
Page 377 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Chapter 20: Subroutine Linkage

We now begin discussion of subroutine linkage, which is the way in which data and control are
passed from a calling program to a called subprogram. We start by considering simple
subroutines without large argument blocks. We should mention that the term “subprogram”
can be used generically to mean “subroutine”, “procedure”, or “function”.

In general, the term function refers to a subprogram that returns a value that can be used as a
part of an assignment statement. Common functions include the trigonometric functions and the
mathematical ones, such as square root. Here is a function call in the style of FORTRAN.

Y = SIN(X)

In general, the term subroutine refers to a subprogram that may or not return a value, but
usually not a value that can be used in an assignment statement typical of function calls. Some
programming languages use the term “procedure” or “function returning void” to replace the
older term “subroutine”. A good example of such a subroutine would be the following.

QUADRATIC (A, B, C, X1, X2)

We might specify that the above subroutine would produce the roots of the quadratic equation
written in the form AX2 + BX + C = 0. The arguments A, B, and C would be passed to
the subroutine, which would then calculate the two roots and return them in X1 and X2.

Subroutines and functions are normally written to facilitate repetitive tasks. Indeed the concept
arose in the late 1940’s and was named the Wheeler Jump” (EDSAC, 1952) after David J.
Wheeler, who developed the concept while working as a graduate student. It is worth noting
that, while many early computing machines were developed as exercises in engineering, the
EDSAC was developed solely to serve as a platform for research in computer programming.
The development of the subroutine was one of many innovations associated with the EDSAC.

Early operating systems began as collection of subroutines to facilitate handling of input and
output devices, mainly line printers. Each programmer had to write his own (yes, they were
almost exclusively male) I/O procedures. As these were tedious to write correctly, programmers
began to share code; these quickly evolved into a shared subroutine library.

When batch programming became common, the computer needed a control program to
automate the processing of a sequence of jobs, read and processed one after another. This
control program was merged with a set of subroutines for Input/Output handling and
routines for standard mathematical functions to create the first operating system.

Subroutines and/or functions can be invoked for side effect only or in order to compute
and return results. Many of the subroutines common in assembler programming are called for
side effect – to manage print position on a page and issue a new page command when necessary.



S/370 Assembler Language Standard Subroutine Linkage

Page 378 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Subroutine Linkage: Instructions
The language requires two instructions associated with subroutines: one to call the subroutine
and one to affect a return from the subroutine. The instruction used is either BAL (Branch and
Link) or BALR (Branch and Link, Register). Each instruction stores a return address in a
designated register, which is accessed by the BR instruction used to return from the subroutine.

The BAL instruction is a type RX instruction, with opcode X‘45’. This is a four–byte
instruction of the form BAL R1,D2(X2,B2). The object code has the format.

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X‘45’ R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code. The second byte contains two 4–bit fields,
each of which encodes a register number. The first 4–bit field, denoted R1, denotes the register
to hold the return address. The second 4–bit field, denoted X2, contains the optional index
register. The next two bytes contain the base/displacement part of the address.

The format of the instruction is BAL Reg,Address
An example of such an instruction is BAL 8,P10PAGE

The first argument is a register number to be used for subroutine linkage. We explain this more
fully in just a bit. The second argument is the address of the first instruction in the subroutine.
There are other standards for this argument, but this is the one that IBM uses.

The BALR instruction is a type RR instruction, with opcode X‘05’. This is a two–byte
instruction of the form BALR R1,R2.

Type Bytes Operands 1 2
RR 2 R1,R2 X‘05’ R1 R2

The first byte contains the 8–bit instruction code. The second byte contains two 4–bit fields,
each of which encodes a register number. The first register, denoted R1, is used as in the BAL
instruction, to hold the return address. The second register, denoted R2, is used to hold the
address of the called routine. Later, we shall see that general–purpose registers R14 and R15
are favored for use by BALR in this context. The following two code sequences are equivalent.

BAL R8,P10PAGE

L R9,=A(P10PAGE)
BALR R8,R9

Each of the BAL and BALR instructions loads the address of the next instruction into the
register denoted R1, and then executes a branch to the indicated address. As we shall see, the
BAL and BALR facilitate subprogram calling but are not necessary for doing so.

There is an important exception to the BALR instruction. If the second register is 0, the
instruction just loads the first register with the address of the next instruction and then executes
it. No branch is taken, as register 0 cannot hold an address. We shall see code such as:

BALR R12,0 Establish addressability by storing the
USING *,R12 address START in R12 and using it as

START LA R2,SAVEAREA the base address. No branch is taken.



S/370 Assembler Language Standard Subroutine Linkage

Page 379 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

We now present equivalent code sequences for calling a subroutine with the name NUMOUT.
Technically speaking, it is the subroutine at the address associated with the label NUMOUT, but
we may allow ourselves to speak loosely on occasion.

At present the code sequences written without the use of either BAL or BALR will serve only to
illustrate the functioning of those two instructions. We shall use them in another context later.

