Chapter 23: Some | ssues from Systems Programming

In this chapter, we shall discuss a number of issues related to system programming. The
main topic of the chapter focuses on the support by the RTS (Run-Time System) for the style
of programming called recursion, in which a program can call itself as a subprogram. The
topics to be investigated include the following:

a) Recursive programming with an explicit stack.

b) Writing reentrant code and using it in systems programs.

c) String space and handling variable-length strings.

d) Double-indirect addressing and Dynamic Link Libraries.

Writing Recur sive Subroutines

We note immediately that the IBM 370 does not directly support recursion, though later
revisions of the Assembler Language might. The purpose of this chapter isto use the stack
handling macros discussed in a previous chapter to implement simple recursive subroutines.

Recursion is a process that requires a stack, provided either explicitly or implicitly by the
RTS (Run Time System). In this chapter, we assume no native support for recursion, and
directly manage the call stack. The simple protocol has two steps.

Subroutine Call: Push the return address onto the stack
Branch to the subroutine

Subroutine Return Pop the return address into a register
Return to that address.

Other protocols provide for using the stack to transmit variables. We shall discuss those later
in thislecture. Asour first example, we consider the subprogram NUMOUT.

NUMOUT: TheOld Version
Hereisthe original code for the packed decimal version of NUMOUT.

NUMOUT CVD R4, PACKOUT CONVERT TO PACKED
UNPK THENUV, PACKOUT PRODUCE FORVATTED NUMBER
WZ THENUMK7(1), =X FO’ CCNVERT SI GN HALF- BYTE
BR 8 RETURN ADDRESS I N R8
Thisisthe calling sequence for NUMOUT, placed within its context.
MVC PRI NT, BLANKS CLEAR THE OUTPUT BUFFER
BAL 8, NUMOUT PRODUCE THE FORMATTED SUNV
MVC DATAPR, THENUM AND COPY TO THE PRI NT AREA

Note that the BAL instruction saves the address of the next instruction into R8
before the branch istaken. The saved return address is then used by the BR 8 instruction to
return from the subroutine.

Page 416 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

NUMOUT: The Newer Version

The newer version of NUMOUT will be written in the style required for recursive
subroutines, although it will not be recursive. This style requires explicit management of the
return address. Thisrequires the definition of alabel for the instruction following the call to
NUMOUT. For no particular reason, this statement is called NUMRET.

MVC PRI NT, BLANKS CLEAR THE OUTPUT BUFFER

LA 8, NUMRET STATEMENT AFTER NUMOUT

STKPUSH R8, R PLACE ADDRESS ONTO STACK

B NUMOUT BRANCH DI RECTLY TO NUMOUT
NUVRET WC DATAPR, THENUM AND COPY TO THE PRI NT AREA

Hereisthe new code for NUMOUT.

NUMOUT CVD R4, PACKOUT CONVERT TO PACKED
UNPK THENUM PACKOUT PRODUCE FORVMATTED NUMBER
WZ THENUME7(1), =X FO’ CONVERT SI GN HALF- BYTE
STKPOP RS, R POP THE RETURN ADDRESS
BR 8 RETURN ADDRESS | N R8

Factorial: A Recursive Function
One of the standard examples of recursion is the factorial function. We shall giveits
standard recursive definition and then show some typical code.

Definition: IfN<1,then NI =1
Otherwise N! = Ne(N - 1)!

Hereisatypical programming language definition of the factorial function.

| nt eger Function FACT(N : Integer)

If N<1 Then Return 1
El se Return N*FACT(N — 1)

Such afunction is easily implemented in a compiled high-level language (such as C++

or Java) that provides a RTS (Run Time System) with native support of a stack. Aswe shall
see, alow-level language, such as IBM 370 assembler, must be provided with explicit stack
handling routines if recursion is to be implemented.

Tail Recursion and Clever Compilers

Compilers for high-level languages can generally process a construct that is “tail recursive’,
in which the recursive call isthe last executable statement. Consider the above code for the
factoria function.

| nt eger Function FACT(N : Integer)

If N<1 Then Return 1
El se Return N*FACT(N — 1)

Note that the recursive call isthe last statement executed when N > 1.

Page 417 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

A good compiler will turn the code into the following, which is equivalent.
| nt eger Function FACT(N : Integer)

Integer F =1 ; Declare a variable and initialize it
For (K =2, Kt+, K<= N Do F = F*K ;
Return F ;

This iterative code consumes fewer RTS resources and executes much faster.
NOTE: For fullword (32-bit integer) arithmetic, the biggest we can calculate is 12!

A Pseudo-Assembler Implementation with Problems

We want an implementation of the factorial function. It takes one argument and returns one
value. We shall attempt an implementation as FACTOR, with each of the argument and
result being passed in register R4 (my favorite). It might be called as follows.

L 4, THEARC
BAL 8, FACTOR
N1 ST 4, THERESULT

Pseudocode for the function might appear as follows.

If (R4 < 1) Then
L R4, = F1 SET R4 EQUAL TO 1

Al BR 8 RETURN TO CALLI NG RQOUTI NE
Else
LR 7,4 COPY R4 | NTO RS
S 4,=F 7T
BAL 8, FACTOR
N2 MR 6,4 MJULTI PLY
A2 BR 8

This code worksonly for N < 1.

Confusion with the Return Addresses
Suppose that FACTOR is called with N = 1. The following code executes.

L 4 =F 1’
BAL 8, FACTOR The first call to FACTOR
N1 ST 4, THERESULT

If (R4 < 1) then the function codeisinvoked. Thisisall that happens.

