Instruction Formats

There are six instruction formats, five of which are of use to us.
The sixth format is used only by code run by the Operating system.
These formats are classified by length in bytes, use of the base registers,
and object code format.

Format
Length
Use

Name
in bytes

RR
2
Register to register transfers.

RS
4
Register to storage and register from storage

RX
4
Register to indexed storage and register from indexed storage

SI
4
Storage immediate

SS
6
Storage–to–Storage. These have two variants,

each of which we shall discuss soon.
The student will note that the main motivation for this proliferation of instruction
formats seems to have been the desire to minimize the total size of the code.
Remember that this code might have to execute in 32 kilobytes of memory.

The Object Code Format
Here is a table summarizing the formats of the five instruction types.

	Format
	Length
	Explicit operand
	
	
	
	
	
	

	
	
	form
	
	
	
	
	
	

	
	
	
	1
	2
	3
	4
	5
	6

	RR
	2
	R1,R2
	OP
	R1 R2
	
	
	
	

	RS
	4
	R1,R3,D2(B2)
	OP
	R1 R3
	B2 D2
	D2D2
	
	

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2
	
	

	SI
	4
	D1(B1),I2
	OP
	I2
	B1 D1
	D1D1
	
	

	SS(1)
	6
	D1(L,B1),D2(B2)
	OP
	L
	B1 D1
	D1D1
	B2 D2
	D2D2

	SS(2)
	6
	D1(L1,B1),D2(L2,B2)
	OP
	L1 L2
	B1 D1
	D1D1
	B2 D2
	D2D2

NOTES:
OP is the 8–bit operation code.

R1 R2 and R1 X2 each denote two 4–bit fields to specify two registers.

The two byte entry of the form B D D D denotes a 4–bit field to specify a

base register and three 4–bit fields (12 bits) to denote a 12–bit displacement.

L denotes an 8–bit field for operand length (256 bytes maximum).

L1 and L2 each denote a 4–bit field for an operand length (16 bytes max.).

I denotes an 8–bit (one byte) immediate operand. These are useful.

RR (Register–to–Register) Format
This is a two–byte instruction of the form OP R1,R2.

	Type
	Bytes
	
	
	

	RR
	2
	R1,R2
	OP
	R1 R2

The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

This instruction format is used to process data between registers.

Here are some examples.

AR 6,8

1A 68

Adds the contents of register 8 to register 6.

AR 10,11
1A AB

Adds the contents of register 11 to register 10.

AR R6,R8
1A 68

Due to the standard Equate statements we use

in our program assignments,

R6 stands for 6 and R8 for 8.

RR (Register–to–Register) Format: Branch Instructions
There are two formats used with conditional branching instructions.
The BCR (Branch on Condition Register) instruction uses a modified form
of the RR format. The BC (Branch on Condition) uses the RX format.

The BCR instruction is a two–byte instruction of the form OP M1,R2.

	Type
	Bytes
	
	
	

	RR
	2
	M1,R2
	07
	M1 R2

The first byte contains the 8–bit instruction code, which is X‘07’.

The second byte contains two 4–bit fields.

The first 4–bit field encodes a branch condition

The second 4–bit fields encodes the number of the register containing

the target address for the branch instruction.

For example, the instruction BR R8 is the same as BCR 15,R8.
The object code is 07 F8. Branch unconditionally to the address in register 8.

We shall discuss the BC and BCR instructions in more detail at a later lecture.

RS (Register–Storage) Format

This is a four–byte instruction of the form OP R1,R3,D2(B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RS
	4
	R1,R3,D2(B2)
	OP
	R1 R3
	B2 D2
	D2D2

The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

Note that some RS format instructions use only one register, here R3 is set to 0.
In this instruction format, “0” is taken as no register, rather than register R0.
The third and fourth byte contain a 4–bit register number and 12–bit displacement,
used to specify the memory address for the operand in storage.
Recall that each label in the assembly language program references an address,
which must be expressed in the form of a base register with displacement.
Any address in the format of base register and displacement will appear in the form.

	B D1
	D2 D3

B is the hexadecimal digit representing the base register.

The three hexadecimal digits D1 D2 D3 form the 12–bit displacement.

