
Page 446 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Chapter 25: External Storage

Author’s Note: This chapter is copied almost verbatim from the material in
Chapter 17 of the textbook by Peter Abel. It is used by permission.

A file, or data set, is a collection of related data records. Most data processing applications
involve data files of such volume that they require large external magnetic tape and disk
storage devices. Tape and disk provide mass external permanent storage, extremely fast
input/output, reusability, and records of almost any reasonable length.

This chapter introduces the various file organization methods and describes the architecture
for magnetic tape and disk drives. The next three chapters cover the processing of files.

File Organization Methods
In any system, a set of related records is arranged into a file and organized according to the
way in which programs are intended to process them. Once you create a file under a
particular organization method, all programs that subsequently process the file must do so
according to the requirements of the method. Most commonly, this is done by using macros
and subroutine calls associated with the method that wrote the data: VSAM out, VSAM in.
Let’s take a brief look at the most common organization methods.

Sequential File Organization
Under sequential organization, records are stored one after another. Almost all commercial
data sets comprise records with an identifying element called the key. For example, consider
a data set holding student information. Each record would probably have a key value used to
associate that record with the student, most likely a student ID number.

The records in a commercial data set would normally be in ascending sequence (the usual) or
descending sequence by a particular key or keys (control word), such as customer number or
employee number within department, or, contrary to what the name “sequential organization”
implies, records need not be in any particular sequence.

In some data sets used to support scientific research, records do not have associated keys.
The record may be a list of measurements, such as temperatures or particle energies that have
been observed. All of these data are input to a program that processes them.

In commercial usage, we have the “old master/new master” scenario. A typical instance of
this would be inventory processing. The program that does such processing would have two
inputs, each a sequential data set.

1) An “old master” data set containing inventory information, with records sorted
by part number in ascending sequence.

2) A data set containing transaction records for the sales activity that day.

At the end of the day, the transaction records would be read into the computer and sorted by
part number in the same way as those records in the old master data set. The processing
would then apply the transactions to the old master data set, producing a “new master” data
set that represented the inventory at the end of the day (accounting for all sales in the
transaction records); this becomes the old master for the next day. Other processing may
produce a data set containing orders to be made in order to replenish the inventory.

S/370 Assembler External Storage

Page 447 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

You can store a sequentially organized file on any type of device and for any type of file,
such as master, transaction, and archival. Such a file can even be stored on punch cards, such
as the 80–column punch cards that were once used to store programs and data. While punch
cards have not been much used to store data since about 1990 (due to the storage space
required), a data set on punched cards may be considered as being in unblocked form (see
below) on a magnetic tape (also little used since about 2000).

Indexed Sequential (ISAM) File Organization
Indexed sequential organization for master files lets one access records in ascending
sequence and also support indices that enable access of any record randomly by key. The
ISAM organization is very efficient, but not flexible when records are inserted and deleted at
random. The newer VSAM method is more flexible and provides equivalent services; for
this reason we mention ISAM only as an item of historical interest.

Direct File Organization
Direct file organization facilitates direct access for any record in a master file. The main
advantage is that this method provides fast access for records and is thus particularly useful
for online systems.

Virtual Storage Access Method (VSAM)
Virtual storage access method (VSAM) supports three organization types. Entry–sequenced
is equivalent to sequential organization, key–sequenced is equivalent to ISAM, and relative–
record is equivalent to direct. Disk storage devices, but not tape, support indexed sequential,
VSAM, and direct organization. Chapters 26, 27, and 28 cover sequential, ISAM, and
VSAM, respectively.

ACCESS METHODS
An access method is the means by which the system performs input/output requests. The
methods depend on the file organizations and the file type of accessing required.
DOS supports four methods and OS supports seven. The latest implementation of z/OS,
which is the Operating System for the z/10 and z/11, probably support more.

Processing of External Storage Devices
Major similarities between tape and disk are that records may be of virtually any length, of
fixed or variable length, and clustered together into one or more records per block. It should
be mentioned that disk records are not partitioned into fixed length sectors, as is the case for
computers running MS–DOS or its equivalent, MS–Windows. When we discuss the logical
disk architecture as implemented by modern IBM Mainframe (Enterprise Server) computers,
we shall have occasion to mention again this logical record architecture.

S/370 Assembler External Storage

Page 448 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

There are, however, two major differences in processing tape and disk. First, each time you
read or write, the tape drive starts, transfers the data, and then stops, whereas a disk drive
rotates continuously. The sole exception to this is the now obsolete external “floppy disk” in
which the disk rotation is discontinued after a period of inactivity in order to avoid wear on
the motor. The second difference is that update of records on tape involves rewriting of the
entire changed file on another reel of tape. Disk records can be updated in place, but the
mechanical problems of tape movement mean that in–place replacement of records is likely
to be error prone and should be avoided.

Identification of External Devices
Both disk and tape have unique ways of identifying their contents to help in locating files and
in protecting them from accidental erasure.

Tape file identification. At the beginning of the tape reel is a volume label, which is a
record that identifies the reel being used. Immediately preceding each file on the tape is a
header label, which describes the file that follows. This record contains the name of the file
(for example, INVENTORY FILE) and the date the file was created. Following the header
label are the records that comprise the data file.

The last record following the file is a trailer label, which is similar to the header label but
also contains the number of blocks written on the reel. The operating system automatically
handles the header and trailer labels.

