Chapter 19: Handling of Arrays, Strings and Other Data Structures

Up to this point, we have studied simple data types and basic arrays built on those simple
datatypes. Some of the simple data types studied include.

a) Integers: both halfword and fullword.

b) Packed decimal

¢) Character data.

This lecture will cover the following:
1. A generalized “self describing” array that includes limits on the
permitted index values. Only 1-D and 2-D arrays will be considered.
2. Optionsfor astring data type and how that differs from a character array.
3. Useof indirect addressing with pointer structures generalized to
include descriptions of the dataitem pointed to.

Structuresof Arrays

We first consider the problem of converting an index in aone-dimensional array into an byte
displacement. We then consider two ways of organizing atwo—dimensional array, and
proceed to convert the index pair into a byte displacement.

The simple array type has two variants:
O-based: Thefirst element in the array is either AR[O] for asingly
dimensioned array or AR[0Q][0] for a2-D array.
1-based: Thefirst element inthe array is either AR[1] for asingly
dimensioned array or AR[1][1] for a2-D array.

We shall follow the convention of using only O-based arrays. Onereason isthat it allows for
efficient conversion from a set of indices into a displacement from the base address.

By definition, the base address of an array will be the address of its first element: either the
address of AR[0] or AR[Q][O].

Byte Displacement and Addressing Array Elements. The General Case

We first consider addressing issues for an array that contains either character halfword, or
fullword data. It will be constrained to one of these types. The addressing issueiswell
illustrated for asingly dimensioned array.

Byte Offset 0 1 2 3 4 5 6 7
Characters | C[0] | C[1] | C[2] | C[3] | C[4 | C[5] | Cl6] | C[7]
Halfwords HWI[O] HW[1] HW[2] HW[3]
Fullwords FWI[O] FW[1]

For each of these examples, suppose that the array begins at address X.
In other words, the address declared for the array is that of its element 0.

The character entrieswould be: C[0] a X, C[1] at X + 1, C[2] at X + 2, €efc.
The halfword entries would be: HW[O] at X, HW[1] a X + 2, etc.
The fullword entries would be: FW[Q] at X, FW[1] a X + 4, etc.

Page 365 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

Byte Displacement and Addressing Array Elements: Our Case
| have decided not to write macros that handle the general case, but to concentrate on arrays
that store 4-byte fullwords. The goal isto focus on array handling and not macro writing.
The data structure for such an array will be designed under the following considerations.
1. It must have a descriptor specifying the maximum alowable index.
In this data structure, | store the size and derive the maximum index.

2. It might store a descriptor specifying the minimum allowable index.
For aO-based array, that index isO.

3. It should be created by a macro that allows the size to be specified
at assembly time. Once specified, the array size will not change.

In this design, | assume the following:
1. Thearray isstatically alocated; once loaded, itssize is set.

2. Thearray is*“zero based”; itsfirst element hasindex 0. | decideto include this
“base value” in the array declaration, just to show how to do it.

3. Thearray is sdf—describing for its maximum size.

Here is an example of the proposed data structure as it would be written
in System 370 Assembler. The array isnamed “ ARRAY”.

ARBASE DC F' 0O’ THE FIRST INDEX IS O
ARSI ZE DC F' 100’ SI ZE OF THE ARRAY
ARRAY DC 100F° O’ STORAGE FOR THE ARRAY

| want to generalize this to allow for a macro construction that will specify
both the array name and its size.

The Constructor for a One-Dimensional Array
Hereisthe macro | used to construct a one—dimensional array
while following the design considerations listed above.

33 MACRO

34 &lL1 ARVAKE &NANVE, &SI ZE

35 &l1 B X&SYSNDX

36 &NAME. B DC F' 0O ZERO BASED ARRAY

37 &NAME. S DC F' &Sl ZE
38 &NAME. V' DC &Sl ZE. F' O
39 X&SYSNDX SLA R3, 0

40 VEND

Line 34: The macro isnamed “ARMAKE” for “Array Make".
It takes two arguments: the array name and array size.
A typical invocation: ARMAKE XX, 20 creates an array called XX.

Notethe“&L1" on line 34 and repeated on line 35. This alows amacro
definition to be given alabel that will persist into the generated code.

