesting instructions.

Consider the instruction LA R10,80(R10).  What does it do?

This instruction appears to be computing an address, but is it really doing that?

The LA instruction is indeed a “load address” instruction.

Consider the value that is to be loaded into register R10.

One takes the value already in R10, adds 80 to it, and places it back into R10.

In another style, this might be written as R10 = R10 + 80.

This line of code illustrates how programmers use features of the language.

Struble’s First Loop

* PROGRAM TO SEARCH 2O NUMBERS AT ADDRESS ARG, ARG+80,
* ARG+160, ETC. FOR EQUALITY WITH A NUMBER IN REGISTER 3.

      LA  R10,0        SET VALUE IN R10 TO 0

LOOP  C   R3,ARG(R10)  COMPARE TO A NUMBER

      BE  OUT          IF FOUND, GO PROCESS IT.

      LA  R10,80(R10)  ADD 80 TO VALUE OF INDEX REGISTER.

      C   R10,=F‘1600’ COMPARE TO 1600.

      BNE LOOP         IF NOT EQUAL, TRY AGAIN.

      DO SOMETHING HERE.  THE ARGUMENT IS NOT THERE

OUT   DO SOMETHING HERE
This program has only one obvious flaw, but it is a big one.  The loop termination 
code should be BL LOOP.

In the example above, if the value goes from 1500 to 1700 and continues incrementing, 
the loop will never terminate properly.

Structure Analysis of Struble’s First Loop

Here I analyze the structure that is implied by the program fragment.  While I 
extend Struble’s analysis, I remain entirely consistent with it.

START
Initialize the index register.

LOOP

Do the comparison and branch to OUT if equal



Update the index register




Test value in index register and loop if necessary.

FALL

Write the “fall through” code here.  The code 



immediately following the loop will execute only 



if the value is not found.

OUT

The value has been found.  The value in R10 



indicates its location in the data structure 



labeled as ARG.

Another Example from Struble
Here we have three zero–based arrays, each holding 20 fullword (32–bit) values.

We want an array sum, so that CC[K] = AA[K] + BB[K] for 0 ( K ( 19.

Here is one way to do this, again using R10 as an index register.

       LA  R10,0         INITIALIZE THE INDEX REGISTER
LOOP   L   R4,AA(R10)    GET THE ELEMENT FROM ARRAY AA
       A   R4,BB(R10)    ADD THE ELEMENT FROM ARRAY BB
       ST  R4,CC(R10)    STORE THE ANSWER
       LA  R10,4(R10)    INCREMENT THE INDEX VALUE BY FOUR

       C   R10,=F‘80’    COMPARE TO 80
       BLT LOOP
Here we see a very important feature: the index register holds a byte offset for an 
address into an array and not an “index” in the sense of a high–level language.
How the VAX–11/780 Would Do This

The standard for the IBM System/360 and related mainframe computers is to 
use the index register as holding a byte offset from a base address.

In using this feature to move through an array of particular data types, the standard is 
to add the size of the data item to the index register.
More complex computers, such as the VAX–11/780 automatically account for 
the size of the data.  Here is the above code written in the VAX style.

       LA  R10,0         INITIALIZE THE INDEX REGISTER

LOOP   L   R4,AA(R10)    GET THE ELEMENT FROM ARRAY AA

       A   R4,BB(R10)    ADD THE ELEMENT FROM ARRAY BB

       ST  R4,CC(R10++)  STORE THE ANSWER, INCREMENT INDEX
                         BY 1 FOR USE IN NEXT LOOP.
       C   R10,=F‘20’    COMPARE TO 20

       BLT LOOP
In the VAX style of programming, the address AA(R10) would be interpreted as 
AA + 4((Value in R10), because AA is an array of four–byte entries.
Other Options for the Loop

We now note a typical structure found in many loops.  The loops tend to terminate 
with code of the form seen below.

    LA REG,INCR(REG)    Increment the value
    C REG,LIMIT         Compare to a limit value
    BL LOOP            Branch if necessary
The only part of this structure that is not general is the assumption that the loop is 
“counting up”.  For a loop that counts down, we replace the last by BH LOOP.