Disk file identification. To keep track of all the files it contains, a disk device uses a special
directory (volume table of contents, VTOC) at the beginning of its storage area. The
directory includes the names of the files, their locations on disk, and their present status.

Packed and Binary Data
Tape and disk records can contain numeric fields defined as zoned, binary, or packed. Packed
format involves two digits per byte plus a half-byte for the sign, such as

PAYMENT DS PL4

In this case, the field length is 4 bytes, stored as dd | dd | dd | ds, where d is a digit and s is
the sign. If the field is defined as binary, watch out for erroneous alignment of the field when
you read it into main storage. The following binary fields are both 4 bytes long:

Aligned on a fulIword boundary: PAYMENT1 DS F
Not aligned on a boundary: PAYMENT2 DS FLA

The assembler automatically aligns PAYMENT1 on a fullword boundary, whereas the
assembler defines PAYMENT2 at its proper (unaligned) location.

Unblocked and Blocked Records
Disk and tape devices recognize blocks of data, which consist of one or more records. A
blank space, known as an interblock gap (IBG), separates one block from another. The
length of an IBG on tape is 0.3 to 0.6 inches depending on the device, and the length of an
IBG on disk varies by device and by track location. The IBG has two purposes: (I) to define
the start and end of each block of data and (2) to provide space for the tape when the drive
stops and restarts for each read or write of a block.

S/370 Assembler External Storage

Page 449 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Records that are stored one to a block are called unblocked. As shown in Fig. 25-1(a),
following each block is an IBG.

To reduce the amount of tape and disk storage and to speed up input/output, you may specify
a blocking factor, such as three records per block, as shown in Fig. 25-1(b). In this format,
the system writes an entire block of three records from main storage onto the device.
Subsequently, when the system reads the file,it reads the entire block of three records from
the device into storage. All programs that subsequently read the file must specify the same
record length and block length. Blocking records makes better use of disk and tape storage
but requires a larger buffer area in main storage to hold the block.

Figure 25–1 (a) Unblocked records. (b) Blocked records

Input Buffers

The action of an input operation depends on whether records are unblocked or blocked. If
unblocked, the operation transfers one record (block) at a time from the device into the
input/output buffer in your program. The following example of blocked records assumes
three records per block. Initially, the input operation transfers the first block from the device
into the buffer (I/O area) in your program and delivers the first record to your program's
work area:

For the second input executed, the operation does not have to access the device. Instead, it
simply delivers the second record from the buffer into your program’s work area:

S/370 Assembler External Storage

Page 450 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

And for the third input executed, the operation delivers the third record from the buffer to
your program’s work area:

While the program processes the third record in the work area, the system can read ahead and
transfer the second block (containing records 4, 5, and 6) from the device into the buffer in
your program. For the fourth input executed, the operation delivers the first record from the
buffer into your program’s work area:

Output Buffers
The action of an output operation depends on whether records are unblocked or blocked. If
unblocked, the output operation transfers one record (block) at a time from your work area to
the buffer in your program and then to the output device. The following example of blocked
records assumes three records per block. The first output operation writes the record in the
work area to the first record location in the output buffer, but not to the output device:

No actual physical writing to the output device occurs at this time. The second output
operation writes the record in the work area to the second record location in the buffer:

Similarly, the third output operation writes its record from the work area to the third record
location in the buffer. Now the buffer is full, the system can physically write the contents of
the buffer, this block of three records, to the external device.

The CLOSE operation automatically writes the last block of data to the output device. This
last block may validly contain fewer records than the blocking factor specifies; consider a
program that writes ten records with a blocking factor of three. When the CLOSE operation
is called, the buffer will contain one valid record (record 10) and two empty slots.

NOTE ADDED BY Ed Bosworth
There is some security advantage to having each physical write, including the last CLOSE,
completely clear the buffer before any additional logical writes take place.

S/370 Assembler External Storage

Page 451 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Fixed-Length and Variable-Length Records
Records and blocks may be fixed in length, where each has the same length throughout the
entire file, or variable in length, where the length of each record and the blocking factor are
not predetermined. There are five formats:
1. Fixed, unblocked: one record of fixed length per block
2. Fixed, blocked: more than one fixed-length record per block
3. Variable, unblocked: one variable-length record per block
4. Variable, blocked: more than one variable-length record per block
5. Undefined: contents of no defined format

(Not all systems support this format.)

MAGNETIC TAPE STORAGE
The magnetic tape used in a computer system is similar to the tape used by conventional
audiotape recorders; both use a similar coating of metallic oxide on flexible plastic, and both
can be recorded and erased. Its large capacity and its reusability make tape an economical
storage medium.

Data records on tape are usually, but not necessarily, stored sequentially, and a program that
processes the records stints with the first record and reads or writes each record
consecutively.

The main users of tape are installations such as department stores and utilities that require
large files that they process sequentially. Many installations use disk for most general
processing and use tape for backing up the contents of the disk master files at the end of each
workday. Consequently, if it is necessary to rerun a job because of errors or damage, backup
tapes are always available.

Characteristics of Tape
The most common width of a reel of magnetic tape is 1/2 inch, and its length ranges from
200 feet to the common 2,400 feet, with lengths as long as 3,600 feet. A tape drive records
data as magnetic bits on the oxide side of the tape.

Storage format. Data is stored on tape according to tracks. The tape in Fig. 25–3 shows the
arrangement of a nine–track tape; it has nine horizontal tracks, each of which represents a
particular bit position. Each vertical set of 9 bits constitutes a byte, of which 8 bits are for
data and 1 bit is for parity. In the 1950’s and 1960’s, the seven–track format was also
popular, having six bits for data and 1 bit for parity. By the mid–1970’s, this format was

becoming unpopular, and seven–track tape
readers were hard to find.