We first investigate the standard instruction BAL, shown here in a fragment of code. The BAL
instruction functions by storing the address NUMRET into general–purpose register R8 and then
branching unconditionally to the address NUMOUT.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
BAL R8,NUMOUT PRODUCE THE FORMATTED SUM

NUMRET MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Here is the equivalent code, written with a B (unconditional branch) instruction.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
LA R8,NUMRET LOAD THE ADDRESS OF THE INSTRUCTION

IMMEDIATELY FOLLOWING THE BRANCH
B NUMOUT BRANCH DIRECTLY TO NUMOUT

NUMRET MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Here is the equivalent code, written with the more traditional BALR instruction.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
LA R9,NUMOUT GET THE TARGET ADDRESS
BALR R8,R9 PRODUCE THE FORMATTED SUM

NUMRET MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Here is the equivalent code, written with a BR (unconditional branch) instruction.

MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
LA R9,NUMOUT GET THE TARGET ADDRESS
LA R8,NUMRET LOAD THE ADDRESS OF THE INSTRUCTION

IMMEDIATELY FOLLOWING THE BRANCH
BR R9 BRANCH DIRECTLY TO NUMOUT

NUMRET MVC DATAPR,THENUM AND COPY TO THE PRINT AREA

Returning from the subroutine
This instruction is used to return from execution of the subroutine. It is an unconditional
jump to an address contained in the register.

The format of the instruction is BR Reg
An example of such an instruction is BR R8

The first thing to note is that the register used in the BR will, under almost all circumstances, be
that used in the BAL or BALR instruction calling the subroutine. A bit of reflection will show
that this mechanism, by itself, will not allow the use of recursive subroutines. Actually, there is
a workaround, but it involves the use of a separate register for each level of subroutine nesting.



S/370 Assembler Language Standard Subroutine Linkage

Page 380 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

A Standard Example
Here is an example of subroutine invocation in which the called program is in the same CSECT
as the calling code. In such cases, the overhead of subroutine invocation is quite small. In
particular, the subroutine has direct access to all data in the calling program.

OPEN (FILEIN,(INPUT))
OPEN (PRINTER,(OUTPUT))
PUT PRINTER,PRHEAD
GET FILEIN,RECORDIN

*
A10LOOP BAL R8,B10DOIT Call the subroutine

GET FILEIN,RECORDIN This address stored in R8.
B A10LOOP

A90END CLOSE FILEIN
CLOSE PRINTER
EXIT Macro to exit the program

*
B10DOIT MVC DATAPR,RECORDIN

PUT PRINTER,PRINT
BR R8 Return to address stored in

* R8 by the BAL instruction.

Functions and Subroutines
The assembly language programmer will generally speak of “subprograms”. The concepts of
subroutines and functions are generally associated with higher level languages, though they are
really just programming conventions placed on the use of the assembly language.

Given a programming language, such as the IBM Assembler, that provides support for
subprogram linkage, all that is required to support functions is the designation of one or
more general–purpose registers to return values from the function. This designation is simply a
programming standard, followed by all programmers working on a project.

In CDC–7600 Assembly Language, the two designated registers were X6 and X7. The usage
depended on the precision of the function result, which was usually a floating–point value.

Single–precision results Register X7 would return the value.

Double–precision results Register X7 would return the low–order 32 bits
Register X6 would return the high–order 32 bits.

As a result, any subroutine could be called as a function. What one got as a result would be the
value that the subroutine last placed in X7 or both X6 and X7. While this was chancy, it was
predictable. It was the sort of thing programming geeks liked to do.

Control Section: CSECT
A control section (CSECT) is, by definition, a block of coding that can be relocated within the
computer address space without affecting the operating logic of the program. A large system
may comprise a number of control sections; each independently assembled.

Every program contains a large number of references, either to variables or addresses. In a large
system, individual control sections may contain references to variables or addresses not found in
the local assembly unit. These are links to other control sections.



S/370 Assembler Language Standard Subroutine Linkage

Page 381 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

A link editor edits the links; it searches each CSECT for references that cannot be
resolved locally and attempts to find matches in other CSECTS in the system.

As an example, suppose your HLL program contains the following line of code.

Y = 100*SIN(X)

It is not likely that your program contains a function called SIN, presumably the sine.
The linkage editor will find the appropriate function in the RTS library and resolve the
reference by building the link from your program to the system routine.

Declaring External References
There are two possibilities if your code contains a reference that cannot be found within the
local CSECT:

1. You forgot to declare the reference and have an error in your program.

2. The reference is to a variable or address in another CSECT.

In order to distinguish between the two cases, one must explicitly declare a reference as
external if it is not declared within the local CSECT. In order to understand the processing of
external labels, we must take a detour and review the output of the assembler.

The main job of the assembler is to take an assembler language program in text form and change
it into a sequence of machine language statements that can be prepared for execution by the link
editor. Were this the only function of the assembler, one could not support external symbols.

There are always at least two outputs of the assembler, which may be loosely called “data” and
“metadata”. The data emitted (if one chooses to use this term) form the machine language code.
The metadata emitted describe the machine code and add other information required for
successful link editing. Part of these metadata is a listing of all external symbols, contained in
the ESD (External Symbol Dictionary) [R_18, pages 538 – 544]. It is this metadata that allow
the link editor to build a software system from a set of independently assembled modules.