A loop termination structure of this sort is so common that the architects of the 
IBM System/360 provided a number of special instructions to facilitate it.

The four instructions to be discussed here are as follows.



BXLE
Branch on index lower or equal.


BXH

Branch on index high.


BCT

Branch on count.  Easier to use, but less general than the above.



BCTR
Branch on count to address in a register.

To Loop or Not To Loop

Consider the following code, which sums the contents of a table of a given size.  
Here I assume that the table contents are 16–bit halfwords, beginning at address A0 
and continuing at addresses A0+2, A0+4, etc.

The first code is the general loop.  It is illustrated for an array of 50 two–byte entries.

         SR R6,R6       INITIALIZE INDEX REGISTER

         SR R7,R7       SET THE SUM TO 0

LOOP     AH R7,TAB(R6)  ADD ONE ELEMENT VALUE TO THE SUM

         A  R6,=F‘2’    INCREMENT TO NEXT HALFWORD ADDRESS

         C  R6,=F‘99’   LAST VALID OFFSET IS 98

         BL LOOP
On the other hand, if the table had only three entries, one might write the following code.

         LH R7,TAB
         AH R7,TAB+2

         AH R7,TAB+4
Branch on Index Value

The two instructions of interest here are:


BXLE
Branch on index lower or equal.
Op code = X‘87’.


BXH

Branch on index high.


Op code = X‘86’.
Each of these instructions is type RS; there are two register operands and a 
reference to a memory address.  The form is OP R1,R3,D2(B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RS
	4
	R1,R3,D2(B2)
	OP
	R1 R3
	B2 D2
	D2D2


The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

The first register is the one that will be incremented and then tested.

The third register indicates an even–odd register pair containing the increment value 
to be used and the limit value to which the incremented value is compared.

The third and fourth byte contain a 4–bit register number and 12–bit displacement,
used to specify the memory address for the operand in storage.

The Even–Odd Register Pair

The form of each of the BXLE and BHX instructions is OP R1,R3,D2(B2).

The source code form of the instructions might be OP R1,R3,S2, in which the 
argument S2 denotes the memory location with byte address indicated by D2(B2).

The first register , R1, is the one that will be incremented and then tested.

The third register , R3, indicates the even register in an even–odd register pair.  It 
is important to note that this value really should be an even number.
While the instruction can work if R3 references an odd register, it tends to lead to 
the instruction showing bizarre unintended behavior.

The even register of the pair contains the increment to be applied to the register indicated 
by R1.   It is important to note that the increment can be a negative number.

The odd register of the pair contains the limit to which the new value in the 
register indicated by R1 will be compared.

NOTATION:
R3 will denote the even register of the pair, with contents C(R3).



R3+1 will denote the odd register of the even–odd pair,


with contents C(R3+1).

Discussion of BXLE: Branch on Index Less Than or Equal
This could also be called “Branch on Index Not High”.

The instruction is written as BXLE R1,R3,S2.
The object code has the form 87 R1,R3,D2(B2).


Step 1
Increment R1


R1 ( C(R1) + C(R3)

Step 2
Test the new value
Go to S2 if C(R1) ( C(R3 + 1).
Assume that (R4) = 26, (R6) = 62, (R8) = 1, and (R9) = 40.

BXLE 4,8,S2

The even–odd register pair is R8 and R9.







The value in R4 is incremented by the value in R8.







The value in R4 is now 27.  This is compared to the value 






in R9.  27 ( 40, so the branch is taken.

BXLE 6,8,S2

The even–odd register pair is R8 and R9.







The value in R6 is incremented by the value in R8.







The value in R6 is now 63.  This is compared to the value 






in R9.  62 > 40, so the branch is not taken.

Discussion of BXH: Branch on Index High
The instruction is written as BXH R1,R3,S2.

The object code has the form 86 R1,R3,D2(B2).


Step 1
Increment R1


R1 ( C(R1) + C(R3)

Step 2
Test the new value
Go to S2 if C(R1) > C(R3 + 1).