The picture at left (Fig. 25–2) shows the first
magnetic tape drive produced by IBM. This was
the IBM 729, a 7–track device, first released in
1952. The novelty of the design is reflected by an
actual incident at the IBM receiving dock. The
designers were expecting a shipment of magnetic
tape when they were called by the foreman of the
dock with the news that “We just received a
shipment of tape from 3M, but are going to send
it back … It does not have any glue on it”

S/370 Assembler External Storage

Page 452 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Figure 25–3 Data on Tape, with Bytes in Vertical Stripes

As you can see, the tracks for each of the bits are not in the expected sequence. The tracks
for bits 4 and 5, the least used, are in the outer area where the tape is more easily damaged.
The first byte, on the left, would appear in main storage as follows:

Bit Number 0 1 2 3 4 5 6 7 P
Bit Value 1 0 1 0 0 0 0 0 1

The data value stored in the byte is “1010 0000” or hexadecimal “A0”. The parity bit is set
for odd parity, in which each byte will be represented with an odd number of 1 bits in its
vertical stripe. Here, the data byte contains an even number of 1 bits, so P is set to 1.

Storage density. Tape density is measured by the number of stored characters, or bytes, per
inch (bpi), such as 800, 1,600, or 6,250 bpi. Therefore, a 2,400-foot reel with a recording
density of 1,600 bpi could contain 46 million bytes, which is equal to over a half-million
80-byte records. Double-density tape stores data on 18 tracks, representing 2 bytes for each
set of 18 vertical bits. This however is an unusual format.

Tape speed. Tape read/write speeds vary from 36 to 200 or more inches per second. Thus a
tape drive that reads 1,600 bpi records at 200 inches per second would be capable of reading
320,000 bytes per second. Other high-speed cartridge drives transfer data at up to 3 million
bytes per second.

Tape markers. A reflective strip, called a load point marker, located about 15 feet from the
beginning of a tape reel, indicates where the system may begin reading and writing data.
Another reflective strip, an end-of-tape marker, located about 14 feet from the end of the reel,
warns the system that the end of the reel is near and that the system should finish writing
data. Both the load point marker and the end-of-tape marker are on the side of the tape
opposite the recording oxide.

Tape File Organization
A file or data set on magnetic tape is typically stored in sequence by control field or key,
such as inventory number. For compatibility with disks, a reel of tape is know as a volume.
The simplest case is a one-volume file, in which one file is entirely and exclusively stored on
one reel (volume).

S/370 Assembler External Storage

Page 453 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

An extremely large file, known as a multivolume file, requires more than one reel. Many
small files may be stored on a multifile volume, one after the other. The primary problem
here is that you may have to rewrite the entire reel just to update one of the files.

Unblocked and Blocked Tape Records
As an example of the effect of blocking records on tape, consider a file of 1,000 records each
800 bytes long. Tape density is 1,600 bytes per inch, and each IBG is 0.6 inches. How much
space does the file require given (a) unblocked records and (b) a blocking factor of 5?
Calculate the size of a record of 800 bytes as 800 / 1,600 = 0.5 inches.

(a) Unblocked records
One block = one record = 800 bytes
Length of one block = 800 bytes/1,600 bpi = 0.5”
Length of one mG = 0.6”
Space required for one block = 1.1"
Space required for file = 1,000 blocks x 1.1" = 1,100"

(b) Blocked records
One block = five records = 4;000 bytes
Length of one block = 4,000 bytes/1,600 bpi = 2.5"
Length of one IBG = 0.6”
Space required for one block = 3.1"
Space required for file = 200 blocks x 3.1" = 620"

As can be seen, the blocked records require considerably less space because there are fewer
Interblock Gaps.

Standard Labels
Under the various operating systems, tape reels require unique identification. Each reel, and
each file on a reel, usually contains descriptive standard labels supported by the operating
systems (1) to uniquely identify the reel and the file for each program that processes it and
(2) to provide compatibility with other IBM systems and (to some degree) with systems of
other manufacturers.

Installations typically use standard labels. Nonstandard labels and unlabeled tapes are
permitted but are not covered in this text. The two types of standard labels are volume and
file labels. Figure 25–4 illustrates standard labels for one file on a volume, a multivolume
file, and a multifile volume. In the figure, striped lines indicate IBGs, and TM (for tape mark)
is a special marker that the system writes to indicate the end of a file or the end of the reel.

Volume Labels
The volume label is the first record after the load point marker and describes the volume
(reel). The first 3 bytes contain the identification VOL. Although some systems support more
than one volume label, this text describes only the common situation of one label.

On receipt of a new tape reel, an operator uses an IBM utility program to write a volume
label with a serial number and a temporary header file label. When subsequently processing
the reel, the system expects the volume label to be the first record. it checks the tape serial
number against the number supplied by the job control command, TLBL under DOS
or DD under OS.

S/370 Assembler External Storage

Page 454 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Figure 25–4 Magnetic Tape Standard Labels

The following describes each field in the 80–byte standard volume label:

Positions Name Description

01 – 03 Label identifier Contains the three characters “VOL” to
identify the label.

04 Volume label number Some systems permit more than one volume
label; this field contains their numeric sequence.

05 – 10 Volume serial number The permanent unique number assigned when
the reel is received. This number also becomes
the file serial number in the header label.