RS (Register–Storage) Format Example
This is a four–byte instruction of the form OP R1,R3,D2(B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RS
	4
	R1,R3,D2(B2)
	OP
	R1 R3
	B2 D2
	D2D2

1.
Load Multiple
Operation code = X‘98’.

Suppose the label FW3 (supposedly holding three 32–bit full–words) is at an

address specified by offset X‘100’ from base register R7. Then we have

LM R5,R7,FW3

98 57 71 00

Unpacking the object code, we again find the parts.

The operation code is X‘98’, which indicates a multiple register load.

The next byte has value X‘57’, which indicates two registers: R5 and R7.

Here it is used to represent a range of three registers: R5, R6, and R7.

The last two bytes contain the address of the label FW3. The two bytes 71 00 indicate

1)
that the base address is contained in register R7, and

2)
that the displacement from the base address is X‘100’.

Another RS (Register–Storage) Format Example
This is a four–byte instruction of the form OP R1,R3,D2(B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RS
	4
	R1,R3,D2(B2)
	OP
	R1 R3
	B2 D2
	D2D2

2.
Shift Left Logical
Operation code = X‘89’
This is also a type RS instruction, though the appearance of a typical use seems to deny
this. Consider the following instruction which shifts R6 left by 12 bits.

SLL R6, 12 Again, I assume we have set R6 EQU 6

The deceptive part concerns the value 12, used for the shift count. Where is that stored?
The answer is that it is not stored, but assembled in the form of a displacement of 12
to a base register of 0, indicating that no base register is used.

The above would be assembled as 89 60 00 0C Decimal 12 is X‘C’

Here are three lines from a working program I wrote on 2/23/2009.

000014 5840 C302 00308 47 L R4,=F'1'

000018 8940 0001 00001 48 SLL R4,1

00001C 8940 0002 00002 49 SLL R4,2

RX (Register–Indexed Storage) Format

This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2

The first byte contains the 8–bit instruction code.

The second byte contains two 4–bit fields, each of which encodes a register number.

In order to illustrate this, consider the following data layout.

FW1 DC F‘31’

 DC F‘100’ Note that this full word is not labeled
Suppose that FW1 is at an address defined as offset X‘123’ from register 12.
As hexadecimal C is equal to decimal 12, the address would be specified as C1 23.

The next full word might have an address specified as C1 27, but we shall show
another way to do the same thing. The code we shall consider is

L R4,FW1 Load register 4 from the full word at FW1

AL R4,FW1+4 Add the value at the next full word address
RX (Register–Indexed Storage) Format (Continued)
This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2

Consider the two line sequence of instructions

L R4,FW1 Operation code is X‘58’.

AL R4,FW1+4 Operation code is X‘5E’.
The load instruction, remembering that the address of FW1 is specified as C1 23.
The base register is R12, the displacement is X‘123’, and there is no index register;
so we have

58 40 C1 23
The next instruction is similar, except for its operation code.

5E 40 C1 27
NOTE:
In each of the examples above, the 4–bit value X2 = 0. When a 0 is found

in the index position, that indicates that indexed addressing is not used.

Register 0 cannot be used as either a base register or an index register.
RX Format (Using an Index Register)
Here we shall suppose that we want register 7 to be an index register.

As the second argument is at offset 4 from the first, we set R7 to have value 4.

This is a four–byte instruction of the form OP R1,D2(X2,B2).

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	OP
	R1 X2
	B2 D2
	D2D2

Consider the three line sequence of instructions

L R7,=F‘4’ Register 7 gets the value 4.

L R4,FW1 Operation code is X‘58’.

AL R4,FW1(R7) Operation code is X‘5E’.
The object code for the last two instructions is now.

58 40 C1 23
This address is at displacement 123

from the base address, which is in R12.

Note X2 = 0, indicating no indexing.

5E 47 C1 23
R7 contains the value 4.

The address is at displacement 123 + 4

or 127 from the base address, in R12.
More on “Index Register 0”

Consider the instruction

 L R4,FW1 Operation code is X‘58’.
The object code for this instruction is of the form

 58 40 C1 23
The second byte of the instruction has the destination register set as 4 (either decimal
or hexadecimal, you choose), and the “index register” set to 0.
The intent of the instruction is that indexed addressing not be invoked.