There are two declarations used with regard to external symbols: EXTRN and ENTRY. For
subprograms, these will be used in pairs. One module will declare a symbol as an ENTRY and
other modules will declare their use of that symbol by declaring it as an EXTRN.

The format of the EXTRN statement is just a list of names, as in the following.

EXTRN NAME1,NAME2,….

This directive informs the assembler that each of the names in the list is referenced within this
assembly unit but is defined externally. This informs the linkage editor that an appropriate
address to be associated with each name must be communicated to the containing program at
link time, otherwise the symbol will become undefined.

The ENTRY instruction identifies symbols defined in the given source module as “external” so
that they can be referenced by another source module. Symbols defined in an ENTRY statement
are called “entry symbols”. The form of the ENTRY instruction is simple.

ENTRY NAME1,NAME2,….



S/370 Assembler Language Standard Subroutine Linkage

Page 382 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

In essence, this is a list of symbols that the assembly unit will make available for use by other
assembler units. Each entry symbol is entered into the ESD (External Symbol Dictionary) for
access by the linkage editor. Any symbol used as the name entry of a START or CSECT
instruction is automatically considered an entry symbol and is placed into the ESD, even if not
explicitly identified by an ENTRY instruction [R_17, page 182].

An entry symbol may be referenced in the module in which it is declared.

An example of the expected use of this pair of assembler directives is shown below.

* CALLING PROGRAM
EXTRN SUBA SYMBOL IS USED HERE, DEFINED ELSEWHERE

PROG1
L R15,ADRSUBA LOAD R15 WITH ADDRESS
BALR R14,R15 BRANCH TO SUBROUTINE

ADRSUBA DC A(SUBA) ADDRESS OF THIS EXTERNAL SYMBOL
END PROG1

* CALLED PROGRAM
ENTRY SUBA

SUBA Executable code associated with the symbol

BR R14 RETURN TO CALLING PROGRAM
END

In this example, the symbol SUBA would be found twice in the ESD, once as an external symbol
and once as an entry symbol.

Thus, the EXTRN and ENTRY statements cause their respective arguments to be placed in the
ESD. As long as the linkage editor is provided with an entry symbol (defined by ENTRY) to
match each external symbol (defined by EXTRN), all symbolic linkage will be handled properly
by the linkage editor, and the executable system can be built.

The V Data Type
We return to the key issue associated with the use of an external symbol. Such a symbol would
be declared as an entry symbol in the assembler unit in which it is defined. Most of what we
have to deal with is how to declare such a symbol in an assembler unit in which that symbol is
referenced but not defined. We have seen the use of the EXTRN declaration for this purpose.

An alternate way to handle this external declaration is to declare the symbol in the calling unit
as a V-type address constant. This defines the symbol as an externally defined address.
Recall that all “variable” references are really address references that access the contents of the
address. Again, there are two ways to handle this. the first is to use a declaration of the form.

Symbolic_Name DC V(Name)

This might be something like the following.
ADRSUBA DC V(SUBA)

Where the symbol SUBA is declared elsewhere as an entry symbol.



S/370 Assembler Language Standard Subroutine Linkage

Page 383 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The code to use this construct might appear as follows.

* CALLING PROGRAM

L R15,ADDRSUBA
BALR R14,R15

ADDRSUBA DC V(SUBA)
END

But this seems to be done rarely, if at all. Invocation of a subroutine found in a separate CSECT
is achieved by use of the standard system macro, CALL. We give an example, and expand it.
Note that the address of the called routine is presented as a literal of the proper type. The literal
=V(SUBA) is called an external address constant. At assembly time, the constant is assigned
the value X‘0000’, which is changed by the linkage editor.

CALL SUBA
+ L 15,=V(SUBA) LOAD ADDRESS OF EXTERNAL REFERENCE
+ BALR 14,15 STORE RETURN ADDRESS INTO R14

The Save Areas
One key design feature when developing subroutines and functions is the minimization
of side effects. One particular requirement concerns the general purpose registers. This design
requirement is that after the return from a called subprogram, the contents of the general
purpose registers be exactly the same as before the call.

The only exception to this rule is the use of a general purpose register for the return of a
function value. In this case, the design of each of the calling routine and the called routine
explicitly allows for the value of that one specified register to be changed.

Save and Restore
The strategy used is that each routine (including the main program) will save the contents of all
but one of the general purpose registers on entry and restore those on exit. Recall that the main
program is handled by the operating system as if it were a subprogram. This strategy has
evolved from an earlier strategy in which a developer would save the contents of only those
registers to be used explicitly in the subprogram. It was found to be better practice to have
every subprogram start with a uniform set of assumptions rather than explicitly monitoring
every register used by the subprogram.

In the statically allocated, non–recursive world of IBM assembler programs, each routine
will declare an 18–fullword “save area”, used to save important data. There are three important
system macros one should use when invoking a standard external subprogram. These are
CALL, SAVE, and RETURN. These are described in IBM z/VSE System Macros Reference
[R_23, pages 26, 338, and 339], Peter Abel’s book [R_02, pages 346 – 353], and elsewhere.

The Save Area
Each assembler module should have a save area, which may be declared as follows.
The important feature is that eighteen full words (72 bytes) are allocated.

