
Page 416 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Chapter 23: Some Issues from Systems Programming

In this chapter, we shall discuss a number of issues related to system programming. The
main topic of the chapter focuses on the support by the RTS (Run–Time System) for the style
of programming called recursion, in which a program can call itself as a subprogram. The
topics to be investigated include the following:

a) Recursive programming with an explicit stack.
b) Writing reentrant code and using it in systems programs.
c) String space and handling variable–length strings.
d) Double–indirect addressing and Dynamic Link Libraries.

Writing Recursive Subroutines
We note immediately that the IBM 370 does not directly support recursion, though later
revisions of the Assembler Language might. The purpose of this chapter is to use the stack
handling macros discussed in a previous chapter to implement simple recursive subroutines.

Recursion is a process that requires a stack, provided either explicitly or implicitly by the
RTS (Run Time System). In this chapter, we assume no native support for recursion, and
directly manage the call stack. The simple protocol has two steps.

Subroutine Call: Push the return address onto the stack
Branch to the subroutine

Subroutine Return Pop the return address into a register
Return to that address.

Other protocols provide for using the stack to transmit variables. We shall discuss those later
in this lecture. As our first example, we consider the subprogram NUMOUT.

NUMOUT: The Old Version

Here is the original code for the packed decimal version of NUMOUT.

NUMOUT CVD R4,PACKOUT CONVERT TO PACKED
UNPK THENUM,PACKOUT PRODUCE FORMATTED NUMBER
MVZ THENUM+7(1),=X’F0’ CONVERT SIGN HALF-BYTE
BR 8 RETURN ADDRESS IN R8

This is the calling sequence for NUMOUT, placed within its context.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
BAL 8,NUMOUT PRODUCE THE FORMATTED SUM
MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Note that the BAL instruction saves the address of the next instruction into R8
before the branch is taken. The saved return address is then used by the BR 8 instruction to
return from the subroutine.

Page 417 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

NUMOUT: The Newer Version
The newer version of NUMOUT will be written in the style required for recursive
subroutines, although it will not be recursive. This style requires explicit management of the
return address. This requires the definition of a label for the instruction following the call to
NUMOUT. For no particular reason, this statement is called NUMRET.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
LA 8,NUMRET STATEMENT AFTER NUMOUT
STKPUSH R8,R PLACE ADDRESS ONTO STACK
B NUMOUT BRANCH DIRECTLY TO NUMOUT

NUMRET MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Here is the new code for NUMOUT.

NUMOUT CVD R4,PACKOUT CONVERT TO PACKED
UNPK THENUM,PACKOUT PRODUCE FORMATTED NUMBER
MVZ THENUM+7(1),=X’F0’ CONVERT SIGN HALF-BYTE
STKPOP R8,R POP THE RETURN ADDRESS
BR 8 RETURN ADDRESS IN R8

Factorial: A Recursive Function
One of the standard examples of recursion is the factorial function. We shall give its
standard recursive definition and then show some typical code.

Definition: If N 1, then N! = 1
Otherwise N! = N(N – 1)!

Here is a typical programming language definition of the factorial function.

Integer Function FACT(N : Integer)

If N 1 Then Return 1
Else Return N*FACT(N – 1)

Such a function is easily implemented in a compiled high–level language (such as C++
or Java) that provides a RTS (Run Time System) with native support of a stack. As we shall
see, a low–level language, such as IBM 370 assembler, must be provided with explicit stack
handling routines if recursion is to be implemented.

Tail Recursion and Clever Compilers
Compilers for high–level languages can generally process a construct that is “tail recursive”,
in which the recursive call is the last executable statement. Consider the above code for the
factorial function.

Integer Function FACT(N : Integer)

If N 1 Then Return 1
Else Return N*FACT(N – 1)

Note that the recursive call is the last statement executed when N > 1.

Page 418 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

A good compiler will turn the code into the following, which is equivalent.

Integer Function FACT(N : Integer)
Integer F = 1 ; Declare a variable and initialize it
For (K = 2, K++, K <= N) Do F = F*K ;
Return F ;

This iterative code consumes fewer RTS resources and executes much faster.
NOTE: For fullword (32–bit integer) arithmetic, the biggest we can calculate is 12!

A Pseudo–Assembler Implementation with Problems
We want an implementation of the factorial function. It takes one argument and returns one
value. We shall attempt an implementation as FACTOR, with each of the argument and
result being passed in register R4 (my favorite). It might be called as follows.

L 4,THEARG
BAL 8,FACTOR

N1 ST 4,THERESULT

Pseudocode for the function might appear as follows.

If (R4 1) Then
L R4, = F’1’ SET R4 EQUAL TO 1

A1 BR 8 RETURN TO CALLING ROUTINE
Else

LR 7,4 COPY R4 INTO R5
S 4,=F’1’
BAL 8,FACTOR

N2 MR 6,4 MULTIPLY
A2 BR 8

This code works only for N 1.

Confusion with the Return Addresses
Suppose that FACTOR is called with N = 1. The following code executes.

L 4,=F’1’
BAL 8,FACTOR The first call to FACTOR

N1 ST 4,THERESULT

If (R4 1) then the function code is invoked. This is all that happens.