There are two common ways to handle this addressing procedure.

1.
The solution chosen by IBM is that the 0 indicates “do not index”, and

that the value of register R0 is not used or changed.

2.
Another common solution, tried as early as the CDC–6600, is to specify

that register R0 stores the constant 0; R0 (0.

The 0 in the index register position would then indicate “index by R0”, that is

to add 0 to the base–displacement address; in other words, no indexing.

Each method has its advantages. The second simplifies design of the control unit.
RX Format (Branch on Condition)
The BC (Branch on Condition) is a 4–byte instruction of the form
OP M1,D2(X2,B2). Its operation code is X‘47’.

	Type
	Bytes
	
	1
	2
	3
	4

	RX
	4
	R1,D2(X2,B2)
	47
	M1 X2
	B2 D2
	D2D2

The first byte contains the 8–bit instruction code, which is X‘47’.

The second byte contains two 4–bit fields.

The first four bits contain the mask for the branch condition codes

The second four bits contain the number of the index register used

in computing the address of the jump target.

The next two bytes contain the 4–bit number of the base register and the
12–bit displacement used to form the unindexed address of the branch target.

Suppose that address TARGET is formed by offset X‘666’ using base register 8.
No index is used and the instruction is BNE TARGET, equivalent to BC 7,TARGET,
as the condition mask for “Not Equal” is the 4–bit number 0111, or decimal 7.
The object code for this is 47 70 86 66.

SI (Storage Immediate) Format

This is a four–byte instruction of the form OP D1(B1),I2.

	Type
	Bytes
	
	1
	2
	3
	4

	SI
	4
	D1(B1), I2
	OP
	I2
	B1 D1
	D1D1

The first byte contains the 8–bit instruction code.

The second byte contains the 8–bit value of the second operand, which is treated as an
immediate operand. The instruction contains the value of the operand, not its address.
The first operand is an address, specified in standard base register and displacement form.

Two instances of the instruction are :

MVI
Move Immediate

CLI
Compare Immediate

Suppose that the label ASTER is associated with an address that is specified using
register R3 as a base register, with X‘6C4’ as offset.

The operation code for MVI is X‘92’ and the EBCDIC for ‘*” is X‘5C’.

MVI ASTER,C ‘*’ is assembled as 92 5C 36 64.

The Storage–to–Storage Instructions

There are two formats for the SS (Storage–to–Storage) instructions.

Each of the formats requires six bytes for the instruction object code.
The two types of the SS instruction are as follows:

1.
The Character Instructions

These are of the form OP D1(L,B1),D2(B2), which provide a length

for only operand 1. The length is specified as an 8–bit byte.

Examples:
MVC

Move Characters

CLC

Compare Characters

2.
The Packed Decimal Instructions

These are of the form OP D1(L1,B1),D2(L2,B2), which provide

a length for each of the two operands. Each length is specified as a

4–bit hexadecimal digit.

Examples:
ZAP

Zero and Add Packed
(Move Packed)

AP

Add Packed

CP

Compare Packed

Storage–to–Storage: Length Fields

Consider the two formats used to store a length in bytes.

These are a four–bit hexadecimal digit and an eight–bit byte.

Four bits will store an unsigned integer in the range 0 through 15.

Eight bits will store an unsigned integer in the range 0 through 255.

However, a length of 0 bytes is not reasonable for an operand.

For this reason, the value stored is the one less than the length of the operand.

Field
Value
Operand
Size
Stored
Length

Four bits
0 – 15
1 – 16
bytes

Eight bits
0 – 255
1 – 256
bytes

By examination of all instruction formats, we can show that only the SS
(Storage–to–Storage) format instructions require length codes.
Storage–to–Storage: Character Instructions
These are of the form OP D1(L,B1),D2(B2), which provide a length
for only operand 1. The length is specified as an 8–bit byte.

	Type
	Bytes
	Form
	1
	2
	3
	4
	5
	6

	SS(1)
	6
	D1(L,B1),D2(B2)
	OP
	L
	B1 D1
	D1D1
	B2 D2
	D2D2

The first byte contains the operation code, say X‘D2’ for MVC or X‘D5’ for CLC.
The second byte contains a value storing one less than the length of the first operand,
which is the destination for any move.