Page 366 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

More on the 1-D Constructor

33 MACRO

34 &l1 ARMAKE &NAME, &SI ZE

35 &Ll B X&SYSNDX

36 &NAME. B DC F' 0O ZERO BASED ARRAY

37 &NAME. S DC F' &Sl ZE
38 &NAME.V DC &Sl ZE. F' 0
39 X&SYSNDX SLA R3, 0

40 VEND

Line 35: A macro is used to generate a code sequence. Since | am using it to create a data
structure, | must provide code to jump around the data, so that the data will not be
executed. While it might be possible to place al invocations of this macro
in aprogram location that will not be executed, | do not assume that.

Line 36: | put in the lower bound on the index just to show atypical declaration.
Line 37 Thisholdsthe size of the array.

Label Concatenationsin the Constructor

33 MACRO

34 &l1 ARMAKE &NAME, &SI ZE

35 &l1 B X&SYSNDX

36 &NAME. B DC F' 0O ZERO BASED ARRAY

37 &NAME. S DC F' &SI ZE'

38 &NAME. V' DC &Sl ZE. F' O

39 X&SYSNDX SLA R3,0

40 MEND

Recall that the system variable symbol &SYSNDX in a counter that contains afour digit
number unique to the macro expansion.

Line 39 uses one style of concatenation to produce a unique label. Note that in this more
standard concatenation, the system variable symbol is the postfix of the generated symbol; it
is the second part of atwo—part concatenation. Recall that the symbol &SYSNDX counts total
macro expansions. For the third macro expansion; the label would be “X0003”.

Lines 36, 37, and 38 use another type of concatenation, based on the dot. Thisisdueto the
fact that the symbolic parameter &NANE is the prefix of the generated symbol; it isthefirst
part of atwo—part concatenation. 1f &NAME is XX, then the labels are XXB, XXS, and XXV.

Asalways, it is desirable to provide afew macro expansions just to show that al of the
process, as described above, really works. What follows is a sequence of two array
constructions using the macro just discussed.

Page 367 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

Sample Expansions of the 1-D Constructor Macro

90 ARVAKE XX, 20
000014 47F0 CO6A 00070 91+ B X0003
000018 00000000 92+XXB DC F O
00001C 00000014 93+XXS DC F 20
000020 0000000000000000 94+XXV DC 20F 0
000070 8B30 0000 00000 95+X0003 SLA R3,0

96 ARVAKE YY, 40
000074 47F0 Cl1A 00120 97+ B X0004
000078 00000000 98+YYB DC F 0O
00007C 00000028 99+YYS DC F' 40
000080 0000000000000000 100+YYV DC 40F O
000120 8B30 0000 00000 101+X0004 SLA R3,0

Notice the labels generated. Note aso the unconditional branch statementsin lines 91 and
97; these prevent the accidental execution of data. The target for each of the branch
statements is a do—nothing shift of aregister by zero spaces; it might have been written using
another construct had your author known of that construct at the time. Anyway, this works.

TwoMoreMacrosfor 1-D Arrays
I now define two macros to use the data structure defined above. | call these ARPUT and
ARGET. Each will use R4 asaworking register.

Macro ARPUT &NANME, &l NDX stores the contents of register R4 into the indexed element
of the named 1-D array. Consider the high-level language statement A2[10] = Y.
Thisbecomes L R4,Y

ARPUT A2, =F* 10° CHANGE ELEMENT 10

Consider the high-level language statement Y = A3[20] .
Thisbecomes ARGET A3, =F' 20° GET ELEMENT 20
ST R4,Y
NOTE: For somereason, | decided to implement the index as afullword when | wrote the
code. | just continue the practice, though a halfword index would make more sense.

Design of the Macros
The two macros, ARPUT and ARGET, share much of the same design. Much is centered on
proper handling of the index, passed as a fullword. Here are the essential processing steps.

1. Theindex valueisexamined. If it isnegative, the macro exits.

2. If thevaluein theindex is not | ess than the number of elementsin the
array, the macro exits. For N elements, valid indicesare 0 < K < N.