SAVEA DS 18F



S/370 Assembler Language Standard Subroutine Linkage

Page 384 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The structure of the save area is shown in the table below [R_02, page 346].

Word Displacement Contents of the Word

1 0 This is no longer used.
It was once used by PL/1 programs.

2 4 The address of the save area of the calling program.
Saved here to facilitate error processing.

3 8 The address of the save area of any subprogram called.
The subprogram called will update this value.

4 12 The contents of general–purpose register 14,
which contains the return address to the calling program.

5 16 The contents of general–purpose register 15, which
contains the address of the entry point in this program.

6 20 The contents of general–purpose register 0.
7 – 18 24 These twelve fullwords contain the contents of

general–purpose registers 1 through 12.

The Standard Sequence
Recalling that the user program is treated by the z/OS as a subprogram, we first sketch the
sequence of events associated with a standard subprogram invocation. It is usually advisable to
adhere to these standards in writing programs, as they avoid a number of bothersome problems.

1. Establish a save area, as defined above.
2. Before issuing the CALL macro, first load the address of this save area into R13.

This is a standard use of that particular register.
3. Call the subprogram.
4. The called program should first invoke the SAVE macro to save the calling

program’s register contents into the area designated by R13.
5. On return to the calling program, the called program invokes the RETURN macro.

Here is a sketch of the code necessary. Here PROGA calls PROGB. Note the specific registers
(12, 13, and 14; or R12, R13, and R14 if you wish). These should be used as is.

* CALLING PROGRAM

PROGA
LA 13,SAVEAREA
CALL PROGB

SAVEAREA DS 18F

* CALLED PROGRAM

PROGB SAVE (14,12)

Miscellaneous code

RETURN (14,12)

In other words, our user programs should have the same structure as PROGB just above.



S/370 Assembler Language Standard Subroutine Linkage

Page 385 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The CALL Macro
This macro links a calling program to a called program. Presumably, the z/OS uses this macro,
or a close variant of it, to invoke the user program. Again, we give the caution that this macro
should really be viewed as the second statement of a pair, such as the following.

LA 13,SAVEAREA
CALL PROGB

The source code format of the CALL macro, as we shall use it, is as follows [R_23, page 26].

[LABEL] CALL ENTRYPOINT [,(ADDRESS LIST)]

As is the case with almost all assembler language statements, this statement may have a label.
The square brackets around the label indicate that it is optional. Read the above as follows: a
valid call macro starts with an optional label, followed by the keyword CALL, followed by an
entry point, followed by an optional address list. The comma is used only if the list is used.

CALL loads the address of the next sequential instruction into general–purpose register 14 to
facilitate the return and then branches to the called program, using either BAL or BALR.

The operand ENTRYPOINT is the name of the first executable instruction of the called program.
It may be the case that the subprogram has many entry points (though this is dubious coding
practice). This is just where one wants to begin execution.

The CALL macro passes control to a control section at the specified entry point as follows: If a
control section is not part of the object module that applies to the CALL macro, the linkage
editor attempts to resolve this external reference by including the object module which contains
the control section in which the entry point exists. Control is passed to that entry point.

The linkage relationship established by the CALL macro is the same as that created by a BAL
instruction; that is, the issuing program expects control to be returned.

The operand ENTRYPOINT may be represented as (15), indicating that general–purpose
register 15 holds the address of the entry point in the called routine. The following two
sequences appear to have the same effect. As we shall see later, the standard calls for R15 to
hold the address of the entry point in the called routine.

SEQ1 CALL PROGA

SEQ2 L 15,=V(PROGA)
CALL (15)

The entry ADDRESS LIST allows for passing one or more addresses, separated by commas, to
the called program. To create the parameter list, the each address is expanded to a fullword on a
fullword boundary in the specified order. If this is used, register R1 is loaded with the address
of this parameter list; otherwise it is not altered. We shall discuss argument passing soon.

There are other options for the CALL macro as described in the manual IBM z/VSE System
Macros Reference. These options appear to apply to variants of the assembler language that
are more advanced than the System/370 assembler we are studying, and will not be discussed.



S/370 Assembler Language Standard Subroutine Linkage

Page 386 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Here is an example of the use of the CALL macro with the address list.

CALLIT CALL PROGB, (AP1,AP2)

AP1 A(PARAM1)
AP2 A(PARAM2)

PARAM1 DC H‘2’
PARAM2 DC H‘4’

The first address in the list of addresses has label AP1. It is this address that the macro
will place into general–purpose register 1 before executing the BAL or BALR. What follows is a
listing of a program written to use the CALL macro, along with the macro expansion.

85 CALLIT CALL PROGB,(AP1,AP2)
000060 87+ CNOP 0,4
000060 47F0 C062 00068 88+CALLIT B *+8
000064 00000000 89+IHB0011B DC V(PROGB)
000068 4110 C06A 00070 92+ LA 1,IHB0013
00006C 47F0 C072 00078 93+ B IHB0013A
000070 94+IHB0013 DS 0F
000070 00000178 95+ DC A(AP1)
000074 0000017C 96+ DC A(AP2)

00078 97+IHB0013A EQU *
000078 58F0 C05E 00064 98+ L 15,IHB0011B
00007C 05EF 99+ BALR 14,15

100 NEXTONE GET FILEIN,RECORDIN

221 *
000178 00000180 222 AP1 DC A(P1)
00017C 00000182 223 AP2 DC A(P2)
000180 0014 224 P1 DC H'20'
000182 0028 225 P2 DC H'40'

Line 85 contains the actual use of the macro. There are two address arguments.