Bytes 3 and 4 specify the address of the first operand, using the
standard base register and displacement format.

Bytes 5 and 6 specify the address of the second operand, using the
standard base register and displacement format.

It is quite common for both operands to use the same base register.

Example of Character Instructions

The form is OP D1(L,B1),D2(B2). The object code format is as follows:

	Type
	Bytes
	Form
	1
	2
	3
	4
	5
	6

	SS(1)
	6
	D1(L,B1),D2(B2)
	OP
	L
	B1 D1
	D1D1
	B2 D2
	D2D2

Consider the example assembly language statement, which moves the string of
characters at label CONAME to the location associated with the label TITLE.

MVC TITLE,CONAME

Suppose that:
1.
There are fourteen bytes associated with TITLE, say that it was

declared as TITLE DS CL14. Decimal 14 is hexadecimal E.

2.
The label TITLE is referenced by displacement X‘40A’

from the value stored in register R3, used as a base register.

3.
The label CONAME is referenced by displacement X‘42C’

from the value stored in register R3, used as a base register.

Given that the operation code for MVC is X‘D2’, the instruction assembles as

D2 0D 34 0A 34 2C Length is 14 or X‘0E’; L – 1 is X‘0D’
Storage–to–Storage: Packed Decimal Instructions

These are of the form OP D1(L1,B1),D2(L2,B2), which provide
a 4–bit number representing the length for each of the two operands.
	Type
	Bytes
	Form
	1
	2
	3
	4
	5
	6

	SS(2)
	6
	D1(L1,B1),D2(L2,B2)
	OP
	L1 L2
	B1 D1
	D1D1
	B2 D2
	D2D2

The first byte contains the operation code, say X‘FA’ for AP or X‘F9’ for CP.

The second byte contains a two values, each a 4–bit binary number (one hex digit).

L1
A value that is one less than the length of the first operand.

L2
A value that is one less than the length of the second operand.

Bytes 3 and 4 specify the address of the first operand, using the
standard base register and displacement format.

Bytes 5 and 6 specify the address of the second operand, using the
standard base register and displacement format.

IBM will frequently call these decimal instructions. Here are two lines from the
standard reference card, officially called FORM GX20–1850.

AP
Decimal Add

CP
Compare Decimal

Example of Packed Decimal Instructions

The form is OP D1(L1,B1),D2(L2,B2). The object code format is as follows:

	Type
	Bytes
	Form
	1
	2
	3
	4
	5
	6

	SS(2)
	6
	D1(L1,B1),D2(L2,B2)
	OP
	L1 L2
	B1 D1
	D1D1
	B2 D2
	D2D2

Consider the assembly language statement below, which adds AMOUNT to TOTAL.

AP TOTAL,AMOUNT
Assume:
1.
TOTAL is 4 bytes long, so it can hold at most 7 digits.

2.
AMOUNT is 3 bytes long, so it can hold at most 5 digits.

3.
The label TOTAL is at an address specified by a displacement

of X‘50A’ from the value in register R3, used as a base register.

4.
The label AMOUNT is at an address specified by a displacement

of X‘52C’ from the value in register R3, used as a base register.

The object code looks like this:
FA 32 35 0A 35 2C
Example of Packed Decimal Instructions (Continued)
The form is OP D1(L1,B1),D2(L2,B2). The object code format is as follows:

	Type
	Bytes
	Form
	1
	2
	3
	4
	5
	6

	SS(2)
	6
	D1(L1,B1),D2(L2,B2)
	OP
	L1 L2
	B1 D1
	D1D1
	B2 D2
	D2D2

Consider
FA 32 35 0A 35 2C. The operation code X‘FA’ is that for the
Add Packed (Add Decimal) instruction, which is a type SS(2). The above format applies.

The field 32 is of the form L1 L2.

The first value is X‘3’, or 3 decimal. The first operand is 4 bytes long.

The second value is X‘2’, or 2 decimal. The second operand is 3 bytes long.

The two–byte field 35 0A indicates that register 3 is used as the base register
for the first operand, which is at displacement X‘50A’.
The two–byte field 35 2C indicates that register 3 is used as the base register
for the second operand, which is at displacement X‘52C’.

It is quite common for both operands to use the same base register.