L R4, = F’1’ SET R4 EQUAL TO 1
A1 BR 8 RETURN TO CALLING ROUTINE

But note at this point, register 8 contains the address N1. Return is normal.

Suppose now that FACTOR is called with N = 2.

L 4,=F’2’
BAL 8,FACTOR PLACE A(N1) INTO R8

N1 ST 4,THERESULT

Page 419 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

This code is executed.

LR 7,4 COPY R4 INTO R5
S 4,=F’1’
BAL 8,FACTOR PLACE A(N2) INTO R8

N2 MR 6,4 MULTIPLY
A2 BR 8

The above call causes the following code to execute, as N = 1 now.

L R4, = F’1’ SET R4 EQUAL TO 1
A1 BR 8 RETURN TO CALLING ROUTINE

Here is the trouble. For N = 1, the return is OK.
Back at the invocation for N = 2. Compute 21 = 2.
Try to return to N1. But R8 contains the address N2.

The code is “trapped within FACTOR”. It can never return to the main program.

Outline of the Solution
Given the limitations of the IBM 370 original assembly language, the only way to implement
recursion is to manage the return addresses ourselves. This must be done by explicit use of
the stack. Given that we are handling the return addresses directly, we dispense with the
BAL instruction and use the unconditional branch instruction, B.

Here is code that shows the use of the unconditional branch instruction.
At this point, register R4 contains the argument.

LA R8,A94PUTIT ADDRESS OF STATEMENT AFTER CALL
STKPUSH R8,R PUSH THE ADDRESS ONTO THE STACK
STKPUSH R4,R PUSH THE ARGUMENT ONTO THE STACK
B DOFACT CALL THE SUBROUTINE

A94PUTIT BAL 8,NUMOUT FINALLY, RETURN HERE.

Note that the address of the return instruction is placed on the stack. Note also that the return
target uses the traditional subroutine call mechanism. In this example, the goal is to focus on
recursion in the use of the DOFACT subprogram. For NUMOUT, we shall use the standard
subroutine linkage based on the BAL instruction.

Proof of Principle: Code Fragment 1
Here is the complete code for the first proof of principle. The calling code is as follows.
The function is now called DOFACT.

LA R8,A94PUTIT ADDRESS OF STATEMENT AFTER CALL
STKPUSH R8,R PUSH THE ADDRESS ONTO THE STACK
STKPUSH R4,R PUSH THE ARGUMENT ONTO THE STACK
B DOFACT CALL THE SUBROUTINE

A94PUTIT BAL 8,NUMOUT FINALLY, RETURN HERE.

Page 420 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The first test case was designed with a stub for DOFACT. This design was to prove the
return mechanism. The code for this “do nothing” version of DOFACT is as follows.

DOFACT STKPOP R4,R POP RESULT BACK INTO R4
STKPOP R8,R POP RETURN ADDRESS INTO R8
BR 8 BRANCH TO THE POPPED ADDRESS

Remember: 1. STKPOP R4,R is a macro invocation.

2. The macros have to be written with a symbolic parameter as
the label of the first statement.

The Stack for Both Argument and Return Address
We now examine a slightly non–standard approach to using the stack to store both arguments
to the function and the return address. In general, the stack can be used to store any number
of arguments to a function or subroutine. We need only one argument, so that is all that we
shall stack.

Remember that a stack is a Last In / First Out data structure.

It could also be called a First In / Last Out data structure; this is seldom done.

Recall the basic structure of the function DOFACT. Here is the skeleton.

DOFACT
Use the argument from the stack
STKPOP R8,R POP RETURN ADDRESS INTO R8
BR 8 BRANCH TO THE POPPED ADDRESS

Since the return address is the last thing popped from the stack when the routine returns,
it must be the first thing pushed onto the stack when the routine is being called.

Basic Structure of the Function
On entry, the stack has both the argument and return address. On exit, it must have neither.
The return address is popped last, so it is pushed first.

On entry to the routine, this is the status of the stack. By “Stack Top”, I
indicate the location of the last item pushed.

At some point, the argument must be popped from the stack, so that the
Return Address is available to be popped.

STKPOP 8 Get the return address
BR 8 Go there

Note that the contents of the stack are not removed. This is in line with
standard stack protocol, though it might have some security implications.

Page 421 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

When Do We Pop the Argument?
The position of the STKPOP depends on the use of the argument sent to the function. There
are two considerations, both of which are quite valid. Assume that register R7 contains the
argument. We shall get it there on the next slide. Consider the fragment of code
corresponding to NFACT(N – 1).

FDOIT S R7,=F'1' SUBTRACT 1 FOR NEW ARGUMENT
LA 8,FRET GET THE ADDRESS OF RETURN
STKPUSH R8,R STORE NEW RETURN ADDRESS
STKPUSH R7,R NOW, PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSIVE CALL

FRET L R2,=F'0'

At this point, the return register (say R4) will contain FACT(N – 1).

At this point, the value of N should be popped from the stack and multiplied by the result
to get the result NFACT(N – 1), which will be placed into R4 as the return value. But recall
that the basic structure of the factorial function calls for something like:

STKPOP R7,R

If the value in R7 is not greater than 1, execute this code.

