
Page 437 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Chapter 24: Some Compilation Examples

In this chapter, we shall examine the output of a few compilers in order to understand the
assembler language code emitted by those compilers. We study this assembler code in order
to understand the structure of compilers and gain a deeper understanding of how to use them.

The high–level languages to be considered in this chapter are mostly the older and less used
languages, such as FORTRAN and COBOL. The reason for this choice is that they are easier
to discuss and do make the points that are the focus of this chapter.

Variable Type
We start with an immediate distinction between high–level languages and assembler
language, and then proceed to investigate the implications. The simple, true, and important
statement that forms the basic of this chapter is quite simple. Here it is.

Compiled languages use variables; assembler language does not.

Put another way, this chapter focuses on the simple question “What is a variable, and why is it
not proper to assume that an assembler language does not use variables?” In order to study
this, we must first discuss the idea of labels as used by an assembler and see how these labels
are generalized into variables as used by a high–level compiled language.

Assembler language evolved from machine language, which at its basic form is represented as
a sequence of binary numbers. Most discussions of machine language employ hexadecimal
notation (as pure binary is hard to read) and move towards Assembler Language by
substituting mnemonics for binary (or hexadecimal) operation codes. We shall use this hybrid
notation in order to investigate the use of labels by Assembler Language.

In our earlier discussions of IBM 370 Assembler Language, we have mentioned the idea of
labels and explained their usage. In this discussion of labels, we shall find it a bit easier to
first discuss them within the context of an extremely simple (and fictional) assembly
language, such as that for the MARIE, developed by Linda Null and Julia Lobur for their
excellent textbook The Essentials of Computer Organization and Architecture. This book
is published by Jones and Bartlett (Sudbury, MA). The version used as the basis for these
notes was published in 2003, with ISBN 0 – 7637 – 2585 – 4.

The MARIE is a single accumulator design, with a very simple instruction set. This single
accumulator holds the results of any input operation, as well as the results of any load from
memory or arithmetic operation. Here is a table describing the basic instruction set, copied
from the textbook by Null and Lobur.



S/370 Assembler Examples from Compiled Languages

Page 438 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

The MARIE uses 16–bit words, and has 16–bit instructions. The instructions have a uniform
4–bit operation code and possibly 12 bits for operand address; one hexadecimal digit to
denote the operation and three hexadecimal digits to denote the address.. While this
architecture is extremely restrictive, it suffices to present an excellent example of a stored
program computer. More to the point, it exactly illustrates the points important to this
chapter. For this reason, our early examples are based on the MARIE.

Consider now the following simple program written in MARIE assembler language. Note
that these notes assume that anything following “//” in a line is a comment; in this way it
follows the syntax of Java, C++, and possibly the MARIE assembler.

LOAD X // Value in X is placed into the accumulator
ADD Y // Add value in Y to that in the accumulator
STORE Z // Store value into location Z.
HALT // Stop the computer.

In a FORTRAN program, the equivalent statement would be Z = X + Y.

In order to understand the point of this chapter, we must give a plausible machine language
rendition of the above simple assembler language program. In order to read this, we must
recall the following operation codes, which are each single hexadecimal digits.

0x1 LOAD
0x2 STORE
0x3 ADD
0x7 HALT

Here is the machine language program, rendered with hexadecimal digits. While comments
never form a part of a machine language program, your author indulges himself a bit here.

1402 // Load the accumulator from address 0x402
3404 // Add the contents of address 0x404
2406 // Store the results into address 0x406
7000 // Stop the computer. The contents of the right

// three digits, here “000”, are irrelevant.

In the very first era of computer programming (late 1940’s), the above machine language
program was the standard. The programmer had to reserve specific addresses in the memory
for data storage, and be sure that these were properly used. This became tedious very quickly.
Almost immediately, assembler language (also called “assembly language”) was developed
and used. The first use was to allow programmers to identify storage locations by label and
have the assembler allocate addresses to these labels.

If the assembler is to allocate memory to these labels, the question of how much storage for
each symbol immediately suggests itself. More specifically, each label is supposed to denote
storage for some sort of data. How much storage is required?

The basic integer storage in the MARIE architecture is a 16–bit integer; this corresponds to
the halfword fixed–point binary in IBM 370 Assembler Language. For this reason, I elect to
extend the MARIE assembler language to use IBM–style data definitions. Also, I am using
byte addressability, though the MARIE is word addressable, in order to make the 16–bit word
addresses more similar to the IBM halfword addresses.



S/370 Assembler Examples from Compiled Languages

Page 439 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

The assembler language program above might now be written in the following way.

LOAD X // Value in X is placed into the accumulator
ADD Y // Add value in Y to that in the accumulator
STORE Z // Store value into location Z.
HALT // Stop the computer.