11 Volume security code A special security code supported by the OS

12 – 41 Unused Reserved for use by IBM.

42 – 51 Owner’s identification May be used under OS to identify the owner’s
name and address.

52 – 80 Unused Reserved/

File Labels
A tape volume contains a file of data, part of a file, or more tban one file. Each file has a
unique identification to ensure, for example, that the system is processing the correct file and
that the tape being used to write on is validly obsolete [presumably meaning that its contents
can be overwritten – ELB]. Two file labels for each file, a header label and a trailer label,
provide this identification.

S/370 Assembler External Storage

Page 455 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The following describes each field in the standard file label for both header and trailer labels.
(This table, accurate for the late 1970’s, must now be obsolete; note the two digit “yy” format
for the year number in the Creation Date and Expiration Date fields. – ELB)

Position Name Description
01 – 03 Label

identifier
HDR if a header label, EOF if the end of a file,
EOV if the end of a volume. Three EBCDIC characters.

04 File label
number

Specifies the sequence of file labels for systems that support
more than one. OS supports 2 labels each for
HDR, EOF, and EOV.

05 – 21 File identifier A unique name that identifies the file.
22 – 27 File serial

number
The same identification as the volume serial number for the
first or only volume of the file.

28 – 31 Volume sequence
number

Sequence of volume numbers for multivolume files. The
first volume for a file contains 0001, the second 0002, etc.

32 – 35 File sequence
number

The sequence of file numbers for multifile volumes. The
first file in a volume contains 0001, the second 0002, etc.

36 – 39 Generation
number

Each time the system rewrites a file, it increments this
number by 1 to identify the edition of the file.

40 – 41 Version number
of generation

Specifies the version of the generation number of the file.
(Whatever that means – ELB)

42 – 47 Creation Date The year and day when the file was written. Format is
“ yyddd”, with two digit year and 3 digit day number.
Note the leading blank, to make six characters.

48 – 53 Expiration Date The year and day when the file may be overwritten.
The format is identical to that for the creation date.

54 File security code A special security code used by OS.
55 – 60 Block count Used in trailer labels for the number of blocks since

the previous header label.
61 – 73 System code An identification for the operating system.
74 – 80 Unused Reserved, but probably now used to expand the year

numbers for Creation & Expiration date. Corrections for the
Y2K problem cannot invalidate older file formats.

Header label. A header label precedes each file. If the file requires more than one reel,
each reel contains a header label, numbered from 001. If a reel contains more than
one file, a header label precedes each file.

The header label contains HDR in the first 3 bytes; the file identification (such as
CUSTOMER RECORDS), the date the file may be deleted, and so forth. The system
expects a header label to follow the volume label immediately and checks the file
identification, date, and other details against information supplied by job control.

OS supports two header labels, HDRI and HDR2, with the second label, also 80 bytes,
immediately following the first. Its contents include the record format (fixed, variable, or
undefined), block length, record length, and density of writing on the tape.

S/370 Assembler External Storage

Page 456 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Trailer label. A trailer label is the last record of every file. (OS supports two trailer labels.)
The first 3 bytes contain EOV if the file requires more than one reel and the trailer label is
the end of a reel but not end of the file. The first 3 bytes contain EOF if the trailer label is the
end of the file.

The trai1er label is otherwise identical to the header label except for a block count field. The
system counts the blocks as it writes them and stores the total in the trailer label.
Subsequently, when reading the reel, the system counts the blocks and checks its count
against the number stored in the trailer label.

IOCS FOR MAGNETIC TAPE
The system (IOCS for DOS and Data Management for OS) performs the following
functions for input and for output.

Reading a Tape File
The processing for reading a tape file is as follows:

1. Processing the Volume Label. On OPEN, IOCS reads the volume label and
compares its serial number to that on the TLBL or DD job control entry.

2. Processing the Header Label. IOCS next reads the header label and checks that
the file identification agrees with that on the job control entry to ensure that it is
reading the correct file. For a multivolume file, the volume sequence numbers
are normally in consecutive, ascending. sequence.

3. Reading Records. The GET macro reads records, specifying either a work area or IOREG.
If the tape records are unblocked, each GET reads one record (a block) from tape into
storage. If records are blocked, IOCS performs the required deblocking.

4. End-of-Volume. If IOCS encounters the end-of-volume label before the end–of–file
(meaning that the file continues on another reel), IOCS checks that the block count is correct.
It rewinds the reel, opens a reel on an alternate tape drive, checks the labels, and resumes
reading this new reel.

5. End-of-File. Each GET operation causes IOCS to transfer a record to the work area. Once
every record has been transferred and processed and you attempt to perform another GET,
IOCS recognizes an end-of-file condition. It then checks the block count, (usually) rewinds
the reel, and transfers control to your end-of-file address designated in the DTFMT or DCB
macro. You should now CLOSE the tape file. To attempt further reading of a rewound tape
file, you must perform another OPEN.

Writing a Tape File
The processing for writing a tape file is as follows:

1. Processing the Volume Label. On OPEN, IOCS checks the volume label (VOL) and
compares its serial number to the serial number (if any) on the job control entry.

2. Processing the Header Label. IOCS next checks the header label for the expiration date. If
this date has passed, IOCS backspaces the tape and writes a new header (HDR) over the old
one, based on data in job control. If this is a multivolume file, IOCS records the volume
sequence number for the volume. It then writes a tape mark.