Assume that (R4) = 4, (R6) = 12, (R8) = –4, and (R9) = 0.

BXH 4,8,S2

The even–odd register pair is R8 and R9.







The value in R4 is incremented by the value in R8.







The value in R4 is now 0.  This is compared to the value 






in R9.  0 ( 0, so the branch is not taken.

BXH 6,8,S2

The even–odd register pair is R8 and R9.







The value in R6 is incremented by the value in R8.







The value in R6 is now 8.  This is compared to the value 






in R9.  8 > 0, so the branch is taken.

A New Version of the Array Addition
Again we have three zero–based arrays, each holding 20 fullword (32–bit) values.

We want an array sum, so that CC[K] = AA[K] + BB[K] for 0 ( K ( 19.

Here is one way to do this, again using R10 as an index register.

This time, we use BXLE with R8 as the increment register and R9 as the limit register.

       LA  R10,0         INITIALIZE THE INDEX REGISTER

       LA  R8,4          INCREMENT BY 4 BYTES FOR FULLWORD

       LA  R9,76         OFFSET OF 19TH ELEMENT

LOOP   L   R4,AA(R10)    GET THE ELEMENT FROM ARRAY AA

       A   R4,BB(R10)    ADD THE ELEMENT FROM ARRAY BB

       ST  R4,CC(R10)    STORE THE ANSWER

       BXLE R10,R8,LOOP  INCREMENT R10 BY 4, COMPARE TO 76
When the 19th element is processed R10 will have the value 76 (the proper byte offset).
After the 19th element is processed, R10 will be incremented to have the value 80, 
and the branch will not be taken.

Polynomial Evaluation Using Horner’s Rule
Horner’s rule is a standard method for evaluating a polynomial for a given argument.
Let P(X) = AN(XN + AN–1(XN–1 + …. + A2(X2 + A1(X + A0.

Let X0 be a specific value of the argument.  Evaluate P(X0).

For example, let P(X) = 2(X3 + 5(X2 – 7(X + 10, with X0 = 2.
Then P(2) = 2(8 + 5(4 – 7(2 + 10 = 16 + 20 – 14 + 10 = 32.
Examination of the specific polynomial will show the motivation for Horner’s rule.
P(X)
= 2(X3 + 5(X2 – 7(X + 10



=(2(X2 + 5(X – 7)(X + 10



=( [2(X + 5](X – 7)(X + 10

So P(2)
= ( [2(2 + 5](2 – 7)(2 + 10

= ( [4 + 5](2 – 7)(2 + 10



= ( [9](2 – 7)(2 + 10


= (18 – 7)(2 + 10




= (11)(2 + 10



= 22 + 10 = 32

A Standard Algorithm for Horner’s Rule

The basic loop is quite simple.  In a higher–level language, we would something 
like the following, which has no error checking code.
P = A[N]

For J = (N – 1) Down To 0 Do



P = P(X + A[J] ;

Consider again the polynomial P(X) = 2(X3 + 5(X2 – 7(X + 10, with X0 = 2.
In a notation appropriate for coding we have the following.
A[3] = 2, A[2] = 5, A[1] = – 7, A[0] = 10, and X0 = 2.

Let’s use the loop above to evaluate the polynomial.  N = 3.

Start with P = A[3] = 2.

J = 2

P = P(2 + A[2] = 2(2 + 5 = 9

J = 1

P = P(2 + A[1] = 9(2 – 7 = 11

J = 0

P = P(2 + A[0] = 11(2 + 10 = 32.

NOTE: This is entirely different from finding the root of a polynomial.

A Sketch of Our Algorithm for Horner’s Rule

Our version of the assembler does not support explicit loops, so we write the equivalent 
code.  In this, I shall use register names as “variables”, so R3 will contain a value.
Algorithm Horner

On entry:
R3 contains N, the degree of the polynomial




R4 contains X, the value for evaluation.

      Set R8 = 0           This will be the answer.