3. Usingthe SLA instruction, theindex value is multiplied by 4
in order to get a byte offset from the base address.

4. ARPUT storesthe vauein R4 into the indexed address.
ARGCET retrieves the value at the indexed address and 1oads R4.

Page 368 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

The ARPUT Macro
Here is the definition of the macro to store avalue into the named array.
44 MACRO

45 &L2 ARPUT &NANE, & NDX
46 &L2 ST R3, S&SYSNDX
47 L R3, & NDX

48 C R3, &NAME. B
49 BL Z&SYSNDX

50 C R3, &NAME. S
51 BNL Z&SYSNDX

52 SLA R3,2

53 ST R4, &NAME. V(R3)
54 B Z&SYSNDX

55 S&SYSNDX DC F' 0

56 Z&SYSNDX L R3, S&SYSNDX
57 MEND

Note the two labels, S&SYSNDX and Z&SYSNDX, generated by concatenation with the
System Variable Symbol &SYSNDX. This allows the macro to use conditional branching.

ARPUT Expanded
Hereis an invocation of ARPUT and its expansion.

107 ARPUT XX, =F' 10
000126 5030 Cl46 0014C 108+ ST R3, S0005
00012A 5830 CAGA 00470 109+ L R3, =F' 10’
00012E 5930 (€012 00018 110+ C R3, XXB
000132 4740 Cl4A 00150 111+ BL Z0005
000136 5930 C016 0001C 112+ C R3, XXS
00013A 47B0 Cl4A 00150 113+ BNL Z0005
00013E 8B30 0002 00002 114+ SLA R3,2
000142 5043 CO1A 00020 115+ ST R4, XXV(R3)
000146 47F0 Cl4A 00150 116+ B Z0005
00014A 0000
00014C 00000000 117+S0005 DC F' O
000150 5830 C146 0014C 118+Z0005 L R3, S0005

Note the labels gener ated by use of the System Variable Symbol &SYSNDX.

We now examine the actions of the macro ARPUT.

108+ ST R3, SO0005

Register R3 will be used to hold the index into the array. Thisline saves the value so that it
can be restored at the end of the macro. Here we note that the generated line does not have a
label; thisreflects the fact that line 107, the macro invocation, is not labeled.

109+ L R3, =F' 10'

Register R3 isloaded with the index to be used for the macro. Asthe index was specified as
aliteral in theinvocation, this is copied in the macro expansion. Were this a keyword macro,
the literal would have to be specified in adifferent manner. Thisisapositional macro, which
does not require special handling of literals.

Page 369 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

ARPUT: Checking the Index Value
We continue our analysis of the macro. At this point, the value of the array index
has been loaded into register R3, the original contents having been saved.

110+ C R3, XXB
111+ BL Z0005
112+ C R3, XXS
113+ BNL Z0005

This code checks that the index value is within permissible bounds.
The requirement is that XXB < Index < XXS.

If thisis not met, the macro restores the value of R3 and exits. If the requirement is met, the
index is multiplied by 4 in order to convert it into a byte displacement from element 0.
114+ SLA R3,2

Here is the code to store the value into the array, called XXV.

115+ ST R4, XXV(R3)
116+ B 70005
117+S0005 DC FO
118+20005 L R3, S0005

Line115 Thisisthe actual store command.

Line116 Note the necessity of branching around the stored value,
so that the data will not be executed asiif it were code.

Line117 The save areafor the macro.
Line118 Thisrestoresthe original value of R3. The macro can now exit.

The ARGET Macro
Here is the definition of the macro to retrieve a value from the named array.

61 MACRO

62 &L3 ARGET &NAME, & NDX
63 &L3 ST R3, S&SYSNDX
64 L R3, & NDX

65 C R3, &NAME. B

66 BL Z&SYSNDX

67 C R3, &NAME. S

68 BNL Z&SYSNDX

69 SLA R3,2

70 L R4, &NAME. V(R3)
71 B Z&SYSNDX

72 S&SYSNDX DC F' 0

73 Z&SYSNDX L R3, S&SYSNDX
74 MVEND

Page 370 Chapter 19 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

ARGET Expanded
Hereis an invocation of the macro and its expansion.