L R4,=F’1’ SET THE RETURN VALUE TO 1
STKPOP R8,R POP THE RETURN ADDRESS
BR 8 RETURN TO THE CALLING ROUTINE.

If the value in R7 is larger than 1, then execute this code.

FDOIT S R7,=F'1' SUBTRACT 1 FOR NEW ARGUMENT
LA 8,FRET GET THE ADDRESS OF RETURN
STKPUSH R8,R STORE NEW RETURN ADDRESS
STKPUSH R7,R NOW, PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSIVE CALL

FRET L R2,=F'0'

But, there is only one copy of the argument value. How can we pop it twice.
Answer: We push it back onto the stack.

Examining the Value at the Top of the Stack
Here is the startup code for the function DOFACT.

DOFACT L R2,=F'0'
STKPOP R7,R GET THE ARGUMENT AND EXAMINE
STKPUSH R7,R BUT PUT IT BACK ONTO THE STACK
C R7,=F'1' IS THE ARGUMENT BIGGER THAN 1
BH FDOIT YES, WE HAVE A COMPUTATION

This code fragment shows the strategy for examining the top of the stack without removing
the value: just pop it and push it back onto the stack. There is another common way of
examining the top of the stack. Many stack implementations use a function STKTOP, which
returns the value at the stack top without removing it. We shall not use this option.

Page 422 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

This is another valid option. That code could be written as follows.

DOFACT L R2,=F'0' SET R2 TO ZERO
STKTOP R7,R GET THE ARGUMENT VALUE
C R7,=F'1' IS THE ARGUMENT BIGGER THAN 1
BH FDOIT YES, WE HAVE A COMPUTATION

The Factorial Function DOFACT
Here is the code for the recursive version of the function DOFACT.

DOFACT STKPOP R7,R GET THE ARGUMENT AND EXAMINE
STKPUSH R7,R BUT PUT IT BACK ONTO THE STACK
C R7,=F'1' IS THE ARGUMENT BIGGER THAN 1
BH FDOIT YES, WE HAVE A COMPUTATION
L R4,=F'1' NO, JUST RETURN THE VALUE 1
STKPOP R7,R ARG IS NOT USED, SO POP IT
B FDONE AND RETURN

FDOIT S R7,=F'1' SUBTRACT 1 FOR NEW ARGUMENT
LA 8,FRET GET THE ADDRESS OF RETURN
STKPUSH R8,R STORE NEW RETURN ADDRESS
STKPUSH R7,R NOW, PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSIVE CALL

FRET STKPOP R7,R POP THIS ARGUMENT FROM STACK
MR 6,4 PUT R4*R7 INTO (R6,R7)
LR 4,7 COPY PRODUCT INTO R4

FDONE STKPOP R8,R POP RETURN ADDRESS FROM STACK
BR 8 BRANCH TO THAT ADDRESS

Analysis of DOFACT
Let’s start with the code at the end. At this point, the register R4 contains the return value of
the function, and the argument has been removed from the stack.

FDONE STKPOP R8,R POP RETURN ADDRESS FROM STACK
BR 8 BRANCH TO THAT ADDRESS

The label FDONE is the common target address for the two cases discussed above.
Again, here is the top–level structure.

1. Get the argument value, N, from the stack.

2. If (N 1) then
Set the return value to 1
B FDONE

3. If (N 2) then
Handle the recursive call and return from that call.

4. FDONE: Manage the return from the function

Page 423 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

DOFACT Part 2: Handling the Case for N 1
Here is the startup code and the code to return the value for N 1.

DOFACT STKPOP R7,R GET THE ARGUMENT AND EXAMINE
STKPUSH R7,R BUT PUT IT BACK ONTO THE STACK
C R7,=F'1' IS THE ARGUMENT BIGGER THAN 1
BH FDOIT YES, WE HAVE A COMPUTATION

*
* N = 1

L R4,=F’1’ NO, JUST RETURN THE VALUE 1
STKPOP R7,R ARG IS NOT USED, SO POP IT
B FDONE AND RETURN

The startup code uses STKPOP followed by STKPUSH to get the argument value into
register R7 without removing it from the stack. That value is then compared to the constant 1.
If the argument has value 1 or less, the return value is set at 1. Note that the argument is still
on the stack. It must be popped so that the return address will be at the top of the stack and
useable by the return code at FDONE.

DOFACT Part 3: Handling the Case for N > 1
Here is the code for the case N > 1.

FDOIT S R7,=F'1' SUBTRACT 1 FOR NEW ARGUMENT
LA 8,FRET GET THE ADDRESS OF RETURN
STKPUSH R8,R STORE NEW RETURN ADDRESS
STKPUSH R7,R NOW, PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSIVE CALL

FRET L R2,=F'0'
STKPOP R7,R POP THIS ARGUMENT FROM STACK

*HERE
* R7 CONTAINS THE VALUE N
* R4 CONTAINS THE VALUE FACT(N – 1)
*

MR 6,4 PUT R4*R7 INTO (R6,R7)
LR 4,7 COPY PRODUCT INTO R4

The code then falls through to the “finish up” code at FDONE. Note the structure of
multiplication. Remember that an even–odd register pair, here (6, 7) is multiplied by another
register.

Sample Run for DOFACT
We shall now monitor the state of the stack for a typical call to the recursive function
DOFACT. Here is the basic structure for the problem. First we sketch the calling code.