X DS H // Sixteen bits (two bytes) for label X
Y DS H // Sixteen bits (two bytes) for label Y
Z DS H // Sixteen bits (two bytes) for label Z

Look again at the raw machine code, written in hexadecimal. Assuming a load address of
0x100 (hexadecimal 100) for the code, the two fragments might resemble the following.

100 1402 // Load the accumulator from address 0x402
102 3404 // Add the contents of address 0x404
104 2406 // Store the results into address 0x406
106 7000 // Stop the computer.

More stuff

402 0000 // Two bytes associated with label X
404 0000 // Two bytes associated with label Y
406 0000 // Two bytes associated with label Z

In the early days of computer programming, one might write assembler in the fashion above
or in the IBM Assembler Language equivalent (to be used below), but one then needed to
decide on the storage allocation and convert everything to binary by hand.

The idea of an assembler that processed a slightly–higher–level language dates at least to the
late 1940’s (with the EDSAC), and probably predates that. The two main features of early
assembler languages both related to the interpretation of symbols, as either:

1. Operation labels to be translated into opcodes, or
2. Labels that were to identify addresses, either of data or locations in the code.

Most early assemblers used two passes. The first pass would identify the symbols and the
second pass would generate the machine language. Consider again the above code.

LOAD X // Value in X is placed into the accumulator
ADD Y // Add value in Y to that in the accumulator
STORE Z // Store value into location Z.
HALT // Stop the computer.

// More code here.

X DS H // Sixteen bits (two bytes) for label X
Y DS H // Sixteen bits (two bytes) for label Y
Z DS H // Sixteen bits (two bytes) for label Z

The first pass would identify the tokens (LOAD, ADD, STORE, and HALT) as instructions. It
would identify the labels (X, Y, and Z) as being associated with addresses. It is important to
note what the assembler will not do.



S/370 Assembler Examples from Compiled Languages

Page 440 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Consider the processing of the three data definitions. In following the process, we need to
note what information the assembler can be considered to store in its symbol table, and how
it processes the explicit length for each type. Each declaration calls for two bytes.

The first pass of the assembler is based on a value called the location counter (LC). The
assembler assumes a start address (which will be adjusted by the loader), and allocates storage
for each instruction and data item relative to this start address. The above example is repeated
here, to show how the LC would be used if byte addressing were in use.

100 1402 // Load the accumulator from address 0x402
102 3404 // Add the contents of address 0x404
104 2406 // Store the results into address 0x406
106 7000 // Stop the computer.

The convention calls for the first instruction to be assigned to location 0x100. Remember that
all numbers in this discussion are shown in hexadecimal format. This instruction has a length
of two bytes, so it will occupy addresses 0x100 and 0x101.

The second instruction is to be placed at location 0x102. It also has two bytes.

The third instruction is to be placed at location 0x104, and the fourth at 0x106.

We assume that more code follows, so that by the time the labels (X, Y, and Z) are read, the
location counter has value 0x402; the next item is to be placed as address 0x402. Recall the
declarations, each of which states how many bytes are to be set aside.

X DS H // Sixteen bits (two bytes) for label X
Y DS H // Sixteen bits (two bytes) for label Y
Z DS H // Sixteen bits (two bytes) for label Z

Label X is associated with address 0x402. It calls for an allocation of two bytes, so that
the 16–bit number will be stored in bytes 0x402 and 0x403. The next available
location is 0x404.

Label Y is associated with address 0x404, and label Z is associated with address 0x406. The
address for each is generated by allowing the proper storage for the preceding label. After
this much of the assembler process, we have the following symbol table.

Label Address
X 0x402
Y 0x404
Z 0x406

But note that the table does not carry any information on the length of the storage space
allocated to each symbol, much less any on its data type. The only use made of the data
definitions is in the placement of the next label. Specifically, there is no indication of the
types of operations that are appropriate for data contained in these locations; the one writing
the program is responsible to see to that and to use only those operations that are appropriate.

The idea of a variable, as used in a higher level language, comprises far more information
than just the location to be associated with the data. It includes the type, which dictates not
only the size of the storage space, but also the operations appropriate for the data.



S/370 Assembler Examples from Compiled Languages

Page 441 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Most high–level languages specify that each variable has a type associated. Early languages,
such as FORTRAN allowed the variable type to be explicit in the name. Names that began
with the letters I, J, K, L, M, or N were implicitly integers, the rest were implicitly single
precision floating point numbers. Explicit type declaration was available, but little used.

Experience in software engineering caused explicit data typing to take hold; a variable could
not be used until it had been explicitly declared and given a data type. The reason for this
change in policy can be seen in the following fragment of old–style FORTRAN code, which
represents a part of a commercial program that had been in use six years before the problem
was found. Folks, this was your defense dollars at work.