S/370 Assembler External Storage

Page 457 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

3. Writing Records. If the tape records are unblocked, each PUT writes one record (a block)
from tape into storage. If records are blocked, IOCS performs the required blocking.

4. End-of-Volume. If10CS detects the end-of-tape marker near the end of the reel, it writes
an EOV trailer label, which includes a count of all blocks written, followed by a tape mark.
Since the reflective marker is on the opposite side of the tape, data may be recorded through
its area. If an alternate tape drive is assigned, IOCS opens the alternate volume, processes its
labels, and resumes writing this new reel.

5. End-of-File. When a program closes the tape file, 10CS writes the last block of data, if
any. The last block may contain fewer records than the blocking factor specifies. IOCS then
writes a tape mark and an EOF trailer label with a block count. Finally, IOCS writes two tape
marks and deactivates the file from further processing.

DISK STORAGE
A direct access storage device (DASD), which includes magnetic disk storage and the less
common drum storage, is a device that can access any record on a file directly. Diskettes, a
common and familiar storage medium on micro- and minicomputers, store data in a similar
manner. This section describes the details of the larger magnetic disk devices used in data
processing installations. (ELB: Basically, a DASD is any device that can be addressed and
used as if it were a disk. Today, this might include USB Drives, which are formatted as disks
in order to facilitate their portability among computer systems. A CD–ROM, though called a
disk, is formatted and accessed more like a magnetic tape; it is not a DASD.

Historically, the first DASD built was a magnetic drum memory, which was invented in 1932
for use in early calculating machines. A drum is a large metal cylinder that is coated on the
outside surface with a ferromagnetic recording material. This surface is divided into parallel
tracks, each of which would resemble a circle, or line that encircles the cylinder. A row or
read–write heads runs along the axis of the drum, one for each track.

The figure below shows magnetic drums from two commercial firms, IBM and UNIVAC.
The magnetic drum on the left is one for the IBM 650, from about 1954. This drum was four
inches in diameter, 16 inches long, and stored 2,000 10–digit numbers (possibly 20 KB).
The drum rotated at 12,500 rpm. The drums on the right are probably variants of the Model
1124, made by UNIVAC beginning in about 1953. These would store between 18 KB and
36 KB on 133 to 270 parallel tracks. The picture on the right probably dates to 1958.

Figure 25–5 Magnetic Drum Memories

S/370 Assembler External Storage

Page 458 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The “golden era” of magnetic drum memories seems to have begun in the early 1950’s, when
they replaced the smaller and much more fragile Williams–Kilburn tubes, to the middle of
the 1960’s, when magnetic disk technology as we know it became more cost effective. The
technology persisted because it was useful; as late as 1980, PDP–11/45 computers that used
drums for swapping (management of virtual memory) were still in use.

The first commercial disk drive seems to have been the IBM 350, an integral part of the IBM
RAMAC 305 System (Random Access Method for Accounting and Control) introduced in
1956. The figure below shows two views, one showing the mechanism of the disk drive
itself and one showing the IBM 350 as a part of the RAMAC 305. The RAMAC disk had
fifty aluminum disks, each twenty–four inches in diameter. Its total storage capacity was
variously quoted at either 4.4 MB or five million characters. The disks spun at 1200 rpm,
yielding an average latency of 1/20 second), and transferred data at 8,800 characters per
second. According to IBM, the disk would store the equivalent of 64,000 punched cards.
The standard punched card of the time was the IBM 5081, which was usually 0.007 inches
thick. Thus the system would store about the same amount of data as 37 feet of cards, as
64,000 0.007 = 64,000 7/1000 = 64 7 = 448 inches = 37 feet, 4 inches.

Figure 25–6 Two Views of the IBM RAMAC: IBM 305 and IBM 350

Each disk storage device contains a number of thin circular plates (or disks) stacked one on
top of the other. Both sides of each plate (except the outer top and bottom on some devices)
have a coat of ferrous oxide material to permit recording. (ELB: Before the introduction of
the IBM “Winchester technology” in 1973, disk packs were often removed from the disk
drives. This resulted in possible damage to the outer top and outer bottom recording surface,
which were not used in order to avoid data corruption. A disk pack with six platters, as
shown in the figure below, would have either ten or twelve recording surfaces.

I have decided to include more on the history of this disk drive. This was officially named
the IBM 3340 Direct Access Storage Facility, but unofficially named “Winchester”. The
early design focused on two removable 30 megabyte disk modules; the name was selected
after the famous Winchester 30–30 rifle. The design was changed, but the code name stuck.
The significance of this technology was it was the first to package the disk packs, read heads,
and read arm assembly in a sealed unit that could be removed as a single module. With
reduced possibility of contamination of the recording surfaces of the disk, it became possible
to increase recording densities and use all of the available surfaces. The
IBM 3340 was introduced in March 1973 for use with the IBM System/370.)

S/370 Assembler External Storage

Page 459 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

As Fig. 25–7 shows, each disk contains circular tracks for storing data records as magnetized
bits. Each track contains the same number of bits (and bytes) because the bits are spaced
more closely together on the innermost tracks. (ELB: Modern designs partition the surface
into a number of zones. Within each zone, each track contains the same number of bytes, but
tracks in an outer zone contain more bytes than those in an inner zone.)