Line 87 contains a conditional no–operation instruction, CNOP, which causes the following
code to be aligned on the proper address boundaries.

Line 88 begins the actual expansion of the macro. Note that it branches around a declaration of
the external address reference to be used as the entry point of the called subprogram.

Line 92 loads general–purpose register 1 with the address IHB0013, discussed below.

Line 93 branches around the lines associated with the address IHB0013, so that those data
will not be executed. The label IHB0013A uses an equate to set it to the address for line 98.

The DS 0F on line 94 forces what follows to be aligned on fullword boundaries. What follows
are two fullwords, each containing the address of an address parameter for the call.

Line 98 loads the external address, presumably now resolved by the link editor, into register
R15 in preparation for the BALR on line 99.

Lines 222 and 223 declare the address constants, which refer to the constants defined in the next
two lines. Note that the contents of AP1 are X‘00000180’, the address of P1.



S/370 Assembler Language Standard Subroutine Linkage

Page 387 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Return Macro
The return macro restores the contents of the registers that have been saved and returns to the
calling program. To conform with the standard, it should be written as RETURN (14, 12).
Here is an actual expansion of the RETURN macro as used in a test program.

123 RETURN (14,12)
0000AA 98EC D00C 0000C 125+ LM 14,12,12(13)
0000AE 07FE 126+ BR 14

The SAVE Macro
Often the first executable instruction of a program or subprogram will be SAVE (14,12).
Here is the actual code from the second lab assignment, in which I chose to expand macros so
that I could see the code generated in the macro expansions.

31 LAB02 CSECT
32 SAVE (14,12) SAVE CALLER’S REGISTERS
34+ DS 0H
35+ STM 14,12,12(13)
36 BALR R12,0 ESTABLISH ADDRESSABILITY
37 USING *,R12
38 LA R2,SAVEAREA LINK THE SAVE AREAS
39 ST R2,8(,R13)
40 ST R13,SAVEAREA+4
41 LR R13,R2

On entry, general–purpose register 13 contains the address of the supervisor’s save area. The
SAVE macro is written under this assumption. The user program always executes as a
subprogram of the supervisor (Operating System).

Recall that the address designated 12(13) corresponds to an offset of 12 from the value stored
in register 13. If R13 contains address S0, then 12(13) corresponds to address (S0 + 12).

As a reminder, we note that the line “USING *,R12” is a directive and does not translate into
any generated machine code. From the viewpoint of the machine language generated the code
reads as follows. Line 37 has been omitted from this list as it does not generate code.

35+ STM 14,12,12(13)
36 BALR R12,0 ESTABLISH ADDRESSABILITY
38 LA R2,SAVEAREA LINK THE SAVE AREAS

In particular, the machine language instruction following that for the BALR is the machine
language instruction for the LA. It is that address that is loaded into register R12. Again, since
the second register field in the BALR holds a 0, no branch is actually taken.

We now give an illustration of how these save areas are used to chain together various programs
into what is often referred to as a “call stack”. This is especially useful when one wants to
unwind the mess caused by an abnormal program termination.

In this illustration, assume the following.
1. The save area of the supervisor begins at address S0.
2. The user main program is PA, with save area starting at address SA.
3. The user program calls program PB, which has save area starting at SB.



S/370 Assembler Language Standard Subroutine Linkage

Page 388 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The User Program Saves the Registers
This is the case on entry to main program PA. Register 13 points to the start of
the save area for the supervisor and 12(13) points to the start of its register save area.

The instruction STM 14,12,12(13) is then executed. The contents of the supervisor’s
save area is now as follows.

The User Program Links the Save Areas
The next step is to establish addressability in the user program, so that addresses such as
that of the save area can be used. The user program then forward links the supervisor’s
save area. Before that happens, we just have two save areas.

Here is the code to do the forward link. The address of the start of the user save area
is placed in the fullword at offset 8 from the start of the supervisor’s save area.

38 LA R2,SA LINK THE SAVE AREAS
39 ST R2,8(,R13) OFFSET 8 FROM S0

The program now executes the following code to establish the backward link from the user
program to the supervisor’s save area.
40 ST R13,SA+4

At this point, register R13 contains the address of the supervisor’s save area. The result of this
instruction is the completion of the two–way links.



S/370 Assembler Language Standard Subroutine Linkage

Page 389 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Now R2 holds the address of the user save area. Note that this could have been any of the
registers in the range 2 – 12, excepting R12 which was used for addressability.

The next instruction established R13 as once again holding the address of the save area of the
current program.

41 LR R13,R2

The Chain Continues
Suppose the user program calls a subprogram. The chain is continued.

The Return Process
The return process restores the general–purpose registers to their values
before the call of the subroutine.

R13 is first restored to point to the save area for the calling program.
Then the other general–purpose registers are restored.