L R4, =F1 SET R4 EQUAL TO 1
Al BR 8 RETURN TO CALLI NG ROUTI NE

But note at this point, register 8 contains the address N1. Returnisnormal.

Suppose now that FACTOR is caled with N = 2.

L 4,=F2

BAL 8, FACTOR PLACE A(N1) I NTO R8
N1 ST 4, THERESULT

Page 418 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

This code is executed.

LR 7,4 COPY R4 | NTO R5

S 4,=F 1

BAL 8, FACTOR PLACE A(N2) INTO R8
N2 M 6,4 MULTI PLY
A2 BR 8

The above call causes the following code to execute, as N = 1 now.

L R4, =F1 SET R4 EQUAL TO 1
Al BR 8 RETURN TO CALLI NG ROUTI NE

Hereisthetrouble. For N =1, thereturnis OK.
Back at the invocation for N = 2. Compute 2e1 = 2.
Try toreturn to N1. But R8 contains the address N2.

The codeis“trapped within FACTOR”. It can never return to the main program.

Outline of the Solution

Given the limitations of the IBM 370 original assembly language, the only way to implement
recursion is to manage the return addresses ourselves. This must be done by explicit use of
the stack. Given that we are handling the return addresses directly, we dispense with the
BAL instruction and use the unconditional branch instruction, B.

Hereis code that shows the use of the unconditional branch instruction.
At this point, register R4 contains the argument.

LA R8, A94PUTI T ADDRESS OF STATEMENT AFTER CALL
STKPUSH R8, R PUSH THE ADDRESS ONTO THE STACK
STKPUSH R4, R PUSH THE ARGUMENT ONTO THE STACK
B DOFACT CALL THE SUBROUTI NE

A94PUTI T BAL 8, NUMOUT FI NALLY, RETURN HERE.

Note that the address of the return instruction is placed on the stack. Note aso that the return
target uses the traditional subroutine call mechanism. In this example, the goal isto focus on
recursion in the use of the DOFACT subprogram. For NUMOUT, we shall use the standard
subroutine linkage based on the BAL instruction.

Proof of Principle: Code Fragment 1
Here is the complete code for the first proof of principle. The calling code is as follows.
The function is now called DOFACT.

LA R8, A94PUTI T ADDRESS OF STATEMENT AFTER CALL
STKPUSH R8, R PUSH THE ADDRESS ONTO THE STACK
STKPUSH R4, R PUSH THE ARGUMENT ONTO THE STACK
B DOFACT CALL THE SUBROUTI NE

A94PUTI T BAL 8, NUMOUT FI NALLY, RETURN HERE.

Page 419 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Thefirst test case was designed with a stub for DOFACT. Thisdesign wasto prove the
return mechanism. The code for this“do nothing” version of DOFACT is asfollows.

DOFACT STKPOP R4, R POP RESULT BACK | NTO R4
STKPOP RS, R POP RETURN ADDRESS | NTO R8
BR 8 BRANCH TO THE POPPED ADDRESS

Remember: 1. STKPOP R4,R isamacro invocation.
2. The macros have to be written with a symbolic parameter as
the label of the first statement.

The Stack for Both Argument and Return Address

We now examine a dightly non—standard approach to using the stack to store both arguments
to the function and the return address. In general, the stack can be used to store any number
of argumentsto afunction or subroutine. We need only one argument, so that isall that we
shall stack.

Remember that astackisa Last In/ First Out data structure.
It could also be called a First In/ Last Out data structure; thisis seldom done.

Recdll the basic structure of the function DOFACT. Hereisthe skeleton.

DOFACT
Use the argument from the stack
STKPOP RS, R POP RETURN ADDRESS | NTO RS
BR 8 BRANCH TO THE POPPED ADDRESS

Since the return address is the last thing popped from the stack when the routine returns,
it must be the first thing pushed onto the stack when the routine is being called.

Basic Structure of the Function
On entry, the stack has both the argument and return address. On exit, it must have neither.
The return address is popped last, so it ispushed first.

Arg [4—Stack Top

RA On entry to the routine, thisis the status of the stack. By “ Stack Top”, |
indicate the location of the last item pushed.
Arg At some point, the argument must be popped from the stack, so that the

RA [+—Stack Top Return Addressis available to be popped.

STKPOP 8 Get the return address
ATg BR 8 Go there

«—stackTop NOtethat the contents of the stack are not removed. Thisisin linewith
standard stack protocol, though it might have some security implications.

Page 420 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

When Do We Pop the Argument?

The position of the STKPOP depends on the use of the argument sent to the function. There
are two considerations, both of which are quite valid. Assume that register R7 contains the
argument. We shall get it there on the next dlide. Consider the fragment of code
corresponding to NeFACT(N — 1).

FDO T S R/,=F 1 SUBTRACT 1 FOR NEW ARGUVMENT
LA 8, FRET GET THE ADDRESS OF RETURN
STKPUSH R8, R STORE NEW RETURN ADDRESS
STKPUSH R7, R NOW PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSI VE CALL

FRET L R2,=F 0O

At this point, the return register (say R4) will contain FACT(N - 1).

At this point, the value of N should be popped from the stack and multiplied by the result
to get theresult NeFACT(N — 1), which will be placed into R4 as the return value. But recall
that the basic structure of the factorial function calls for something like:

STKPOP R7, R
If the valuein R7 is not greater than 1, execute this code.

L R4, =F1 SET THE RETURN VALUE TO 1
STKPOP R8, R POP THE RETURN ADDRESS

BR 8 RETURN TO THE CALLI NG ROUTI NE.

If the valuein R7 islarger than 1, then execute this code.