Figure 25–7 Disk Surface and Tracks

The disks are constantly rotating on a vertical shaft. As Fig. 25–8 shows, the disk device has
a set of access arms that move read/write heads from track to track. The heads read data
blocks from a disk track into main storage and write data blocks from main storage onto a
disk track. Because the disks spin continually, the system has to wait for a required data
block to reach the read/write heads. (ELB: Note that this configuration does not use the top
surface of the top platter or the bottom surface of the bottom platter; it has six platters and ten
recording surfaces. A Winchester unit would use all twelve surfaces.)

Figure 25–8 Disk read/write mechanism (Non Winchester)

Disk storage devices permit processing of records both sequentially and randomly (directly).
As a result, programs can read unsorted records from a transaction file and use them to
randomly update matching master records on disk. Disk storage therefore facilitates online
processing where users can at any time make inquiries into a file and can enter transactions
for updating as they occur.

(ELB: There are two factors of importance when considering a disk: maximum transfer rate
and disk access times. The maximum transfer rate is computed simply: it is the number of
bytes on a disk track divided by the time to read the entire track. Consider a disk rotating at
15,000 rpm, or one revolution every 1/250 = 0.004 second. If the track holds 4 MB of data,
the transfer rate is 4MB /0.004 second = 1 GB/second.

S/370 Assembler External Storage

Page 460 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Times of importance when assessing disk speed, the average latency and the track access
time, commonly called “seek time”. The latency is computed as the time for the disk to spin
one half of a turn; if the read/write heads are on the correct track, this is the average wait time
for the desired sector to rotate under the heads. For example, a disk rotating at 12,000 rpm
would make 200 revolutions per second. This corresponds to 5 milliseconds per revolution
or an average latency of 2.5 milliseconds.

The track access time is that time to move the heads from one track to another. Remember
that each disk surface is divided into a number of concentric circles, called tracks. There are
two times routinely quoted: move to next track, and move to average track. The first is the
time to move the read/write heads to an adjacent track; the second is the average time to
move from any one track to any other track. The two measures typically yield similar values,
with 2 milliseconds being seen in high–end servers, and 15 milliseconds being common for
standard servers. Common systems quote an average seek time of 9 milliseconds.

The final topic in this aside is the concept of a cylinder. It is best defined by illustration.
Consider Figure 25–8 above, in which the disk drive is shown as having ten usable recording
surfaces. The read/write heads move as a unit, so that a single move places each of the ten
heads on a specific track on its recording surface. The collection of these tracks is called a
cylinder. The cylinder, comprising one track per recording surface, is the set of all disk
sectors that can be read without physically moving the read/write heads.)

Disk Format
The amount of data that a disk device can store varies considerably by model, ranging from
small disks with a few million bytes to large disks with more than one billion bytes. Some
disk models use fixed-length sectors on each track to store one or more records; the system
addresses a record by disk number, track number, and sector number. On other disk models,
tracks are not sectored, and records may be of almost any length; the system addresses
records by disk surface number and track number.

Like magnetic tape, disk storage contains gaps between one block of data and the next, but
the size of the gap is greater on the outermost tracks and smaller on innermost tracks. You
may also store records on disk as unblocked or blocked. However, because of the fixed
capacity of a disk track, the optimum blocking factor depends on the record length and track
capacity. Special formulas are available for calculating optimum blocking factors for
different disk devices.

(ELB: The design suggested in Figure 25–7 calls for each track to hold the same number of
bits. More specifically, every track holds the same number of sectors, and each sector holds
the same number of bits. The sectors, hence bits, are more densely packed on the inner
tracks than the outer tracks, which have greater linear circumference. Thus, the linear
density is specified by the maximum density allowable on the innermost track; the outer
tracks may be viewed as being “under–populated”. Having a fixed number of sectors per
track greatly simplifies the design of the disk controller, but leads to excess unused capacity.

A more modern design divides the tracks into a number of zones, each holding a number of
tracks with the same number of sectors per track. However, an outer zone will have more
sectors per track than an inner zone. This allows more efficient use of the linear density of
each of the zones, while allowing for a relatively simple disk controller.)

S/370 Assembler External Storage

Page 461 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Figure 25–9 Multiple Zones Increase Disk Density

In the above figure, the disk surface is divided into three zones, each zone having a constant
number of sectors per track contained. This allows a better use of linear track density, while
maintaining a reasonably simple disk controller.)

As a simplified example, consider a file containing 1,000–byte records and a disk track with
a capacity of 10,000 bytes. If the blocking factor is 5, one block is 5,000 bytes and you can
store two blocks (ten records) on a track. If the blocking factor is 6, one block is 6,000 bytes
and a track has space for only one block (six records).

The storage of data on disk begins with the top outermost track (track 0) and continues
consecutively down, surface by surface, through to the bottom outermost track. Storage of
data then continues with the next inner set of tracks (track 1), starting with the top track
through to the bottom track. The set of vertical tracks is known as a cylinder. As a result, for
sequential processing the system reduces access motion of the read/write heads: It reads and
writes blocks, for example, on track 5 of every surface (cylinder 5) before moving the arm.

DISK ARCHITECTURE
The two main types of IBM disk devices are count–key–data (CKD) architecture and
fixed–block architecture (FBA). (ELB: There is an interesting design compromise that
appears on later disks, such as more recent implementations of the IBM 3390 that continue to
use the CKD architecture. The newer devices implementing the 3390 architecture are
actually large RAID (Redundant Array of Independent Disks) arrays, each of which
implements the FBA architecture that is common among disks for commodity computers,
such as the Intel x86 and Intel Pentium servers that are quite common.