Here is the situation on return from Subprogram PB.

The code is as follows.

L R13,SB+4 GET ADDRESS OF CALLER’S SAVE AREA
LM R14,R12,12(R13) RELOAD THE REGISTERS. R14 IS

LOADED WITH THE RETURN ADDRESS
BR R14 RETURN TO THE CALLER



S/370 Assembler Language Standard Subroutine Linkage

Page 390 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Entry/Exit Considerations
Consider how a program or subprogram starts and exits.

The start code is something like the following.

SUB02 CSECT
SAVE (14,12) SAVE CALLER’S REGISTERS

+ DS 0H
+ STM 14,12,12(13)

BALR R12,0 LOAD R12 WITH THE ADDRESS
USING *,R12 OF THE NEXT INSTRUCTION

Here is the standard exit code. Assume the save area is at address SB.

L R13,SB+4 ADDRESS OF CALLERS SA
LM R14,R12,12(R13) CALLER’S REGISTER VALUES
BR R14 RETURN

Note that the next to last instruction in the second section causes addressability in the
called program to be lost. This is due to the fact that the value that had been loaded into
R12 to serve as the base register for this code’s addressability has been overwritten with
the value that had been used in the calling program and will be used again.

Setting the Return Code
The IBM linkage standard calls for general–purpose register R15 to be loaded with a return code
indicating success or failure. A value of 0 usually denotes a success.

It is common to set the return code just before the terminating BR instruction, just
after the restoration of the calling routine’s registers.

The following is typical code. Here, I am setting a return code of 3.

L R13,SB+4 ADDRESS OF CALLERS SA
LM R14,R12,12(R13) CALLER’S REGISTER VALUES
LA R15,3 USE THE LOAD ADDRESS INSTRUCTION

TO LOAD THE CONSTANT VALUE 3.
BR R14 RETURN

This uses the LA (Load Address) instruction in its common sense as a way to load a
non–negative constant less than 4,096 into a general–purpose register. Note that an instruction
such as L R15,=H‘3’ would require access to an element in the subprogram’s literal pool.
However, the value of the subprogram’s base register has been overwritten, and addressability
has been lost. Due to this, the subprogram’s literal pool can no longer be accessed.

A normal return is usually indicated by a return code of 0, which is placed in R15. This may be
done in at least two ways: either LA R15,0 or SR R15,R15.

We now move on to a discussion of methods for passing argument values from a calling
program to the called subprogram.



S/370 Assembler Language Standard Subroutine Linkage

Page 391 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Call By Reference vs. Call By Value
Two of the more common methods for passing data to and from a subprogram are
call by reference and call by value. Note that there are several other common methods.

In call by value, the calling program delivers the actual values of the data to the subroutine.
This subroutine can alter the values of those data, but the altered values will not be returned to
the calling routine. Some languages call these “in parameters”.

In call by reference, the calling program delivers the addresses of the data items to the
subroutine. The values of these data can be changed by the called subroutine and those values
propagated back to the calling program. These may be called “in–out parameters”.

Note that the return address for the subroutine can also be changed. This is an old trick used by
malicious hackers in order to gain control of a computer. We may discuss this trick later.

The next question we must ask is how these values and/or addresses will be passed to the
subroutine. We shall see that the System/370 assembler supports both mechanisms.

Mechanisms for Passing
By this title, we mean either the passing of values or the passing of addresses. Basically, there
are three mechanisms for passing values to a subroutine. Each of these has been used.

1. Pass the values in registers specifically designated for the purpose.

2. Pass the values on the stack.

3. Pass the values in an area of memory and pass a pointer to that area
by one of the other methods.

Remember that a pointer is really just an address in memory; it is an unsigned integer.
In some high–level languages, a pointer may be manipulated as if it were an unsigned
integer (which it is). In others, standard arithmetic cannot be applied to pointers.
Languages, such as Java and C#, provide for pointers but do not allow direct arithmetic
manipulation of these addresses. For that reason, the term “pointer” is not used.

Subroutines, Separate Assemblies and Linkage
The first example of a subroutine is the B10DOIT routine we have seen before.

B10DOIT MVC DATAPR,RECORDIN
PUT PRINTER,PRINT
BR 8

While this is a valid subroutine, we note three facts of importance.
1. It is in the same assembly as the calling module.
2. It is in the same CSECT as the calling module.
3. The symbols (DATAPR, RECORDIN, PRINTER, and PRINT) used by the

subroutine are in the scope of the calling module, but are visible to the subroutine.

The point of discussing subroutine B10DOIT is simple. There is an advantage to coding
multiple subroutines within a given CSECT. These usually simplify the design of the code.
However, they present very few issues for the passing of arguments or control.



S/370 Assembler Language Standard Subroutine Linkage

Page 392 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

In general, we would like to link modules that are not assembled at the same time. It might
even be necessary to link assembled code with code written in a higher–level language and
compiled. Thus COBOL programs might call assembler language routines.

We have already encountered the external declaration, which is used to declare that:

1. A label corresponds to an address declared in another module, and

2. The linking loader will have to resolve that address by loading the called module,
assigning an address to this label, and updating that reference in the calling code.