FDAO T S R7,=F 1 SUBTRACT 1 FOR NEW ARGUNMENT
LA 8, FRET GET THE ADDRESS OF RETURN
STKPUSH R8, R STORE NEW RETURN ADDRESS
STKPUSH R7, R NOW PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSI VE CALL

FRET L R2, =F 0O

But, there is only one copy of the argument value. How can we pop it twice.
Answer: We push it back onto the stack.

Examining the Value at the Top of the Stack
Here is the startup code for the function DOFACT.

DOFACT L R2,=F 0O

STKPOP R7, R GET THE ARGUMENT AND EXAM NE
STKPUSH R7, R BUT PUT | T BACK ONTO THE STACK
C R/ =F1 'S THE ARGUMENT BI GGER THAN 1
BH FDO T YES, WE HAVE A COVPUTATI ON

This code fragment shows the strategy for examining the top of the stack without removing
the value: just pop it and push it back onto the stack. There is another common way of
examining the top of the stack. Many stack implementations use a function STKTOP, which
returns the value at the stack top without removing it. We shall not use this option.

Page 421 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Thisis another valid option. That code could be written as follows.

DOFACT L R2,=F 0O SET R2 TO ZERC
STKTOP R7, R GET THE ARGUMENT VALUE
C R/, =F1 'S THE ARGUMENT BI GGER THAN 1
BH FDO T YES, WE HAVE A COVPUTATI ON

The Factorial Function DOFACT
Hereisthe code for the recursive version of the function DOFACT.

DOFACT STKPOP R7, R GET THE ARGUMENT AND EXAM NE
STKPUSH R7, R BUT PUT | T BACK ONTO THE STACK
C R7, =F' 1' | S THE ARGUMENT Bl GGER THAN 1
BH FDOT YES, VE HAVE A COVPUTATI ON
L R4, =F' 1' NO, JUST RETURN THE VALUE 1
STKPOP R7, R ARG |'S NOT USED, SO POP IT
B FDONE AND RETURN

FDOT S R7,=F1' SUBTRACT 1 FOR NEW ARGUVENT
LA 8, FRET GET THE ADDRESS OF RETURN
STKPUSH R8, R STORE NEW RETURN ADDRESS
STKPUSH R7, R NOW PUSH NEW ARG ONTO STACK
B DOFACT MAKE RECURSI VE CALL

FRET STKPOP R7, R POP TH S ARGUMENT FROM STACK
MR 6, 4 PUT R4*R7 | NTO (R6, R7)
LR 4,7 COPY PRODUCT | NTO R4

FDONE STKPOP RS, R POP RETURN ADDRESS FROM STACK
BR 8 BRANCH TO THAT ADDRESS

Analysisof DOFACT
Let’s start with the code at the end. At this point, the register R4 contains the return value of
the function, and the argument has been removed from the stack.

FDONE STKPOP R8, R POP RETURN ADDRESS FROM STACK
BR 8 BRANCH TO THAT ADDRESS

The label FDONE is the common target address for the two cases discussed above.
Again, hereisthe top-level structure.

1. Get the argument value, N, from the stack.

2. If (N<1)then
Set thereturn valueto 1
B FDONE

3. If (N> 2) then
Handle the recursive call and return from that call.

4, FDONE: Manage the return from the function

Page 422 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

DOFACT Part 2: Handlingthe Casefor N<1
Here is the startup code and the code to return the value for N < 1.

DOFACT STKPOP R7, R CGET THE ARGUMENT AND EXAM NE
STKPUSH R7, R BUT PUT I T BACK ONTO THE STACK

C R/ =F1 'S THE ARGUMENT BI GGER THAN 1
BH FDO T YES, WE HAVE A COVPUTATI ON

*

*N=1
L R4, =F T NO, JUST RETURN THE VALUE 1
STKPOP R7, R ARG IS NOT' USED, SO PCOP IT
B FDONE AND RETURN

The startup code uses STKPOP followed by STKPUSH to get the argument value into
register R7 without removing it from the stack. That value is then compared to the constant 1.
If the argument has value 1 or less, thereturn valueis set at 1. Note that the argument is still
on the stack. It must be popped so that the return address will be at the top of the stack and
useable by the return code at FDONE.

DOFACT Part 3: Handling the Casefor N > 1
Hereisthe codefor thecase N > 1.

FDO T S R7,=F 1 SUBTRACT 1 FOR NEW ARGUVMENT
LA 8, FRET GET THE ADDRESS OF RETURN
STKPUSH R8, R STORE NEW RETURN ADDRESS
STKPUSH R7, R NOW PUSH NEW ARG ONTO STACK

B DOFACT MAKE RECURSI VE CALL
FRET L R2,=F 0O
STKPCOP R7, R POP TH S ARGUMENT FROM STACK
*HERE
* R7 CONTAINS THE VALUE N
* R4 CONTAINS THE VALUE FACT(N — 1)
*
MR 6, 4 PUT R4*R7 | NTO (R6, R7)
LR 4,7 COPY PRODUCT | NTO R4

The code then falls through to the “finish up” code at FDONE. Note the structure of
multiplication. Remember that an even—odd register pair, here (6, 7) is multiplied by another
register.

Sample Run for DOFACT
We shall now monitor the state of the stack for atypical call to the recursive function
DOFACT. Hereisthe basic structure for the problem. First we sketch the calling code.

LA 8, Al STATEMENT AFTER CALL TO SUBROUTI NE
STKPUSH R8, R PLACE RETURN ADDRESS ONTO STACK
B DOFACT BRANCH DI RECTLY TO SUBROUTI NE

Al The next instruction.