SUBROUTINE CLOUDCOLOR (LAT, LONG, C1, C2, C3)
C FIRST GET THE CLOUD COVER DENSITY

DENSITY = CLOUDDENSITY (LAT, L0NG)
C NOW GET THE COLOR OF THE REFLECTED LIGHT

GETCOLOR (DENSITY, C1, C2, C3)
RETURN

Before reading the explanation of the problem, the reader should attempt to scan the code
above and discover the problem. Code such as this would compile under the old FORTRAN,
and is unusual only for having comments (denoted by the “C” in column 1). While there is no
explicit variable typing, none was required. Variables beginning with “L” were integers and
those beginning with “C” and “D” were real numbers. This was as intended by the design.

This is a map–oriented problem. The variable “LAT” appears to reference a latitude (in
degrees) on a map, and is actually supposed to do so. But note the reference to longitude on
the map. It appears to be denoted by “LONG”, but a careful reader will note that there are
two variables associated longitude; these are “LONG” and “L0NG”. Reader, be honest. Did
you really note the two spellings, one with the letter “O” and the other with the digit “0”?

Within the context of a FORTRAN subroutine, the appearance of a variable as an argument in
the line defining the subroutine immediately gives it a definition. Thus, the appearance of the
variable LONG in the first line implicitly declared it as an integer and made it useable.

What about the stray variable L0NG? The semantics of older FORTRAN allowed a variable
to be declared by simple use. On first occurrence, it was initialized to a variant of zero and all
further use would develop that value. In the code fragment paraphrased above, there was only
one use of “L0NG”, which occurred in the call to the cloud map. So, while the simulation was
attempting to compute cloud covers and spectral densities over the mid Pacific, it was always
returning the data for either London or a location in Western Africa (Longitude = 0).

The problem, as noted above, could have been avoided by use of the cross reference map
provided by every FORTRAN compiler; indeed it was this tool that was used to find it. This
map has a list of every variable name and other label used in a module (program, subroutine,
or function), the line at which it was defined or assigned a value, and every line in which it
was used. Reading such a listing was tedious; most programmers did not do it. Had our
programmer read it, she would have discovered entries similar to the following.

L0NG 3*
LONG 1*



S/370 Assembler Examples from Compiled Languages

Page 442 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

In the above subroutine, with the incorrectly spelled “L0NG” replaced by “LONG”, the symbol
table would have an appearance that might be interpreted to contain the following.

Label Data Type Storage Address
C1 Single Float 4 bytes Some value
C2 Single Float 4 bytes Some value
C3 Single Float 4 bytes Some value

DENSITY Single Float 4 bytes Some value
LAT Integer 2 bytes Some value
LONG Integer 2 bytes Some value

It is the appearance of this type of symbol table, along with a data type reference for each of
the labels, that causes the appearance of true variables in a program as opposed to labels.
Once a label has been explicitly declared (and all proper declarations are now explicit), any
operation on that label will be appropriate for the data type. Put another way, the compiler
now has the responsibility for proper data typing; it has been taken from the programmer.

For the remainder of this chapter, we shall be using IBM 370 Assembler. The following
program is roughly equivalent to the MARIE code; the HALT has been removed.

LD 0,X LOAD REGISTER 0 FROM ADDRESS X
AD 0,Y ADD VALUE AT ADDRESS Y
STD 0,Z STORE RESULT INTO ADDRESS Z

More code

X DC D‘3.0’ DOUBLE-PRECISION FLOAT
Y DC D‘4.0’
Z DC D‘0.0’

The symbols LD, AD, and STD would be identified as assembler language operations, and
the symbol 0 would be identified as a reference to register 0. The S/370 had four floating
point registers, numbered 0, 2, 4, and 6. Each had a length of 64 bits, appropriate for double
precision floating point format. The symbols X, Y, and Z are declared as double precision
floating point, and each is initialized.

In the above fragments, we see two independent processes at work.

1) Use of data declarations to reserve space in memory to
be associated with labeled addresses.

2) Use of assembly code to perform operations on these data.

Note that these are inherently independent. It is the responsibility of the coder to apply the
operations to the correct data types. Occasionally, it is proper to apply a different (and
apparently inconsistent) operation to a data type. Consider the following.

XX DS D Double-precision floating point

All that really says is “Set aside an eight–byte memory area, and associate it with the symbol
XX.” Any eight–byte data item could be placed here, even a 15–digit packed decimal format.
(This is commonly done; check your notes on CVB and CVD.)



S/370 Assembler Examples from Compiled Languages

Page 443 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

To show what could happen, and commonly does in student programs, we rewrite the above
fragment, using some operations that are not consistent with the data types.