LA 8,A1 STATEMENT AFTER CALL TO SUBROUTINE
STKPUSH R8,R PLACE RETURN ADDRESS ONTO STACK
B DOFACT BRANCH DIRECTLY TO SUBROUTINE

A1 The next instruction.

Page 424 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Here is the structure of the recursive function DOFACT

DOFACT Check value of argument
Branch to FDONE if the argument < 2.
Call DOFACT recursively

FRET Return address for the recursive call
FDONE Close–up code for the subroutine

More on the Stack
We now relate the idea of the Stack Top to our use of the SP (Stack Pointer).
The protocol used for stack management is called “post increment on push”.
In a high level programming language, this might be considered as follows.

PUSH ARG M[SP] = ARG POP ARG SP = SP – 1
SP = SP + 1 ARG = M[SP]

The status of the stack is always that the SP points to the
location into which the next item pushed will be placed.

On entry to the function, there is an argument on the top of the
stack. The return address is the value just below the argument.

When the argument is popped from the stack, we are left with
the SP pointing to the argument value that has just been popped.
The return address (RA) is now on the stack top and available
to be popped.

After the RA has been popped, the SP points to its value.
Whatever had been on the stack is now at the Stack Top.

Page 425 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Consider DOFACT For the Factorial of 3
Remember our notation for return addresses: A1 for the calling routine.

FR for the return in DOFACT.

This is the status of the stack when DOFACT is first called.

The return address (A1) of the main program was pushed
first, and then the value (3) was pushed.

The value in R4, used for the return value, is not important.

It is noted that 3 > 1 so DOFACT will be called with a value
of 2. When the first recursive call is made, the stack status is
shown at left. The top of the stack has the value 2.
The return address (FR) of the DOFACT function was
first pushed, followed by the argument value.

The Next Recursive Call To DOFACT
On the next call to DOFACT, the value at the top of the stack is found to be 2.

It is noted that 2 > 1.

The argument value for the next recursive call is computed,
and made ready to push on the stack.

The return address (FR) for DOFACT is pushed onto the stack.
Then the value of the new argument (1) is pushed onto the stack.

DOFACT is called again.

In this next call to DOFACT, the value at the top of the stack is
examined and found to be 1.

A return value is placed into the register R4, which has been
reserved for that use.

This is the status of the stack just before the first return.

It will return to address FRET in the function DOFACT.

Page 426 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The First Recursive Return
The first recursive return is to address FR (or FRET) in DOFACT. Here is the situation just
after the first recursive return.

The argument value for this invocation is
now at the top of the stack.

The value 2 is removed from the stack, multiplied
by the value in R4 (which is 1) and then stored in R4.

The return address (FR) had been popped from the
stack. The function returns to itself.

The Next Recursive Return
The next recursive return is to address FR (or FRET) in DOFACT.

Here is the situation just after the first recursive return.

Here is the status of the stack after this
return. The argument value is on the top
of the stack, followed by the return address
for the main routine.

On the final return, the value 3 has been removed
from the stack, multiplied by the value in R4, and
the new function value (6) is placed back into R4.

The return address (A1) has been popped from the
stack and the function returns there.

Page 427 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The Subroutine Linkage Problem
When a subroutine or function is called, control passes to that subroutine but must return
to the instruction immediately following the call when the subroutine exits. There are two
main issues in the design of a calling mechanism for subroutines and functions. These fall
under the heading “subroutine linkage”.

1. How to pass the return address to the subroutine so that, upon completion,
it returns to the correct address. We have just discussed this problem.

2. How to pass the arguments to the subroutine and return values from it.

A function is just a subroutine that returns a value. For functions, we have one additional
issue in the linkage discussion: how to return the function value. This presentation will be a
bit historical in that it will pose a number of linkage mechanisms in increasing order of
complexity and flexibility. We begin with a simple mechanism based on early CDC–6600
FORTRAN compilers.

Pass–By–Value and Pass–By–Reference
Modern high–level language compilers support a number of mechanisms for passing
arguments to subroutines and functions. These can be mimicked by an assembler.

Two of the most common mechanisms are:
1. Pass by value, and
2. Pass by reference.

In the pass–by–value mechanism, the value of the argument is passed to the subroutine. In
the pass–by–reference, it is the address of the argument that is passed to the subroutine,
which can then modify the value and return the new value. Suppose that we want to use
register R10 to pass an argument to a subroutine. That argument is declared as follows.

FW1 DC F‘35’

The operative code would be as follows:

Pass by value: L R10,FW1 Load the value at FW1

Pass by reference: LA R10,FW1 Load the address of FW1

Returning Function Values
There is a simple solution here that is motivated by two facts.

1. The function stores its return value as its last step.
2. The first thing the calling code should do is to retrieve that value.

This simple solution is to allocate one or more registers to return function values. There
seem to be no drawbacks to this mechanism. As we have seen above, it works rather well
with recursive functions. The solution used in these lectures was to use R7 to return the
value.

Page 428 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The CDC–6600 FORTRAN solution was to use one or two registers as needed.

Register R7 would return either a single–precision result or the
low–order bits of a double–precision result.

Register R6 would return the high–order bits of the double–precision result.