119 ARCET YY, =F' 20
000154 5030 C172 00178 120+ ST R3, S0006
000158 5830 CA6E 00474 121+ L R3, =F' 20
00015C 5930 C072 00078 122+ C R3, YYB
000160 4740 C176 0017C 123+ BL Z0006
000164 5930 CO76 0007C 124+ C R3, YYS
000168 47B0 C176 0017C 125+ BNL Z0006
00016C 8B30 0002 00002 126+ SLA R3,2
000170 5843 CO7A 00080 127+ L R4, YYV(R3)
000174 47F0 C176 0017C 128+ B Z0006
000178 00000000 129+S0006 DC F 0
00017C 5830 C172 00178 130+20006 L R3, SO006

The only difference between this macro and ARPUT occursin line 127 of the expansion.
Here the value isloaded into register R4. Note that, in the sequence of macro expansions,
ARPUT was expansion number 5 and ARGET was expansion number six; hence the labels
here are“S0006” and “Z0006” rather than “S0005” and “Z0005".

Row-M ajor and Column-Major 2-D Arrays

The mapping of a one-dimensional array to linear address space is simple. How do we map
atwo-dimensional array? There are three standard options: The two that we shall consider
are caled row—major order and column-major order.

Consider thearray declared as| NT A[2] [3] , using 32-hit integers, which occupy four
bytes. Inthisarray thefirst index can have values 0 or 1 and the second O, 1, or 2.
Suppose the first element isfound at address A. The following table shows

the allocation of these elements to the linear address space.

Address Row Major Column M ajor
A A[0][0] A[0][0]
A+4 A[0][1] A[1][0]
A+8 A[0][2] A[0][1]
A+12 A[1][Q] A[1][1]
A +16 Al1][1] A[0][2]
A+20 A[1][2] A[1][2]

The mechanism for Java arraysis likely to be somewhat different.

Addressing Elementsin Arrays of 32-Bit Fullwords
Consider first asingly dimensioned array that holds 4-byte fullwords. The addressingis
simple: Address (A[K]) = Address (A[0]) + 4eK.

Suppose that we have atwo dimensional array declared as Al M [N] , where each of M and
N has afixed positive integer value. Again, we assume O-based arrays and ask for the
address of an element Al K] [J] , assumingthat 0 <K< NMand0 <J <N.

At this point, I must specify either row—major or column—major ordering.

Page 371 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

AsFORTRAN isthe only major language to use column—major ordering, | shall assume
row—magjor. The formulaisasfollows.

Element offset = KeN + J, which leadsto abyte offset of 4e¢(KeN + J) ; hence
Address (A[K] [J]) =Address(A[0] [0]) + 4¢(KeN + J)

Suppose that the array is declared as A[2][3] and that element Al 0] [O] isat address A.
Address (Al K] [J]) =Address(A[0] [0]) + 4e(Ke3 + J).
Element A[0] [O] isat offset 4¢(063 + 0) = 0, oraddress A + O.

Element A 0] [1] isat offset 4¢(063 + 1) = 4, oraddress A + 4.
Element A[0] [2] isat offset 4¢(063 + 2) = 8, oraddress A + 8.
Element A[1] [O] isat offset 4e(13 + 0) = 12, oraddress A + 12.
Element A[1] [1] isat offset 4e(13 + 1) = 16, oraddress A + 16.
Element A[1] [2] isat offset 4e(13 + 1) = 20, oraddress A + 20.

Hereisafirst cut at what we might want the data structure to ook like.

ARRB DC F O’ ROW | NDEX STARTS AT O
ARRCNT DC F 30’ NUMBER OF ROWS

ARCB DC F O COLUWN | NDEX STARTS AT O
ARCCNT DC F' 20’ NUMBER OF COLUMNS

ARRAY DC 600F O’ STORAGE FOR THE ARRAY

NOTE: Thenumber 600 in the declaration of the storage for the array is not independent of
the row and column count. It isthe product of the row and column count.

We need away to replace the number 600 by 30020, indicating that the size of the array isa
computed value. This leads usto the Macro feature called “SET Symbols’.

SET Symbols
The feature called “ SET Symbols” allows for computing values in a macro, based on the
values or attributes of the symbolic parameters. There are three basic types of SET symbols.
1. Arithmetic These are 32-bit numeric values, initialized to O.
2. Binary These are 1-hit values, initialized to 0.
3. Character Theseare strings of characters, initialized to the null string.