Page 423 Chapter 23 Revised January 4, 2010

Copyright © by Edward L. Bosworth, Ph.D.

Hereis the structure of the recursive function DOFACT

DOFACT Check val ue of argunent
Branch to FDONE i f the argunent < 2.
Cal | DOFACT recursively
FRET Return address for the recursive call
FDONE Cl ose—up code for the subroutine

More on the Stack

We now relate the idea of the Stack Top to our use of the SP (Stack Pointer).
The protocol used for stack management is called “ post increment on push”.
In ahigh level programming language, this might be considered as follows.

PUSH ARG MJ[SP] = ARG POPARG SP=SP-1
SP=SP+1 ARG = M[SP]
14— SP The status of the stack is always that the SP points to the

Arg [4—Stack Top location into which the next item pushed will be placed.

RA On entry to the function, there is an argument on the top of the
stack. The return addressis the value just below the argument.

When the argument is popped from the stack, we are left with

Arg [+—SP the SP pointing to the argument value that has just been popped.
RA |4=—Stack Top Thereturn address (RA) is now on the stack top and available
to be popped.
Arg After the RA has been popped, the SP points to its val ue.
RA [¢+—SP Whatever had been on the stack is now at the Stack Top.
4+— Stack Top
Page 424 Chapter 23 Revised January 4, 2010

Copyright © by Edward L. Bosworth, Ph.D.

Consider DOFACT For the Factorial of 3
Remember our notation for return addresses. A1 for the calling routine.

le—sp

+—Top

FR for the return in DOFACT.
Thisisthe status of the stack when DOFACT isfirst called.

The return address (A1) of the main program was pushed
first, and then the value (3) was pushed.

?

R4

le—sp

2

+—Top

FR

3

Al

?

R4

The vauein R4, used for the return value, is not important.

It is noted that 3 > 1 so DOFACT will be called with avalue
of 2. When thefirst recursive call is made, the stack statusis
shown at left. Thetop of the stack has the value 2.

The return address (FR) of the DOFACT function was

first pushed, followed by the argument value.

The Next Recursive Call To DOFACT
On the next call to DOFACT, the value at the top of the stack isfound to be 2.

|¢SP
1 |¢=Top
FR
2
FR
3
Al]
R4
[—sP
1 |[¢«Top
FR
2
FR
3
Al [T
R4
Page 425

It is noted that 2 > 1.

The argument value for the next recursive call is computed,
and made ready to push on the stack.

The return address (FR) for DOFACT is pushed onto the stack.
Then the value of the new argument (1) is pushed onto the stack.

DOFACT iscalled again.

In this next call to DOFACT, the value at the top of the stack is
examined and found to be 1.

A return valueis placed into the register R4, which has been
reserved for that use.

Thisisthe status of the stack just before the first return.

It will return to address FRET in the function DOFACT.

Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The First Recursive Return
Thefirst recursivereturn isto address FR (or FRET) in DOFACT. Hereisthe situation just

after the first recursive return.

| [&SP
2 4+— TD[) The argument value for thisinvocation is
FR REtlll'll to FR now at the top of the stack.
J
Al 1
R4
+—SP The value 2 is removed from the stack, multiplied
. by the value in R4 (which is 1) and then stored in R4.
3 | < Top
AI RE turn to FR The return address (FR) had been popped from the
stack. The function returnsto itself.
2
R4
The Next Recursive Return

The next recursive return isto address FR (or FRET) in DOFACT.
Hereisthe situation just after the first recursive return.

3
Al

3
Al
i?
i}

Page 426

+—SP Here is the status of the stack after this

return. The argument value is on the top
g Tﬂp of the stack, followed by the return address
Return to FR for the main routine.

2
R4
On thefinal return, the value 3 has been removed
—SPp from the stack, multiplied by the value in R4, and
b the new function value (6) is placed back into R4.
+—Top

Return to A1 Thereturn address (A1) has been popped from the
stack and the function returns there.
6

R4

Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The Subroutine Linkage Problem

When a subroutine or function is called, control passes to that subroutine but must return
to the instruction immediately following the call when the subroutine exits. There are two
main issues in the design of a calling mechanism for subroutines and functions. These fall
under the heading “ subroutine linkage” .

1. How to passthe return address to the subroutine so that, upon completion,
it returns to the correct address. We have just discussed this problem.

2. How to pass the arguments to the subroutine and return values from it.

A function isjust a subroutine that returns avalue. For functions, we have one additional
issue in the linkage discussion: how to return the function value. This presentation will be a
bit historical in that it will pose a number of linkage mechanismsin increasing order of
complexity and flexibility. We begin with a simple mechanism based on early CDC-6600
FORTRAN compilers.

Pass-By-Value and Pass-By—Reference
Modern high-level language compilers support a number of mechanisms for passing
arguments to subroutines and functions. These can be mimicked by an assembler.

Two of the most common mechanisms are:
1. Pass by value, and
2. Pass by reference.

In the pass—-by—Vval ue mechanism, the value of the argument is passed to the subroutine. In
the pass—by-reference, it is the address of the argument that is passed to the subroutine,
which can then modify the value and return the new value. Suppose that we want to use
register R10 to pass an argument to a subroutine. That argument is declared as follows.

FWL DC F* 35’

The operative code would be as follows:

Pass by value: L R10,FW Load the value at FW
Pass by reference: LA R10, FW Load the address of FW

Returning Function Values
There is asimple solution here that is motivated by two facts.
1. Thefunction storesits return value asits last step.
2. Thefirst thing the calling code should do isto retrieve that value.