CDC Nerds note that the actual register names are X6 and X7.

Argument Passing: Version 1 (Based on Early CDC–6400 FORTRAN)
Pass the arguments in the general–purpose registers. Here we use the actual names of the
registers: X0 through X7. Register X0 was not used for a reason that I cannot remember.

Registers X1 through X5 are used to pass five arguments.

Registers X6 and X7 are used to return the value of a function.

This is a very efficient mechanism for passing arguments. The problem arises when one
wants more than five arguments to be passed. There is also a severe problem in adapting this
scheme to recursive subroutines. We shall not discuss this at present for two reasons.

1. We shall meet the identical problem later, in a more general context.

2. None of the CDC machines was designed to support recursion.

Argument Passing: Version 2 (Based on Later CDC–6400 FORTRAN)
In this design, only two values are placed on the stack. Each is an address.

The return address.

The address of a memory block containing the number of arguments
and an entry (value or address) for each of the arguments.

This method allows for passing a large number of arguments.

This method can be generalized to be compatible with the modern stack–based protocols.

Page 429 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Example Code Based on CDC–6600 FORTRAN
Here is IBM/System 370 assembly language written in the form that the CDC FORTRAN
compiler might have emitted. Consider a function with three arguments. The call in
assembly language might be.

LA R8,FRET ADDRESS OF STATEMENT TO BE
EXECUTED NEXT.

STKPUSH R8,R PLACE ADDRESS ONTO STACK
LA R8,FARGS LOAD ADDRESS OF ARGUMENT BLOCK
STKPUSH R8,R PLACE THAT ONTO THE STACK
B THEFUNC BRANCH DIRECTLY TO SUBROUTINE

A0 DC F‘3’ THE NUMBER OF ARGUMENTS
A1 DS F HOLDS THE FIRST ARGUMENT
A2 DS F HOLDS THE SECOND ARGUMENT
A3 DS F HOLDS THE THIRD ARGUMENT
FRET The instruction to be executed on return.

This cannot be used with recursive subroutines or functions.

The Solution: Use a Stack for Everything
We now turn our attention to a problem associated with writing a compiler. The
specifications for the high–level language state that recursion is to be supported, both for
subroutines and functions. It is very desirable to have only one mechanism for subroutine
linkage. Some architectures, such as the VAX–11/780 did support multiple linkages, but a
compiler writer would not find that desirable. Software designers who write compilers do
not like a complex assembly language; they want simplicity.

We have a number of issues to consider:
1. How to handle the return address. This, we have discussed.
2. How to handle the arguments passed to the subroutine or function.

We have just mentioned this one.
3. How to handle the arguments and values local to the subroutine or function.

The answer is simple: put everything on the stack.

Summary of Our Approach to Recursion
Here is an approach to recursive programming that is in step with the current practice. First,
we note that all recursive programming is to be written in a high–level language; thus, the
generation of the actual recursive code will be the job of a sophisticated compiler.

Consider a function call, such as Y = F1(A, B, C).

1. The compiler will generate code to push the return address onto the stack.

2. The compiler will generate code to push the arguments on the stack. Either order,
left to right or right to left is probably OK, but it must be absolutely consistent.

3. Optionally, the compiler generates code to push the argument count onto the stack.

4. The compiler will have a convention for use of registers to hold return values.
This might be R4 for 16–bit and 32–bit integers, the register pair (R4, R5) for
64–bit integers, and floating–point register 0 for real number results.

Page 430 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Mathematical Functions and Subroutines
We now consider a problem that occurs mostly in scientific programming and occasionally in
business programming. This is the evaluation of some of the standard functions, such as sine,
cosine, logarithm, square root, etc. There are two significant problems to be discussed.

1. The fact that the basic arithmetic instruction set of any computer includes only
the four basic operations: addition, subtraction, multiplication, and division.

2. The fact that no algorithm can be devised to produce the exact value of one of
these functions applied to an arbitrary input value.

A detailed discussion of our approach to addressing these difficulties is based on some results
from Intermediate Calculus. In this discussion, these results will only be asserted and not
justified. One should study the Calculus in order to fully appreciate our reasoning here.

Definition of an algorithm:
An algorithm is a sequence of unambiguous instructions for solving a problem.
The full definition must include the provision that the algorithm terminate for any
valid input. So we have the following definition of algorithm.

Definition: An algorithm is a finite set of instructions which, if followed, will accomplish a
particular task. In addition every algorithm must satisfy the following criteria:

i) input: there are zero or more quantities which are externally supplied;
ii) output: at least one quantity is produced;
iii) definiteness: each instruction must be clear and unambiguous;
iv) finiteness: if we trace out the instructions of the algorithm, then for

all valid cases the algorithm will terminate after a finite
number of steps;

v) effectiveness: every instruction must be sufficiently basic that it can in
principle be carried out by a person using only a pencil and
paper. It is not enough that each operation be definite as in
(iii), but it must be feasible. [page 2, R_26]

The effectiveness criterion might be restated as it being possible to map each step in the
algorithm to a simple instruction in the assembler language. In particular, only the basic
steps of addition, subtraction, multiplication and division may be used in the algorithm.

Admittedly, there are manual procedures for other processes, such as taking the square root
of an integer, but these are based on the four primitive algebraic operations.