Each of these comesin two varieties: local and global.

Thelocal SET symbols have meaning only within the macro in which they are defined.
In terms used by programming language textbooks, these symbols have scope that islocal to
the macro invocation. Declarationsin different macro expansions are independent.

The global SET symbols specify values that are to be known in other macro expansions
within the same assembly. In other words, the scope of such asymbol is probably
the entire unit that is assembled independently; usually thisisa CSECT.

A proper use of aglobal SET symbol demands the use of conditional assembly to insure that
the symbol is defined once and only once.

Page 372 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler

Local and Global Set Declarations
Here are the instructions used to declare the SET symbols.

General Arrays and Strings

Type Local Global

Instruction Example Instruction Example
Arithmetic LCLA LCLA &F1 GBLA GBLA &G1
Binary LCLB LCLB &F2 GBLB GBLB &G2
Character LCLC LCLC &F3 GBLC GBLC &G3

Each of these instructions declares a SET symbol that can have its value assigned by one of
the SET instructions. There are three SET instructions.

SETA SET Arithmetic Usewith LCLA or GBLA SET symbols.
SETB SET Binary Usewith LCLB or GBLB SET symbols.
SETC SET Character String Usewith LCLC or GBLC SET symbols.

The requirements for placement of these instructions depend on the Operating System being
run. The following standards have two advantages:

1. They arethe preferred practice for clear programming, and

2. They seem to be accepted by every version of the Operating System.

Hereis the sequence of declarations.

The macro prototype statement.

The global declarations used: GBLA, GBLB, or GBLC

Thelocal declarationsused: LCLA, LCLB, or LCLC

The appropriate SET instructions to give values to the SET symbols
The macro body.

gkrowbdpE

Example of the Preferred Sequence
Thefollowing silly macro is not even complete. It illustrates the sequence
for declaration, but might be incorrect in some details.

MACRC
&NAME HEDNG &HEAD, &PACE
GBLC &DATES HOLDS THE DATE
GBLB &DATEP HAS DATES BEEN DEFI NED
LCLA &LEN, &M D HERE 1S A LOCAL DECLARATI ON
Al F (&DATEP) . N20 | S DATE DEFI NED?
&DATES DC C &SYSDATE SET THE DATE
&DATEP SETB (1) DECLARE | T SET
. N20 ANOP
&L EN SETA L’ &HEAD LENGTH OF THE HEADER
&M D SETA (120-&LEN)/ 2 M D PO NT
&NANVE Start of macro body.
Page 373 Chapter 19 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

A Constructor Macro for the 2-D Array
This macro uses one arithmetic SET symbol to calculate the array size. Note that this
definition does away with the base for the row and column numbers, as | never use them.

30 *

31 * MACRO DEFI NI TI ONS

32 *

33 MACRO

34 &1 ARVAKZ2D &NAME, &ROWS, &COLS
35 LCLA &SI ZE

36 &SI ZE SETA (&ROWE* &COLS)

37 &1 B X&SYSNDX

38 &NAME. RS DC H &RONE'
39 &NAME. CS DC H &COLS
40 &NAME.V DC &Sl ZE. F' 0O
41 X&SYSNDX SLA R3, 0

42 MEND

Here are two invocations of the macro ARMAK2D and their expansions.

86 ARMAK2D XX, 10, 20
00004A 47F0 C36E 00374 87+ B X0009
00004E 000A 88+XXRS DC H 10'
000050 0014 89+XXCS DC H 20'
000052 0000
000054 0000000000000000 90+XXV DC 200F' 0'
000374 8B30 0000 00000 91+X0009 SLA R3,0

92 ARMAK2D YY, 4, 8
000378 47F0 C3FA 00400 93+ B X0010
00037C 0004 94+YYRS DC H 4
00037E 0008 95+YYCS DC H 8'
000380 0000000000000000 96+YYV DC 32F 0'
000400 8B30 0000 00000 97+X0010 SLA R3,0

Please note the hexadecimal addresses at the left of the listing. Line 90 corresponds to
byte address X' 0054’ and line 91 to byte address X' 0374’ . Thedifference is given by
X 320’ , whichisdecimal 800. Line 90 reserves 200 fullwords, which occupy 800 bytes.