This simple solution is to allocate one or more registers to return function values. There
seem to be no drawbacks to this mechanism. Aswe have seen above, it works rather well
with recursive functions. The solution used in these lectures was to use R7 to return the
value.

Page 427 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The CDC-6600 FORTRAN solution was to use one or two registers as needed.

Register R7 would return either a single—precision result or the
low—order bits of a double—precision result.

Register R6 would return the high—order bits of the double—precision resuilt.
CDC Nerds note that the actual register names are X6 and X7.
Argument Passing: Version 1 (Based on Early CDC-6400 FORTRAN)

Pass the arguments in the general—purpose registers. Here we use the actual names of the
registers. X0 through X7. Register X0 was not used for areason that | cannot remember.

Registers X1 through X5 are used to pass five arguments.
Registers X6 and X7 are used to return the value of afunction.

Thisisavery efficient mechanism for passing arguments. The problem arises when one
wants more than five arguments to be passed. Thereis also a severe problem in adapting this
scheme to recursive subroutines. We shall not discuss this at present for two reasons.

1. Weshal meet theidentical problem later, in amore genera context.
2. None of the CDC machines was designed to support recursion.
Argument Passing: Version 2 (Based on Later CDC-6400 FORTRAN)
In this design, only two values are placed on the stack. Each is an address.
The return address.

The address of amemory block containing the number of arguments
and an entry (value or address) for each of the arguments.

MAIN

+—SP
+—Top

RA ¢

Args

‘_

This method allows for passing alarge number of arguments.

This method can be generalized to be compatible with the modern stack—based protocols.

Page 428 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Example Code Based on CDC-6600 FORTRAN

Here is IBM/System 370 assembly language written in the form that the CDC FORTRAN
compiler might have emitted. Consider afunction with three arguments. Thecall in
assembly language might be.

LA RS, FRET ADDRESS OF STATEMENT TO BE
EXECUTED NEXT.
STKPUSH R8, R PLACE ADDRESS ONTO STACK
LA R8, FARGS LOAD ADDRESS COF ARGUNMENT BLOCK
STKPUSH R8, R PLACE THAT ONTO THE STACK
B THEFUNC BRANCH DI RECTLY TO SUBROUTI NE
A0 DC F 3 THE NUMBER OF ARGUNMENTS
Al DS F HOLDS THE FI RST ARGUVENT
A2 DS F HOLDS THE SECOND ARGUVENT
A3 DS F HOLDS THE THI RD ARGUNVENT
FRET The instruction to be executed on return.

This cannot be used with recursive subroutines or functions.

The Solution: Use a Stack for Everything

We now turn our attention to a problem associated with writing acompiler. The
specifications for the high-level language state that recursion is to be supported, both for
subroutines and functions. It isvery desirable to have only one mechanism for subroutine
linkage. Some architectures, such asthe VAX-11/780 did support multiple linkages, but a
compiler writer would not find that desirable. Software designers who write compilers do
not like acomplex assembly language; they want simplicity.

We have a number of issues to consider:
1. How to handle the return address. This, we have discussed.
2. How to handle the arguments passed to the subroutine or function.
We have just mentioned this one.
3. How to handle the arguments and values |ocal to the subroutine or function.
The answer is simple: put everything on the stack.

Summary of Our Approach to Recursion

Here is an approach to recursive programming that is in step with the current practice. First,
we note that all recursive programming isto be written in ahigh-level language; thus, the
generation of the actual recursive code will be the job of a sophisticated compiler.

Consider afunction call, suchasY = F1(A, B, C).
1. Thecompiler will generate code to push the return address onto the stack.

2. Thecompiler will generate code to push the arguments on the stack. Either order,
left to right or right to left is probably OK, but it must be absolutely consistent.

3. Optionally, the compiler generates code to push the argument count onto the stack.

4. The compiler will have a convention for use of registersto hold return values.
This might be R4 for 16-bit and 32-hit integers, the register pair (R4, R5) for
64-bit integers, and floating—point register O for real number results.

Page 429 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Mathematical Functions and Subroutines

We now consider a problem that occurs mostly in scientific programming and occasionally in
business programming. Thisisthe evaluation of some of the standard functions, such as sine,
cosine, logarithm, square root, etc. There are two significant problems to be discussed.

1. Thefact that the basic arithmetic instruction set of any computer includes only
the four basic operations. addition, subtraction, multiplication, and division.

2. Thefact that no algorithm can be devised to produce the exact value of one of
these functions applied to an arbitrary input value.

A detailed discussion of our approach to addressing these difficultiesis based on some results
from Intermediate Calculus. In this discussion, these results will only be asserted and not
justified. One should study the Calculusin order to fully appreciate our reasoning here.

Definition of an algorithm:

Analgorithm is a sequence of unambiguous instructions for solving a problem.
The full definition must include the provision that the algorithm terminate for any
valid input. So we have the following definition of algorithm.

Definition: An algorithm isafinite set of instructions which, if followed, will accomplish a
particular task. In addition every algorithm must satisfy the following criteria

)] input: there are zero or more quantities which are externally supplied;
i) output: at least one quantity is produced;

iii) definiteness: each instruction must be clear and unambiguous,

iv) finiteness: if we trace out the instructions of the algorithm, then for

all valid cases the algorithm will terminate after afinite
number of steps;

V) effectiveness: every instruction must be sufficiently basic that it can in
principle be carried out by a person using only a pencil and
paper. It isnot enough that each operation be definite asin
(iii), but it must befeasible. [page 2, R_26]

The effectiveness criterion might be restated as it being possible to map each step in the
algorithm to asimple instruction in the assembler language. In particular, only the basic
steps of addition, subtraction, multiplication and division may be used in the agorithm.