LD 0,X LOAD REGISTER 0 FROM ADDRESS X
AD 0,Y ADD VALUE AT ADDRESS Y
STD 0,Z STORE RESULT INTO ADDRESS Z

X DC E‘3.0’ SINGLE-PRECISION FLOAT, 4 BYTES
Y DC E‘4.0’ ANOTHER SINGLE-PRECISION
Z DC D‘0.0’ A DOUBLE PRECISION

The first instruction “LD 0,X” will go to address X and extract the next eight bytes. This
will be four bytes for 3.0 and four bytes for 4.0. The value retrieved, represented in raw
hexadecimal will be 0x4130 0000 4140 0000, which can represent a double–precision
number with value slightly larger than 3.0. Had X and Y been properly declared, the value
retrieved would have been 0x4130 0000 0000 0000.

Examples from a Modern Compiler
Consider the following fragments of Java code.

double x = 3.0; // 64 bits or eight bytes
double y = 4.0; // 64 bits or eight bytes
double z = 0.0; // 64 bits or eight bytes

// More declarations and code here.

z = x + y; // Do the addition that is
// proper for this data type.

// Here, it is double-precision
// floating point addition.

Note that the compiler will interpret the source–language statement
“z = x + y” according to the data types of the operands.

Here is more code, similar to the first fragment. Note the two data types involved.

float a = 3.0; // 32 bits or four bytes
float b = 4.0; // 32 bits or four bytes
float c = 0.0; // 32 bits or four bytes

double x = 3.0; // 64 bits or eight bytes
double y = 4.0; // 64 bits or eight bytes
double z = 0.0; // 64 bits or eight bytes

// More declarations and code here.

c = a + b; // Single-precision floating-point
// addition is done here

z = x + y; // Double-precision floating-point
// addition is done here

The operations “c = a + b” and “z = x + y” have no meaning, apart from the data
types recorded by the compiler.



S/370 Assembler Examples from Compiled Languages

Page 444 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

In order to elaborate the above claim that the operations have no meaning apart from the data
types, let us consider the assembler language that might be produced were the Java code
actually compiled on a S/370 and not interpreted by the JVM (Java Virtual Machine).

// c = a + b ;
LE 0,A Load single precision float
AE 0,B Add single precision float
STE 0,C Store single precision float

// z = x + y ;
LD 2,X Load double precision float
AD 2,Y Add double precision float
STD 2,Z Store double precision float

Note that, when possible, the compiler will avoid immediate reuse of registers, in an attempt
to keep as much data in local registers for later use. The code is more efficient, and is less
likely to give rise to “register spillage” in which the contents of a register are written back to
main memory. Memory reads and writes are time–consuming processes, each possibly taking
multiple tens of CPU clock cycles.

Modern compilers devote a large amount of computation to devising a register mapping
scheme (allocation of values to registers) that will minimize the register spillage in arithmetic
operations of moderate complexity. Consider the following example.

double v = 0.0, w = 0.0, x = 3.0, y = 4.0, z = 5.0 ;
w = x + y ;
v = x + y + z ;

The example below shows inefficient code of the type actually emitted by an early 1970’s era
compiler. The modern compiler keeps the sum x + y in register 0 and reuses it as a partial
sum in the next result x + y + z.

Older Compiler Modern Compiler

LD 0, X LD 0, X
AD 0, Y AD 0, Y
STD 0, W STD 0, W

LD 0, X
AD 0, Y
AD 0, Z AD 0, Z
STD 0, V STD 0, V

In the above example, code efficiency is obtained by retaining the partial sum “X + Y” in the
register and not repeating the two earlier assembly language instructions. Often times, in less
sophisticated compilers one may see code such as the following sequence.

STD 2, W Store the value
LD 2, W Now get the value back into the register.

Here we see the silliness of loading a register with a value that it must already contain. This
was the main flaw of the early simplistic compilers; each statement was treated individually.
Modern compilers are considerably more sophisticated.



S/370 Assembler Examples from Compiled Languages

Page 445 Chapter 24 Revised January 5, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Summary
The most obvious conclusion is that it is not appropriate to discuss assembler language code
in terms of variables. The name “variable” should be reserved for higher–level compiled
languages in which a data type is attached to each data symbol. The data type at least
indicates the amount of storage space to be associated with the label and what operations are
appropriate for use with it; the type may contain much more information.

Here is a brief comparison.

Assembler Compiled HLL
Data type Operation, as indicated by

the OP Code, such as A, AD,
AE, AP, etc.

Data declaration, which
determines the operations
applied to the data

Address Address
(Storage size) This is used in
Pass 1 of the Assembler, but
not kept for future use.

Storage size
Attributes of the label

Data type as declared

We closed this chapter with a brief discussion of compiler technology, focusing on the
simplicities of earlier compilers that lead to such inefficient code. As mentioned in the first
chapter of this textbook, some early compilers were very inefficient and considered each
statement of high–level code in isolation from all others. This lead to very inefficient
executable code, and encouraged the programmer to rewrite parts of the assembler code
emitted by the compiler in order to obtain acceptable performance.