Sample Problems
In order to illustrate a variety of system subprograms, your author has chosen the following.

1. Raising a real number to an integer power.

2. Computation of the cosine of an angle given in radian measure.

3. Computation of the square root of a non–negative real number.

In each of these cases, we shall first discuss the algorithm to be used by giving a description
in a high–level language. We then proceed to give the basis of a function, written in IBM
System 370 assembler language. As often is the case, certain necessary features related to
linkage to and from the calling program will be omitted.

Page 431 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Integer Exponentiation
We first consider the problem of raising a real number to an integer power. Unlike the more
general problem of raising a number to a real–number power (say X2.817), this procedure can
be completed using only the basic operations of addition and multiplication.

The only issue to be addressed in the discussion of this problem is that of the time efficiency
of the computation. System programmers must pay particular attention to efficiency issues.

The basic problem is to take a real number A and compute F(A, N) = AN for N ≥ 0. The
simplest algorithm is easy to describe, but not very efficient for large values of N. In terms
commonly used for algorithm analysis, this is called a “brute force” approach.

Brute Force
Function F(A, N)

R = 1 // R = Result, what a brilliant name!
For K = 1 to N Do

R = R * A
End Do

Return R

In assaying the computational complexity of this procedure, we note that the number of
multiplications is a linear function of the exponent power; specifically N multiplications are
required in order to compute the Nth power of a real number. Any competent system
programmer will naturally look for a more efficient algorithm.

We now present a more time-efficient algorithm to compute F(A, N) = AN for N ≥ 0.

This algorithm is based on representation of the power N as a binary number. Consider the
computation of A13. In 4-bit binary, we have 13 = 1101 = 18 + 14 + 12 + 11. What we
are saying is that A13 = A8A4A2A1. Our new algorithm is based on this observation.

Function F(A, N)
R = 1
AP = A // AP is a to the power P
While (N > 0) Do

NR = N mod 2
If NR = 1 Then R = R * AP
AP = AP * AP
N = N / 2 // Integer division: 1/2 = 0.

End While
Return R

One can show that the time complexity of this algorithm is log2(N). The implementation of
this algorithm in assembler language appears simple and straightforward. The efficient
implementation of this algorithm takes a bit more thought, but not much.

In our studies of algorithm analysis and design, we identify and count the primary operations
in any algorithm. Here the key operations appear to be multiplication and division. In actual
systems programming, we must pay attention to the amount of time that each operation takes
in order to execute; multiplication and division are costly in terms of time. Can we replace
either operation with a faster, but equivalent, operation?

Page 432 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

As the multiplication involves arbitrary real numbers, there is nothing to do but pay the time
cost and be happy that the number of these operations scales as log2(N) and not as N. But
note that the division is always of a non–negative integer by 2. Here we can be creative.

Consider the following code fragment, adapted from the algorithm above. Without changing
the effect of the code, we have rewritten it as follows.

NR = N mod 2
N = N / 2 // Integer division: 1/2 = 0.
If NR = 1 Then R = R * AP
AP = AP * AP

What we shall do in our implementation is replace the integer division by a logical right shift
(double precision), using an even–odd register pair. Let us assume that the integer power for
the exponentiation is in R4, the even register of the even–odd pair (R4, R5). Here is the code.

SR R5,R5 // Set register R5 to 0.
SRDL R4,1 // Shift right by 1 to divide by 2
CH R5,=H‘0’ // Is the old value of R4 even?
BE ISEVEN // N mod 2 was 0.
MDR F2,F4 // R = R * AP

ISEVEN MDR F4,F4 // AP = AP * AP

Let’s write a bit more of the code to see the basic idea of the algorithm. We all know that
any number raised to the power 0 gives the value 1; here we say AN = 1, if N 0. The only
general implementation of the algorithm will use the floating–point multiplication operator;
here I arbitrarily choose the double–precision operator MDR.

Here are the specifications for the implementation.
On entry Integer register R4 contains the integer power for the exponentiation.

Floating point register 2 contains the number to be raised to the power.

On exit Floating point register 0 contains the answer.

Here is a code fragment that reflects the considerations to this point. In this code fragment, I
assume that I have used the equate to set F0 to 0, F2 to 2, F4 to 4, and F6 to 6, in the same
manner in which the R symbols were equated to integer register numbers.

LD F0,=D‘0.0’ // Clear floating point register 0
CD F2,=D‘0.0’ // Is the argument zero?
BE DONE // Yes, the answer is zero.
LD F0,=D‘1.0’ // Default answer is now 1.0
LDR F4,F2 // Copy argument into FP register 4
CH R4,=H‘0’ // Is the integer power positive?
BLE DONE // No, we are done.
SR R5,R5 // Set register R5 to 0.
SRDL R4,1 // Shift right by 1 to divide by 2
CH R5,=H‘0’ // Is the old value of R4 even?
BE ISEVEN // N mod 2 was 0.
MDR F2,F4 // R = R * AP

ISEVEN MDR F4,F4 // AP = AP * AP

Page 433 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

All we have to do now is to put this within a loop structure. Here is what we have.