Admittedly, there are manual procedures for other processes, such as taking the square root
of an integer, but these are based on the four primitive algebraic operations.

Sample Problems
In order to illustrate a variety of system subprograms, your author has chosen the following.

1. Raising area number to an integer power.
2. Computation of the cosine of an angle given in radian measure.
3. Computation of the square root of a non—negative real number.

In each of these cases, we shall first discuss the agorithm to be used by giving a description
in ahigh-level language. We then proceed to give the basis of afunction, writtenin IBM
System 370 assembler language. As often isthe case, certain necessary features related to
linkage to and from the calling program will be omitted.

Page 430 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Integer Exponentiation

Wefirst consider the problem of raising area number to an integer power. Unlike the more
general problem of raising a number to areal—number power (say X*®), this procedure can
be completed using only the basic operations of addition and multiplication.

The only issue to be addressed in the discussion of this problem is that of the time efficiency
of the computation. System programmers must pay particular attention to efficiency issues.

The basic problem isto take areal number A and compute F(A, N) = A for N> 0. The
simplest algorithm is easy to describe, but not very efficient for large values of N. In terms
commonly used for algorithm analysis, thisis called a*“brute force” approach.

Brute Force
Function F(A, N)
R=1 // R = Result, what a brilliant nane!
For K=1 to N Do
R=R* A
End Do
Return R

In assaying the computational complexity of this procedure, we note that the number of
multiplicationsis alinear function of the exponent power; specifically N multiplications are
required in order to compute the N™ power of areal number. Any competent system
programmer will naturally ook for a more efficient algorithm.

We now present a more time-efficient algorithm to compute F(A, N) = AN for N> 0.

This algorithm is based on representation of the power N as a binary number. Consider the
computation of A*2. In 4-bit binary, we have 13 = 1101 = 18 + 1e4 + 162 + 1lel. What we
aresaying isthat A® = A%eA%e A% A, Our new agorithm is based on this observation.

Function F(A, N)
R=1
AP = A /[l AP is a to the power P
Wiile (N > 0) Do
NR = N nod 2
If NR=1 Then R= R * AP
AP = AP * AP
N=N/ 2 /1l Integer division: 1/2 = 0.
End Wil e
Return R

One can show that the time complexity of thisagorithm islogyx(N). Theimplementation of
this algorithm in assembler language appears simple and straightforward. The efficient
implementation of this algorithm takes a bit more thought, but not much.

In our studies of agorithm analysis and design, we identify and count the primary operations
in any algorithm. Here the key operations appear to be multiplication and division. In actua
systems programming, we must pay attention to the amount of time that each operation takes
in order to execute; multiplication and division are costly in terms of time. Can we replace
either operation with afaster, but equivalent, operation?

Page 431 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

As the multiplication involves arbitrary real numbers, there is nothing to do but pay the time
cost and be happy that the number of these operations scales aslogy(N) and not as N. But
note that the division is always of a non—-negative integer by 2. Here we can be creative.

Consider the following code fragment, adapted from the algorithm above. Without changing
the effect of the code, we have rewritten it as follows.

NR = N nod 2

N=N/ 2 /1l Integer division: 1/2 = 0.
If NR=1 Then R= R * AP

AP = AP * AP

What we shall do in our implementation is replace the integer division by alogical right shift
(double precision), using an even—odd register pair. Let us assume that the integer power for
the exponentiation isin R4, the even register of the even—odd pair (R4, R5). Hereisthe code.

SR R5R5 /] Set register R5 to O.
SROL R4, 1 /1 Shift right by 1 to divide by 2
CH R5, =H 0O’ // 1s the old value of R4 even?
BE | SEVEN /1 N nod 2 was O.
MDR F2, F4 /Il R=R?* AP

| SEVEN MDR F4, F4 [l AP = AP * AP

Let’swrite abit more of the code to see the basic idea of the algorithm. We all know that
any number raised to the power O gives the value 1; herewesay AN = 1, if N <0. Theonly
general implementation of the algorithm will use the floating—point multiplication operator;
here | arbitrarily choose the double—precision operator VDR.

Here are the specifications for the implementation.
On entry Integer register R4 contains the integer power for the exponentiation.
Floating point register 2 contains the number to be raised to the power.

On exit Floating point register O contains the answer.

Here is a code fragment that reflects the considerations to this point. In this code fragment, |
assumethat | have used the equate to set FO to 0, F2 to 2, F4 to 4, and F6 to 6, in the same
manner in which the R symbols were equated to integer register numbers.

LD FO,=D 0.0 /1 Cear floating point register O
CD F2,=DO0.0 /1l 1s the argunent zero?

BE DONE /'l Yes, the answer is zero.
LD FO,=D'1.0’ [/ Default answer is now 1.0
LDR F4, F2 /1 Copy argunent into FP register 4
CH R4, =HO /1l 1Is the integer power positive?
BLE DONE /1 No, we are done.
SR R5R5 /[l Set register R5 to O.
SRDL R4, 1 /1 Shift right by 1 to divide by 2
CH R5, =H 0O’ // 1s the old value of R4 even?
BE | SEVEN /1 N nod 2 was O.
MDR F2, F4 /Il R=R* AP

| SEVEN MDR F4, F4 [l AP = AP * AP

Page 432 Chapter 23 Revised January 4, 2010

Copyright © by Edward L. Bosworth, Ph.D.

All we have to do now isto put thiswithin aloop structure. Hereiswhat we have.

POVNER LD FO,=D 0.0 /[l Clear floating point register O
CD F2,=DO0.0 /1l 1s the argunent zero?