The 3390 controller has an interface that allows it to appear to the Mainframe Computer
(such as a z/11) as a CKD architecture while actually using FBA devices, which are very
reliable, but commodity market, and therefore less expensive. This design choice shows how
IBM has evolved to maintain its architecture while using commodity items.)

CKD Architecture
In this design, records and blocks may be of almost any length, subject to limitations of the
disk device. A count (C) area contains the block size and an optional key (K) area contains
the key of the last record in the block, both of which precede the actual data (D) area; hence
CKD. If a disk contains 20 surfaces, the outer set of tracks (all track 0) is called cylinder 0,
the next inner vertical set of tracks is cylinder 1, the next is cylinder 2, and so forth. If the
device contains 200 sets of tracks, there are 200 cylinders numbered 0 through 199, each
with 20 tracks. If a disk contains 20 surfaces, each cylinder contains 20 tracks. If the disk
contains 200 cylinders, then each surface contains 200 sets of tracks.

S/370 Assembler External Storage

Page 462 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Examples of disk devices using CKD architecture include IBM models 3330, 3340, 3350,
and 3380. The basic format for a track on a CKD device is

Index Point Home Address Track Descriptor
Record

Data
Record (R1)

Data
Record (R2)

(a) (b) (c) (d)

(a) Index Point. The index point tells the read/write device that this point is the physical
beginning of the track.

(b) Home Address. The home address tells the system the address of the track (the cylinder,
head, or surface number) and whether the track is primary, alternate, or defective.

(c) Track Descriptor Record (R0). This record stores information about the track and
consists of two separate fields: a count area and a data area. The count area contains 0 for
record number and 8 for data length and is otherwise similar to the count area described next
for data record under item (d). The data area contains 8 bytes of information used by the
system. The track descriptor record is not normally accessed by user programs.

(d) Data Record Formats (Rl through Rn). The users' data records, or technically, blocks,
consist of the following:

Address Count Key Data
Marker Area Area Area

(optional)

The I/O control unit stores the 2-byte address marker before each block of data, which it uses
subsequently to locate the beginning of data. The count area includes the following:

• An identifier field that provides the cylinder and head number (like that in the home
address) and the sequential block number (0-255) in binary, representing R0 through
R255. (The track descriptor record, R0, contains 0 for record number.)

• The key length (to be explained shortly).

• The data length, a binary value 0 through 65,535 that specifies the number of bytes in the
data area field (the length of your data block). For end–of–file, the system generates a
last dummy record containing a length of 0 in this field. When the system reads the file,
the zero length indicates that there are no more records.

• The optional key area contains the key, or control field, for the records in the file, such
as part number or customer number. The system uses the key area to locate records
randomly. If the key area is omitted, the file is said to be formatted without keys and is
stored as count-data format. The key length in the count area contains O. If the file is
formatted with keys, it is stored as count-data format. The key length in the count area
contains the length of the key area.

• The data area contains the users' data blocks, in any format, such as unblocked or blocked
and fixed or variable length. The system stores as many blocks on a track as possible,
usually complete and intact on a track. A record overflow feature permits the overlapping
of a record from one track to the next. Figure 25–10 provides the capacities and speeds
of a number of IBM CKD devices.
Figure 25–11, added in 2009, shows more modern disks.

S/370 Assembler External Storage

Page 463 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Under normal circumstances, you won't be concerned with the home address, the track
descriptor record, or the address marker, count area, and key area portions of the data record
field. You simply provide appropriate entries in your file definition macros and job control
commands.

Figure 25–10 Capacity Tables for CKD Devices

Figure 25–11 DASD Speeds and Data Rates, November 2009

Fixed–Block Architecture
In this design, the recording tracks contain equal–length blocks of 512 bytes, although your
records and blocks need not fit a sector exactly. (ELB: This is the format commonly
used by MS–DOS and MS–Windows file systems).

Device Bytes/block Blocks/track Number of
Cylinders

Tracks per
Cylinder

Total
Bytes

3310 512 32 358 11 64, 520, 192
3370 512 64 2 of 750 12 571, 392, 000

S/370 Assembler External Storage

Page 464 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Disk Capacity
Knowing the length of records and the blocking factor, you can calculate the number of
records on a track and on a cylinder. Knowing the number of records, you can also calculate
the number of cylinders for the entire file. Based on the values in Figure 25–12, the formula
for the number of blocks of data per track is

In the formula, C is a constant overhead value for keyed records, KL means Key Length, and
DL is Data (Block) Length. These values vary by disk device, as shown below.

Figure 25-12 Track Capacity Table

The following two examples illustrate.

Example 1: Device is a 3350, records are 242 bytes, five records per block,
(block size = 1,210), and formatted without keys.

Example 2: Same as Example 1, but formatted with keys (key length is 12).

Note that a disk stores a full block, not a fraction of one. Therefore, even if you calculate
13.8 or 12.9 blocks per track, the disk stores only 13 or 12 blocks, respectively.

To determine the number of records on a cylinder, refer to Fig. 25–10, which discloses that a
3350 has 30 tracks per cylinder. Based on Example 1 where the number of records per track
is 65, a cylinder on the 3350 could contain 65 x 30 = 1,950 records.

Using these figures, you can now calculate how much disk storage a file of, say, 100,000 of
these records would require. Based on the figure of 1,950 records per cylinder, the file would
require 100,000 1,950 = 51.28 cylinders.