The storage alocation indicated by lines 96 and 97 issimilar. Line 96 sets aside thirty—two
fullwords, for an alocation of 128 bytes. X' 400" — X' 320" =X' 80’ =128 indecimal.

The ARGET2D and ARPUT 2D macros would be based on the similar macros discussed
above. Each would take three arguments, and have prototypes as follows:

ARGET2D &NAME, &ROW &COL
ARPUT2D &NAME, &ROW &COL

Each macro would insure that the row and column numbers were within bounds, and then
calculate the offset into the block of storage set aside for the array. The writing of the actual
code for each of these macrosis |eft as an exercise for the reader.

Page 374 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

Stringsvs. Arraysof Characters
While a string may be considered an array of characters, thisis not the normal practice.
A string is a sequence of characters with afixed length. A string is stored in “string space’,
which may be considered to be alarge dynamically alocated array that contains all of the
strings used. There are two ways to declare the length of a string.
1. Allot aspecia “end of string” character, such as the character with
code X' 00’ , asdonein C and C++.

2. Storean explicit string length code, usually as asingle byte that prefixes the string.
A single byte can store an unsigned integer in the range 0 through 255 inclusive.

In this method, the maximum string length is 255 characters.
There are variants on these two methods; some are worth consideration.
Example String
In this example, | used strings of digitsthat are encoded in EBCDIC. The character

sequence “12345” would beencodedasF1 F2 F3 F4 F5. Thisisasequence of five
characters. In either of the above methods, it would require six bytes to be stored.

Here is the string, as would be stored by C++.

Byte number 0 1 2 3 4 5
Contents F1 F2 F3 F4 F5 00
Hereisthe string, as might be stored by Visual Basic Version 6.
Byte number 0 1 2 3 4 5
Contents 05 F1 F2 F3 F4 F5

Each method hasits advantages. The main difficulty with the first approach, asitis
implemented in C and C++, isthat the programmer is responsible for the terminating X' 00’ .
Failing to place that can lead to strange run-time errors.

Sharing String Space
String variables usually are just pointersinto string space.
Consider the following example in the style of Visual Basic.

c1———[04

2 F1

C3 g ‘3 Here, each of the symbols C1, C2, and C3
¥ 1| referencesastring of length 4.
04 | Clreferencesthe string “1301”

F1 | C2referencesthestring“1302”

g g C3 references the string “2108”

F2
04
r2
F1
FO
FB8

Page 375 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler General Arrays and Strings

Using I ndirect Pointerswith Attributes
Another string storage method uses indirect pointers, as follows.

P1 02 C 3| Heretheintermediate node hasthe
P2/ 08 / D 7| following structure.
E?2 1. A reference count
P3 C 3 2. Thestringlength
P4 F2 3. A pointer into string space.
Psk F 1| Therearetwo referencesto the first
3 g E g string, of length 8: “CPSC 2105’

C 3 | Therearethree referencesto the second
D 7 | string, also of length 8: “CPSC 2108”.
E ?», There are many advantages to this method
F 2 | of indirect reference, with attributes

F 1| storedintheintermediate node. It may be
O the method used by Java

8

There are a number of advantages associated with this approach to string storage. In general
the use of indirection in pointers, asillustrated above, simplifies system programming. Here
are afew illustrations of some of the standard considerations:

1. If pointer P1is deallocated, the reference count for the string “CPSC 2105” is
reduced by 1, but the string is not removed.

2. If pointer P2 is dedllocated, then the reference count for the string goesto O,
and the string space can be reclaimed.

Reclamation of dynamic memory (string space in this example) is atricky business and often
issimply not done. However, the existence of the intermediate pointer facilitates such an
operation. Suppose that the string “CPSC 2105 is removed and the string “ CPSC2108” is
moved up by eight positions. There is only one value that needs to be reassigned, and it is
not the addresses associated with pointers P3, P4, or P5. It isthe address in the intermediate
node that each of P3, P4, and P5 reference. Thisintermediate node is easy to locate.

Page 376 Chapter 19 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