BE DONE /'l Yes, the answer is zero.

LD FO,=D 1.0 /1l Default answer is now 1.0

LDR F4, F2 /1 Copy argunent into FP register 4
TOP CH R4, =H O’ /1 Is the integer power positive?

BLE DONE /1 No, we are done.

SR R5 R5 /'l Set register R5 to O.

SRDL R4, 1 /1 Shift right by 1 to divide by 2

CH R5 =HCO /1 Is the old value of R4 even?

BE | SEVEN /1 N nmod 2 was O.

MOR F2, F4 /Il R=R?* AP
| SEVEN MDR F4,F4 Il AP = AP * AP

B TOP /'l Go back to the top of the | oop
DONE BR R14 /1l Return with function val ue.

Again, we should note that the provision for proper subroutine linkage in the above code is
minimal and does not meet established software engineering standards. All weneedisa
provision to save and restore the registers used in this calculation that were not set at the call.

Before we move to consideration of the common algorithm for computing the square root of
an arbitrary number, we shall consider the more general problem of raising a number (rea or
integer) to an arbitrary real power. Thisissignificantly more difficult that that of raising a
number to an integer power, or to a specific rational—-number power such as Y2

Let A be an arbitrary positive number. Specifically, itsvalueisnot zero. We consider the
problem of computing F(A, X) = A%, where X isan arbitrary real number. The genera way
is based on logarithms and exponents. Because the values are more easily computed, most
implementations use natural logarithms and the corresponding exponentiation.

Let B =In(A), the natural logarithm of A.

Then A* = (€®) = €®), where e ~ 2.71818, is the base for the natural logarithms. Thus,
the basic parts of the general exponentiation algorithm are as follows.

1. Getrid of the obvious cases of A = 0.0 and X = 0.0.
Decide how to handle A < 0.0, as the following assumes A > 0.0.

2. Takethe natural logarithm of A; call it B = In(A).
3. Multiply that number by X, the power for the exponentiation.

4. Compute €®X), and thisisthe answer. Note that there is awell-known agorithm

based on simple results from cal culus to compute € to any power.
If it makes sense, adjust for the sign of A.

The point hereis that the general exponentiation problem requires invocation of two fairly
complex system routines, one to calculate the natural logarithm and one to compute the value
of €%, Thisismuch slower than the computation of an integer power. Remember that fact
when writing high—level languages that require exponentiation.

Page 433 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Evaluating Transcendental Functions

We now discuss one standard way of computing the value of atranscendental function, given
the restriction that only the basic four mathematical operations (addition, subtraction,
multiplication, and division) may be used in the implementation of any algorithm.

This standard way consists of computing an approximation to the result of an infinite series.
In effect, we sample amoderately large number of terms from the infinite sequence, sum
these terms, and arrive at aresult that has acceptable precision. As noted above, the only
way to view evaluation of an infinite series as an algorithm is to state arequired precision.

Here are some of the common infinite series representations of several transcendental
functions. Each series can be derived by use of a number of standard cal culus techniques.
The basic idea here is that of convergence, which denotes the tendency of an infinite seriesto
approach alimiting value, and do so more exactly as the number of terms evaluated increases.

In more precise terms, consider afunction F(X) which can be represented by the infinite
series F(X) = To(X) + T1(X) + To(X) + + Tn(X) + ..., representing the true function value.
Define Fy(X) = To(X) + T1(X) + T2(X) + + Tn(X) asthat value obtained by the
summation of thefirst (N + 1) terms of the infinite series.

A seriesissaid to converge if for any positive number € > 0 (representing a desired accuracy),
we can find an integer No such that for all N > No, we have |F(X) - Fn(X)| < €. Therearea
few equivalent ways to state this property; basically it states that for any realistic precision,
oneis guaranteed that only a finite number of the terms of the infinite series must be
evauated. For the trigonometric functions, the input must be in radians (not degrees).

SIN(X) = X = X¥31 + X°/5! = X I71 + X%91 — ...+ (=1)NeX™N*Y/(2N+1)! ...
COS(X) = 1— X221 + X441 — X°/6! + X¥/8! — ...+ (<1)NeXZM/(2N)! ...
EXP(Z2)=1+Z+Z%2' +Z%3 + 2441 + ... + ZNIN! + ...

LN(1+Z) =Z - Z72/2+ Z3/3-Z4/4+— (<Z)"IN + ...
Hereeither Z =1 or |Z| < 1. Otherwise, the seriesis not useful.

Consider the problem of evaluating the sine of an angle. Here are afew of the well-known
values: SIN(0°) = 0.00, SIN(90°) = 1.00, SIN(180°) = 0.00,and SIN(-90°) =-1.00. Asnoted
just above, the formulae are specific to computations for angles in radians. For this reason,
some systems offer trigonometric functions in pairs. For the sine computation, we may have
SIN(B®) sineof the angle, which is expressed in radians, and
SIND(0) sine of the angle, which is expressed in degrees.

Given an anglein degrees, the first thing that any computation will do isto convert the angle
to equivalent radian measure. The one exception to that would be first to translate the angle
into the range —180° < 6 < 180°, by repeated additions or subtractions of 360°. Itisawell
known property of al trigonometric functions that, given any integer N (positive, negative, or
0) and angle 6 expressed in degrees, we have F(0) = F(0 + Ne360) = F(6 — Ne360). There
may be some numerical advantage to doing this conversion on the degree measure.

Page 434 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

The next step, when handling an angle stated in degrees is an immediate conversion to radian
measure. As 180° = & radians, we multiply the degree measure of an angle by
(m / 180) ~ 0.0174 5329 2519 9432 9576 9237 to convert to radian measure.