      If R3 < 0 Go to END  No negative degrees
LOOP  R8 = R8(R4 + A0[R3]

      R3 = R3 – 1

      If R3 ( 0 Go to LOOP

END   
This implementation will assume halfword arithmetic; all values are 16–bit integers.
More commonly, one would use floating–point arithmetic.  Since my goal here is 
to illustrate the loop structure, I stick to the simpler arithmetic of halfwords.

More Notes on Our Implementation
The array will be laid out as a sequence of halfword (two byte) entries in memory.

The base address of the array will be denoted by the label A0.

There are (N + 1) entries, from A0 through AN, found at byte addresses A0, …, A0+2(N. 
Here is an example for a 5th degree polynomial, with address offsets in decimal.
	Address
	A0
	A0+2
	A0+4
	A0+6
	A0+8
	A0+10

	Entry
	A0
	A1
	A2
	A3
	A4
	A5


Each halfword in the array will be referenced as A0(R3), where R3 contains the byte 
offset of the item.  The value in R3 will be set to 2(N and counted back to 0.

The increment value for R3 is –2 (X‘FFFFFFFE’), so that the register is actually 
decremented by 2.  Its values are the byte offsets: 2(N, 2(N – 2, …, 4, 2, 0.

As I want to use the BXH instruction for this illustration, and want to allow for R3 = 0, 
I shall set the limit for the comparison to –1, though –2 would do as well.

At the last execution of the loop, R3 will be decremented from R3 = 0 to R3 = – 2.
The branch will not be taken.

Horner’s Rule Polynomial Evaluation with BXH

*      ALGORITHM HORNER

*      ON ENTRY: R3 CONTAINS THE DEGREE OF THE POLYNOMIAL

*                R4 CONTAINS THE VALUE OF X FOR P(X)

*      PROCESS:  R6 AND R7 WILL BE USED FOR THE BXH

*      ON EXIT:  R8 CONTAINS THE VALUE OF P(X).

       SR   R8,R8         SET R8 TO ZERO
       AR   R3,R3         DOUBLE R3 TO MAKE BYTE COUNT.

       LH   R6,=H‘-2’     LOAD INCREMENT OF -2

       LH   R7,=H‘-1’     LOAD LIMIT FOR TESTING

LOOP   MR   R8,R4         PRODUCT IN REGISTER PAIR R8,R9
                          FOR HALFWORDS, R9 IS NOT USED

       AH   R8,A0(R3)     ADD THE COEFFICIENT

       BXH  R3,R6,LOOP    LOOP IF C(R3) > -1.
For this example, I assume 16–bit integers (halfwords) for both the value of X and 
the values of all coefficients of the polynomial.
Given this, the sign bit in R8 will be correct after the multiplication and R9 is not used.

Branch on Count

The two instructions of interest now are:

BCT

The branch on count instruction is a type RX instruction, with op code X‘46’.

BCTR
The branch on count (register) instruction is a type RR instruction.



This has op code X‘06’.

The forms of the instructions are:
BCT  R1,S2









BCTR R1,R2.

Each of these instructions decrement the count in the R1 register by 1.

The actions of these instructions is described formally as follows.

BCT:

R1 ( C(R1) – 1



Branch to S2 if C(R1) ( 0.

BCTR:
R1 ( C(R1) – 1



Branch to C(R2) if C(R1) ( 0 and R2 ( 0.

Note that BCTR R1,0 will decrement R1 by 1, but not branch for any value in R1.
Scanning Text for Input/Output

Remember that input should be viewed as a card image of 80 columns and that output 
should be viewed as a line–printer line of 132 columns, with leading print control.

Consider a field of N characters found beginning in column M.

[image: image1.emf]


Suppose that the leftmost byte in this array is associated with the label BASE.
The leftmost byte in the range of interest will be denoted by the label BASE+M.
Elements in this range will be referenced using an index register as BASE+M(Reg).

For example, suppose that the field of interest contains 12 characters and 
begins with column 20.  It then goes between columns 20 and 31, inclusive.

Using R3 as an index, we reference this as BASE+20(R3), with 0 ( (R3) < 20.

Scanning left to right will use BXLE and scanning right to left will use BXH.