DISK LABELS
Disks, like magnetic tape, also use labels to identify a volume and a file. The system reserves
cylinder 0, track 0 for standard labels, as Fig. 25–13 shows.

S/370 Assembler External Storage

Page 465 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The following describes the contents of track 0:

Record 0: The track descriptor, R(0) record.

Records 1 and 2: If the disk is SYSRES, which contains the operating system, certain
devices reserve R(l) and R(2) for the Initial Program Load (IPL) routine.
For all other cases, R(l) and R(2) contain zeros.

Record 3: The VOL1 label. OS supports more than one volume label, from
R(3) through R(10).

Record 4 through the end of the track: The standard location for the volume table of
contents (VTOC). The VTOC contains the file labels for the files on the device. Although
you may place a VTOC in any cylinder, its standard location is cylinder 0, track 0.

Figure 25–13 Disk Volume Layout

Volume Labels
The standard volume label uniquely identifies a disk volume. A 4–byte key area immediately
precedes the 80–byte volume data area. The volume label is the fourth record (R3) on
cylinder 0. The 80 bytes are arranged like a tape volume label, with one exception: Positions
12-21 are the "data file directory," containing the starting address of the VTOC.

File Labels
File labels identify and describe a file, or data set, on a volume. The file label is 140 bytes
long, consisting of a 44–byte key area and a 96–byte file data area. Each file on a volume
requires a file label for identification. In Fig. 25–13, all file labels for a volume are stored
together in the VTOC. There are four types of file labels:

1. The format 1 label is equivalent to a file label on tape. The format 1 label differs, however,
in that it defines the actual cylinder and track addresses of each file's beginning and end (its
extent). Further, a file may be stored intact in an extent or in several extents in the same
volume. Format 3 is used if a file is scattered over more than three extents.

2. The format 2 label is used for indexed sequential files.

3. The format 3 label is stored if a file occupies more than three extents.

4. The format 4 label is the first record in the VTOC and defines the VTOC for the system.

S/370 Assembler External Storage

Page 466 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The format 1 file label contains the following information:

Position Name Description
01 – 44 File Identification Unique identifier consisting of the file ID, optional

generation number, and version number. These fields
are separated by periods.

45 Format Identifier ‘1’ for format 1
46 – 51 File Serial Number Volume serial number from the volume label.
52 – 53 Volume sequence

number
Sequence number if the file is stored on
more than one volume.

54 – 56 Creation date Three bytes: ydd. y = year (0 – 99) and
dd = day (1 – 366). Not Y2K compliant

57 – 59 Expiration date Same as format for creation date.
60 Extent count

number
Number of extents for this file on this volume.

61 Bytes in last block
of directory

Used by OS.

62 Unused Reserved
63 – 75 System code Name of the operating system (OS)
76 – 82 Unused Reserved
83 – 84 File Type Code to identify is SD (sequential), DA (direct),

or IS (indexed) file organization.
85 Record Format Used by OS
86 Option Codes ISAM – indicates if master index is

present and type of overflow area.
87 – 88 Block Length ISAM – length of each block.
89 – 90 Record Length ISAM – length of each record.

91 Key Length ISAM – length of key area.
92 – 93 Key Location ISAM – position of key within the record

94 Data Set
Indicators

SD – indicates if last volume

95 – 98 Used by OS None of your business.
99 – 103 Last record pointer Used by OS
104 – 105 Unused Reserved

106 Extent type
107 Extent sequence

number
108 – 111 Extent lower limit
112 – 115 Extent upper limit

Descriptors for the first or only
extent for the file. Ten bytes.

116 – 125 Descriptors for a second extent. Same format
as the firs extent, described in positions 106 – 115.

126 – 135 Descriptors for a third extent. Same format as above.
136 – 140 Pointer Address of the next label.

S/370 Assembler External Storage

Page 467 Chapter 25 Revised January 5, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

KEY POINTS
• Sequential file organization provides only for sequential processing of records. Indexed and

direct organization provides for both sequential and random processing of records.

• At the beginning of the tape reel is a volume label, which identifies the reel being used.
Immediately preceding each file on the tape is a header label, which contains the name of
the file and the date the file was created. Following the header label are the records that
comprise the data file. The last record is a trailer label, which is similar to the header label
but also contains the number of blocks written on the reel.

• To keep track of all the files it contains, a disk device uses a special directory (volume table
of contents, VTOC) at the beginning of its storage area. The directory includes the names
of the files, their locations on disk, and their present status.

• If you define a tape or disk field as packed on an IBM system, the field contains
two digits per byte plus a half-byte for the sign.

• The set of vertical tracks on a disk device is known as a cylinder.

• An interblock gap (IBG) separates each block of data from the next on tape and disk. The
length of an IBG on tape is 0.3 to 0.6 inches depending on the device, and the length of an
IBG on disk varies by device and by track location. The IBG defines the start and end of
each block of data and provides space for the tape when the drive stops and restarts for
each read or write.

• Blocking of records helps conserve space on storage devices and reduces the number of
input/output operations. The number of records in a block is known as the blocking factor.

• The system reads an entire block into the computer's storage and transfers one record
at a time to the program.

• All programs that process a file should use the same record length and blocking factor.

• Records and blocks may be fixed in length, where each has the same length throughout the
entire file, or variable in length, where the length of each record and the blocking factor
are not predetermined.

• The two main types of disk devices are count-key-data (CKD) architecture, which stores
records according to count, key, and data area, and fixed-block architecture (FBA), which
stores data in fixed-length blocks.