Register Usage in Subprogram Calling
The following is the Standard Linkage Convention for the use of general–purpose registers.
This convention is to be used by any subprogram that is to be run under z/OS. [R_19, page 146].

Register Use
1 Address of the parameter list.

13 Address of calling routine’s save area. This is an area set
aside to save the register values from the calling program.

14 Address in the calling routine to which
control is to be returned.

15 The address of the entry point
in the called subprogram.

There is no direct standard for the other twelve general–purpose registers (0 and 2 – 12).

We have already seen an example of the use of registers 14 and 15. Consider the following
code, which is written in the standard format preferred for S/370 assembler programs.

L 15,=V(PROGB) LOAD ADDRESS OF EXTERNAL REFERENCE
BALR 14,15 STORE RETURN ADDRESS INTO R14

IBM has established a set of conventions for use by all modules when calling separately
assembled modules. These insure that each module can work with any other module.

Implementation of Argument Passing Mechanisms
We shall now discuss in more detail the list of options presented for the passing of arguments to
a subprogram. As of now, we shall assume that the subprogram is assembled separately from
the main program. Assume that PROGA calls PROGB, or an entry within PROGB. In terms of
the theory of programming languages, we assume that we have two different scopes; labels
defined within PROGA have no meaning within PROGB, and vice–versa. The linkage is
provided by the linkage editor, using external symbols and entry symbols. The reason for this
focus is that the simpler situation presents no difficulties worth further discussion.

One simple way to pass an argument to a subprogram would use a register, which might contain
either the value of the argument or the address of the argument. This might work for small
systems designed and implemented by a single programmer, but the design does not scale well
to large systems. For that reason, we shall mention this method only to be complete.



S/370 Assembler Language Standard Subroutine Linkage

Page 393 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Another mechanism for passing arguments might be called the argument block method. In
this method, one register is chosen to hold the address of a block used to contain the arguments,
either values or addresses. One advantage of this method is that it does not limit the number of
arguments to the number of registers available. We shall discuss the implementation of this idea
as developed by IBM for the systems programs that ran on the System/360.

This method calls for general–purpose register R1 to hold the address of a parameter block. In
this parameter block we find a list of the addresses of the parameters, not the values. This is the
mechanism that was discussed just above in the example of the CALL macro. Consider the
following code fragment, taken from Yarmish & Yarmish [R_18, pages 544 & 545].

* CALLING ROUTINE
S1 LA R1,PARAMLST Load address of the parameter list
S2 L R15,ADDSUB Entry point to subroutine

BALR R14,R15 Call the subroutine

ADDSUB DC V(SUBA) External reference
*
PARAMLST DC A(PARAM1) Address of first parameter

DC A(PARAM2) Address of second parameter
DC A(ANSWER) Address of third parameter

*
PARAM1 DC F‘22’
PARAM2 DC F‘33’
ANSWER DS F

* CALLED ROUTINE
ENTRY SUBA Declare as an entry point

SUBA L R2,0(1) Load R2 from the address at offset
0 from the address in R1.

S3 L R3,4(1) Load R3 from the address at offset
4 from the address in R1.

S4 L R7,0(2) Load R7 from the address in R2
S5 A R7,0(3) Add value at address in R3
S6 L R8,8(1) Get the third address passed
S7 ST R7,0(8) Store the result into that address

BR R14 Return

This code requires some comments. The line labeled SUBA has register R2 loaded from an
address that is offset 0 from the address stored in general–purpose register 1. The value there is
A(PARAM1), the address of the first parameter. The line labeled S3 loads R3 from an address
that is offset 4 from the address in R1. The value here is A(PARAM2).

Line S4 loads R7 from the address that is offset 0 from the value in R2. The value in R2 is the
address of PARAM1, so R7 is now loaded with the value of PARAM1, which is 22. Line S5 adds
to R7 the value that is at offset 0 from the address in R3. The address is that of PARAM2, so the
value of PARAM2 is added to R7, which now holds 55. Line S6 loads R8 from the value at
offset 8 from the address in R1; this is A(ANSWER). Line S7 stores the contents of R7 into the
address held in R8, thus returning the answer to the calling program.



S/370 Assembler Language Standard Subroutine Linkage

Page 394 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Dummy Section (DSECT)
We now consider a logical extension to the argument block method of passing values and/or
addresses to a separately assembled subprogram. In more modern terms, this might be
considered as passing a record to a subprogram by specifying the structure of the record and the
address of the first member of the record. Loosely speaking, a DSECT is the specification of
the structure of a record without the allocation of memory for that structure.

Recall that parameters are passed by reference when it is desired to allow the called program to
change the values as stored in the calling program. Call by reference is also the preferred
method for passing reference to a data structure so large that making a copy for pass–by–value
would be inefficient. In other words, the programmer may elect to use call–by–reference even
in those cases in which the subprogram does not change any of the data passed to it.

For data represented by a large number of labels, it is convenient to use a dummy section. This
process is best considered as passing a record structure to the called subprogram.