POWER LD F0,=D‘0.0’ // Clear floating point register 0
CD F2,=D‘0.0’ // Is the argument zero?
BE DONE // Yes, the answer is zero.
LD F0,=D‘1.0’ // Default answer is now 1.0
LDR F4,F2 // Copy argument into FP register 4

TOP CH R4,=H‘0’ // Is the integer power positive?
BLE DONE // No, we are done.
SR R5,R5 // Set register R5 to 0.
SRDL R4,1 // Shift right by 1 to divide by 2
CH R5,=H‘0’ // Is the old value of R4 even?
BE ISEVEN // N mod 2 was 0.
MDR F2,F4 // R = R * AP

ISEVEN MDR F4,F4 // AP = AP * AP
B TOP // Go back to the top of the loop

DONE BR R14 // Return with function value.

Again, we should note that the provision for proper subroutine linkage in the above code is
minimal and does not meet established software engineering standards. All we need is a
provision to save and restore the registers used in this calculation that were not set at the call.

Before we move to consideration of the common algorithm for computing the square root of
an arbitrary number, we shall consider the more general problem of raising a number (real or
integer) to an arbitrary real power. This is significantly more difficult that that of raising a
number to an integer power, or to a specific rational–number power such as ½.

Let A be an arbitrary positive number. Specifically, its value is not zero. We consider the
problem of computing F(A, X) = AX, where X is an arbitrary real number. The general way
is based on logarithms and exponents. Because the values are more easily computed, most
implementations use natural logarithms and the corresponding exponentiation.

Let B = ln(A), the natural logarithm of A.

Then AX = (eB)X = e(BX), where e 2.71818, is the base for the natural logarithms. Thus,
the basic parts of the general exponentiation algorithm are as follows.

1. Get rid of the obvious cases of A = 0.0 and X = 0.0.
Decide how to handle A < 0.0, as the following assumes A > 0.0.

2. Take the natural logarithm of A; call it B = ln(A).

3. Multiply that number by X, the power for the exponentiation.

4. Compute e(BX), and this is the answer. Note that there is a well–known algorithm

based on simple results from calculus to compute e to any power.
If it makes sense, adjust for the sign of A.

The point here is that the general exponentiation problem requires invocation of two fairly
complex system routines, one to calculate the natural logarithm and one to compute the value
of e(BX). This is much slower than the computation of an integer power. Remember that fact
when writing high–level languages that require exponentiation.

Page 434 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Evaluating Transcendental Functions
We now discuss one standard way of computing the value of a transcendental function, given
the restriction that only the basic four mathematical operations (addition, subtraction,
multiplication, and division) may be used in the implementation of any algorithm.

This standard way consists of computing an approximation to the result of an infinite series.
In effect, we sample a moderately large number of terms from the infinite sequence, sum
these terms, and arrive at a result that has acceptable precision. As noted above, the only
way to view evaluation of an infinite series as an algorithm is to state a required precision.

Here are some of the common infinite series representations of several transcendental
functions. Each series can be derived by use of a number of standard calculus techniques.
The basic idea here is that of convergence, which denotes the tendency of an infinite series to
approach a limiting value, and do so more exactly as the number of terms evaluated increases.

In more precise terms, consider a function F(X) which can be represented by the infinite
series F(X) = T0(X) + T1(X) + T2(X) + …. + TN(X) + …, representing the true function value.
Define FN(X) = T0(X) + T1(X) + T2(X) + …. + TN(X) as that value obtained by the
summation of the first (N + 1) terms of the infinite series.

A series is said to converge if for any positive number > 0 (representing a desired accuracy),

we can find an integer N0 such that for all N > N0, we have |F(X) – FN(X)| < . There are a
few equivalent ways to state this property; basically it states that for any realistic precision,
one is guaranteed that only a finite number of the terms of the infinite series must be
evaluated. For the trigonometric functions, the input must be in radians (not degrees).

SIN(X) = X – X3/3! + X5/5! – X7/7! + X9/9! – ….+ (–1)NX2N+1/(2N+1)! …

COS(X) = 1 – X2/2! + X4/4! – X6/6! + X8/8! – ….+ (–1)NX2N/(2N)! …

EXP(Z) = 1 + Z + Z2/2! + Z3/3! + Z4/4! + …. + ZN/N! + ….

LN(1+Z) = Z – Z2/2 + Z3/3 – Z4/4 + …. – (–Z)N/N + …
Here either Z = 1 or |Z| < 1. Otherwise, the series is not useful.

Consider the problem of evaluating the sine of an angle. Here are a few of the well–known
values: SIN(0) = 0.00, SIN(90) = 1.00, SIN(180) = 0.00,and SIN(–90) = –1.00. As noted
just above, the formulae are specific to computations for angles in radians. For this reason,
some systems offer trigonometric functions in pairs. For the sine computation, we may have

SIN() sine of the angle, which is expressed in radians, and
SIND() sine of the angle, which is expressed in degrees.

Given an angle in degrees, the first thing that any computation will do is to convert the angle
to equivalent radian measure. The one exception to that would be first to translate the angle
into the range –180 180, by repeated additions or subtractions of 360. It is a well
known property of all trigonometric functions that, given any integer N (positive, negative, or
0) and angle expressed in degrees, we have F() = F(+ N360) = F(– N360). There
may be some numerical advantage to doing this conversion on the degree measure.