Given an angle in radian measure, the first step would be to convert that measure into the
standard range —n < 6 < &, by repeated additions or subtractions of «. Thisfollowsthe
property stated above for trigonometric functions: F(0) = F(0 + 2eNex) = F(0 — 2eNer).
The attentive reader will note that each “ standard range’ listed above has an overlap at its
ends; basically —180° and 180° represent the same angle, as do —= and .

Oncethe angleis expressed in radians and given by a measure in the standard range, which

is—n < 0 < 7, the next step in computation of the sine isto reduce the range to the more

usable (-t / 2) < 06 < (n/ 2) by adapting the standard formulafor SIN(X + Y), whichis
SIN(X£Y) =SIN(X)eCOS(Y) £+ COS(X)eSIN(Y). The common variants are:

SIN(n/2—-0) = SIN(n/2)eCOS(0) — COS(n/2)eSIN(6)
= 16COS(0) — 0eSIN(0) = COS(0); also COS(r/2 — 0) = SIN(0).

SIN(O - n/2) = SIN(0)eCOS(n/2) — COS(0)eSIN(1/2)
= SIN(0)e0 — COS(0)e1 = — COS(0).

SIN(t—0) = SIN(r)eCOS(0) — COS(n)eSIN(6)
= 0eCOS(0) — (~1)eSIN(0) = SIN(0).

SIN©O-7m) = SIN(0)eCOS(r) — COS(8)eSIN(r)
= SIN(0)s(~1) — COS(0)e0 = — SIN(0)

The goal, and end result, of all of thistrigonometry is to reduce the absolute value of the
radian measure of the angleto |0] < n/2. Thisalows an easy computation of the number of
terms to be computed in the otherwise infinite series, depending on the required accuracy.

We have: SIN(X) = X = X¥/3! + X°/50 = X171 + X991 — ...+ (=1)NeXZN* Y (2N+1)! ...

Note that the N™ term in this seriesis written as Ty = (-1)NeX*"*Y/(2N+1)!. A standard result
of calculus indicated that the maximum error from terminating this series at Ty is given by
T = XPY*(2N+1)!, where [X] is the absolute value of X.

Put another way, let SIN(0) represent the exact value of the sine of the angle 0, represented
inradians and let Sy(0) = 6 — 6%/3! + 0°/5! — 07/7! + 0%9! — ...+ (=<1)Ne0™*Y/(2N+1)!
represent the finite sum of the first (N + 1) termsin theinfinite series. We are guaranteed
that the maximum error in using this finite sum as the sine of the angle is given by

ISIN(B) — Sn(0)] < IXPN*H(2N+1)!.

More specificaly, for |0| < n/2, we are guaranteed that any computational error is bounded
by |SIN(B) — Sn(0)| < (n/2)™*Y/(2N+1)!. Given that the factor (n/2) is a bit tedious to use,
and the fact that (/2) < 2, we can say that [SIN(0) — Sx(0)] < (2)™*Y/(2N+1)!

Page 435 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

Theresultsfor our error analysis are given in the following table. Note that seven terms are
all that isrequired for aresult to be expressed in the IBM E (Single Precision Floating Point)
format, while 13 terms are more than good enough for the IBM D (Double Precision Floating
Point) format. The extended precision floating point may require afew more terms.

N 2N +1 (2)2N*1 (2N+1)! Max Error | Significant Digits
3 7 128 5040 0.025 1
5 11 2048 39,916,800 5.1307¢107° 4
7 15 32,768 1.3076710% 2505901078 7
9 19 524,288 121645010 | 4.30999¢10 11
11 23 8,388,608 2.58520010%° | 3.24486e1071° 15
13 27 134,217,728 | 1.08888¢10°° | 1.232614¢10°% 19

As an example of the fast convergence of the series, | consider the evaluation of
the cosine of 1.0 radian, about 57.3 degrees.

Look at thetermsin the infinite series, writtenas To+ To+ T4+ Tg+ Tg + ...,
and construct the partial sums.

N=0 To =+ 1.00000000
N=2 X?=10 To=-1/2 = — 0.50000000
N=4 X*=10 Ta=+1/24 = + 0.04166666
N=6 X®=10 Te=-1/720 =—0.00138889
N=8 X®=10 Tg=+1/40320 =+ 0.00002480

Theterms are decreasing fast. How many terms do we need to evaluate to get a specified
precision? Answer: Not many.

The answer for COS(1.0), after fivetermsin the seriesis 0.54030257.
My calculator computes the value as 0.540302306.

Note the agreement to six digits. Assuming that the value from my calculator is correct,
the relative error in this series sum approximation is 1.000 000 488 615, or a percentage
error of 4.89e10°%. After afew moreterms, this result would be useable almost anywhere.

The absolute error in the above, assuming again that my calculator is correct,

isgiven by the difference. 0.000 000 264.

Comparison to the value 0.000 024 800, which is the maximum theoretical error,
shows that our series approximation will serve very well over awide range of arguments.

Aswe have covered more than enough Assembler Language syntax to write the loop, there
is no need to write the code for this computation here. The reader may take thisasan
exercise, which might actually be fun.

The structure of the computation would be aloop that sequentially builds the partial sums
from the terms as shown above. The only real question is the termination criterion for the
computation loop. There are two useable options.

1. Terminate after afixed number of terms have been cal cul ated.
Thirteen terms should be more than adequate.
2. Terminate after the absolute value of the calculated term drops below a given value.

Page 436 Chapter 23 Revised January 4, 2010
Copyright © by Edward L. Bosworth, Ph.D.