1. All the data items to be passed to the called program are grouped in a
contiguous data block.

2. The address of this data block is passed to the called subprogram.

3. The called subprogram accesses items in the data block by offset from
the address passed to it.

The DSECT is used in the called subprogram as a template for the assembler to generate the
proper address offsets to be used in accessing the original data. Sharon Tuggle [R_09, pages
369 & 370] gives a very good introduction to the idea of a DSECT, which I quote here.

“There are times in programming when the programmer needs to refer to whole
blocks of data residing outside his own program (i.e., data passed between
subroutines). Because of the quantity of data being referenced, it is impractical
to use address constants and EXTRN statements to refer to each piece or pass
each data item as an individual parameter. Instead, all the data items are
collected in contiguous areas that make up a block of data; and one address, the
address of the beginning of the block, is passed as a parameter between
subroutines. This one address can be loaded into a register and that register used
as the base register for a dummy control section (a DSECT).”

“A DSECT is a convenient means that the programmer can use to describe the
layout of an area of storage without actually reserving the storage. It is assumed
that the storage is reserved elsewhere (most likely in another subroutine).”

The format of a DSECT instruction is as follows [R_17, page 177].

[LABEL] DSECT

Following the optional label is the single statement declaring the start of a dummy section. The
most common usages of the dummy section all require an ordinary symbol to label the DSECT.
According to IBM [R_17, page 177] “The location counter for a dummy section is always set to
an initial value of 0.” In other words, items within the DSECT are given addresses relative to
the start of the DSECT.



S/370 Assembler Language Standard Subroutine Linkage

Page 395 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Here are some notes on the DSECT, taken from [R_17, pages 177 and 178].

1. The assembler language statements that appear in a dummy section
are not assembled into object code.

2. When establishing the addressability of a dummy section, the symbol in
the name field of the DSECT instruction, or any symbol defined in the
dummy section, can be specified in a USING instruction.

The standard way to effect references to the storage area defined by a dummy section is to
provide a USING statement that specifies both a general–purpose register that the assembler can
use as a base register for the dummy section, and a value from the dummy section that the
assembler may assume the register contains.

Example of Linkage Using a DSECT
Suppose that I want to pass customer data from PROGA (the calling program, in which the data
are defined) to subprogram PROGB, in which they are used.

Here is a sketch of code and declarations in the calling program, which is PROGA.
This uses the calling convention that R1 holds the address of the parameters.

PROGA CSECT
* SECTION TO CALL PROGB

LA R1,=A(CREC) LOAD RECORD ADDRESS
L R15,=V(PROGB) LOAD ADDRESS OF PROGB
BALR R14,R15 CALL THE SUBPROGRAM
Next Instruction

*
CREC DS 0CL96 THE RECORD WITH ITS SUBFIELDS
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87

The Dummy Section Itself
The dummy section will be declared in the called subprogram using a DSECT.

Here is the proper declaration for our case.

CRECB DSECT
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87

The DSECT is a convenient means that can be used to describe the layout of a
storage area without actually reserving storage.



S/370 Assembler Language Standard Subroutine Linkage

Page 396 Chapter 20 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

In use of a DSECT, it is assumed that the storage has been reserved elsewhere and
that the base address of that storage will be passed as a parameter.

The DSECT is just a mechanism to instruct the assembler on generation of offsets
from the base address into this shared data area.

Use of the DSECT in PROGB
Here is a sketch of the use of the DSECT in PROGB, assembled independently.

Recall that general–purpose register R1 contains the address of the customer record.

PROGB CSECT
BALR R12,0 ESTABLISH ADDRESSABILITY
USING *,R12
LR R10,R1 GET THE PARAMETER ADDRESS
USING CRECB,R10 ESTABLISH ADDRESSABILITY FOR

THE DUMMY SECTION
MVC OUTC,CCITY THIS ACCESSES THE DATA IN

THE CALLING PROGRAM
OUTC DS CL15 DATA BELONGING TO PROGB

CRECB DSECT
CNAME DS CL30 OFFSET = 0
CADDR1 DS CL20 OFFSET = 30
CADDR2 DS CL20 OFFSET = 50
CCITY DS CL15 OFFSET = 70
CSTATE DS CL2 OFFSET = 85
CZIP DS CL9 OFFSET = 87

A Detailed Look at Addresses
Here we recall two facts relative to the one instruction MVC OUTC,CCITY.

The label OUTC belongs to the called subprogram PROGB. It is accessed using base register
R12, which is the basis for addressability in this subprogram. The label CCITY belongs to the
dummy section. It is accessed using the base register explicitly associated with the DSECT;
here it is R10. The LR R10,R1 instruction copies the address of the parameter block in the
calling program into R10 for use in the subprogram PROGB.

Suppose that OUTC has address X‘100’ (decimal 256) within PROGB, it is at that
displacement from the value contained in the base register R12. From the DSECT it is clear that
the label CCITY is at displacement 70 (X‘46’) from the beginning of the data record. The
field has length 15, or X‘0F’

The instruction MVC OUTC,CCITY could have been written with explicit base register
references as MVC 256(15,R12),70(R10), with object code D2 0E C1 00 A0 46

D2 is the operation code for MVC. 0E encodes decimal 14, one less than the length.

C1 00 represents an address at displacement X‘100’ from base register 12.

A0 46 represents an address at displacement X‘46’ from base register 10.