Page 435 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The next step, when handling an angle stated in degrees is an immediate conversion to radian
measure. As 180 = radians, we multiply the degree measure of an angle by
(/ 180) 0.0174 5329 2519 9432 9576 9237 to convert to radian measure.

Given an angle in radian measure, the first step would be to convert that measure into the
standard range – , by repeated additions or subtractions of . This follows the
property stated above for trigonometric functions: F() = F(+ 2N) = F(– 2N).
The attentive reader will note that each “standard range” listed above has an overlap at its
ends; basically –180 and 180 represent the same angle, as do – and .

Once the angle is expressed in radians and given by a measure in the standard range, which
is – , the next step in computation of the sine is to reduce the range to the more
usable (– / 2) (/ 2) by adapting the standard formula for SIN(X Y), which is

SIN(X Y) = SIN(X)COS(Y) COS(X)SIN(Y). The common variants are:

SIN(/2 –) = SIN(/2)COS() – COS(/2)SIN()
= 1COS() – 0SIN() = COS(); also COS(/2 –) = SIN().

SIN(– /2) = SIN()COS(/2) – COS()SIN(/2)
= SIN()0 – COS()1 = – COS().

SIN(–) = SIN()COS() – COS()SIN()
= 0COS() – (–1)SIN() = SIN().

SIN(–) = SIN()COS() – COS()SIN()
= SIN()(–1) – COS()0 = – SIN()

The goal, and end result, of all of this trigonometry is to reduce the absolute value of the
radian measure of the angle to || < /2. This allows an easy computation of the number of
terms to be computed in the otherwise infinite series, depending on the required accuracy.

We have: SIN(X) = X – X3/3! + X5/5! – X7/7! + X9/9! – ….+ (–1)NX2N+1/(2N+1)! …
Note that the Nth term in this series is written as TN = (–1)NX2N+1/(2N+1)!. A standard result
of calculus indicated that the maximum error from terminating this series at TN is given by
TN = |X|2N+1/(2N+1)!, where |X| is the absolute value of X.

Put another way, let SIN() represent the exact value of the sine of the angle , represented
in radians and let SN() = – 3/3! + 5/5! – 7/7! + 9/9! – ….+ (–1)N2N+1/(2N+1)!
represent the finite sum of the first (N + 1) terms in the infinite series. We are guaranteed
that the maximum error in using this finite sum as the sine of the angle is given by
|SIN() – SN()| |X|2N+1/(2N+1)!.

More specifically, for || < /2, we are guaranteed that any computational error is bounded
by |SIN() – SN()| (/2)2N+1/(2N+1)!. Given that the factor (/2) is a bit tedious to use,
and the fact that (/2) < 2, we can say that |SIN() – SN()| (2)2N+1/(2N+1)!

Page 436 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The results for our error analysis are given in the following table. Note that seven terms are
all that is required for a result to be expressed in the IBM E (Single Precision Floating Point)
format, while 13 terms are more than good enough for the IBM D (Double Precision Floating
Point) format. The extended precision floating point may require a few more terms.

N 2N + 1 (2)2N+1 (2N+1)! Max Error Significant Digits
3 7 128 5040 0.025 1
5 11 2048 39,916,800 5.130710–5 4

7 15 32,768 1.307671012 2.505910–8 7

9 19 524,288 1.216451017 4.3099910–12 11

11 23 8,388,608 2.585201022 3.2448610–16 15

13 27 134,217,728 1.088881028 1.23261410–20 19

As an example of the fast convergence of the series, I consider the evaluation of
the cosine of 1.0 radian, about 57.3 degrees.

Look at the terms in the infinite series, written as T0 + T2 + T4 + T6 + T8 + ...,
and construct the partial sums.

N = 0 T0 = + 1.00000000

N = 2 X2 = 1.0 T2 = – 1 / 2 = – 0.50000000

N = 4 X4 = 1.0 T4 = + 1 / 24 = + 0.04166666

N = 6 X6 = 1.0 T6 = – 1 / 720 = – 0.00138889

N = 8 X8 = 1.0 T8 = + 1 / 40320 = + 0.00002480

The terms are decreasing fast. How many terms do we need to evaluate to get a specified
precision? Answer: Not many.

The answer for COS(1.0), after five terms in the series is 0.54030257.
My calculator computes the value as 0.540302306.

Note the agreement to six digits. Assuming that the value from my calculator is correct,
the relative error in this series sum approximation is 1.000 000 488 615, or a percentage
error of 4.8910–5%. After a few more terms, this result would be useable almost anywhere.

The absolute error in the above, assuming again that my calculator is correct,
is given by the difference: 0.000 000 264.
Comparison to the value 0.000 024 800, which is the maximum theoretical error,
shows that our series approximation will serve very well over a wide range of arguments.

As we have covered more than enough Assembler Language syntax to write the loop, there
is no need to write the code for this computation here. The reader may take this as an
exercise, which might actually be fun.

The structure of the computation would be a loop that sequentially builds the partial sums
from the terms as shown above. The only real question is the termination criterion for the
computation loop. There are two useable options.

1. Terminate after a fixed number of terms have been calculated.
Thirteen terms should be more than adequate.

2. Terminate after the absolute value of the calculated term drops below a given value.

