
Page 332 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Chapter 18: Writing Macros

This lecture will focus on writing macros, and use stack handling as an example of macro
use. Macros differ from standard subroutines and functions. Functions and subroutines
represent separate blocks of code to which control can be transferred. Linkage is achieved
by management of a return address, which is managed in various ways.

A macro represents code that is automatically generated by the assembler and inserted into
the source code. Macros are less efficient in terms of code space; each invocation of the
macro will generate a copy of the code. Macros are more efficient in terms of run time;
they lack the overhead associated with subroutine call and return. There is an important
definition that is key to understanding what a macro is and what it does.

Definition: A macro definition is a pattern for a character–by–character textual
substitution without interpretation, and a macro invocation causes the
assembler to effect that substitution exactly as written.

Dynamic Memory: Stacks and Heaps
Before discussing macros, let’s discuss an application. The first thing to note in our
discussion of dynamic memory, especially stacks and heaps, is that these features are not
supported by our version of the System/370 assembler.

A stack is a LIFO (Last–In / First–Out) data structure with three basic operations:
PUSH places an item onto the stack,
POP removes an item from the stack
INIT initializes the stack.

A heap is a dynamic structure used by a RTS (Run–Time System) to allocate memory in
response to object creators, such as New. A modern RTS will allocate an area of memory for
use by both the stack and the heap. By convention in system design:

1. The stack starts at high memory addresses and moves toward lower addresses.
2. The heap starts at low memory addresses and moves toward higher addresses.

Division of the Dynamic Memory Space
This shows how the available space is divided between the stack and the heap.
There is no fixed allocation to either, just a limit on the total space used.

A stack is often managed using a stack pointer, SP, that locates its top.

S/370 Assembler Language Writing Macros

Page 333 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Our Stack Implementation
The first caution in our implementation regards the selection of names for our macros.
IBM has macros called “PUSH” and “POP”, associated with handling print output. We must
pick other names for our stack macros. Our goal in this lecture is to examine the basic stack
structure, and its implementation using macros.

Our implementation will use a fixed–size array to hold the stack. The design will be atypical
in that the stack will grow towards higher addresses. The stack pointer will point to the
location into which the next item will be pushed. The two basic stack operations, as we
implement them, are illustrated in the figures below.

PUSH
STACK[SP] = ITEM
SP = SP + 1 // Moves toward higher addresses

POP
SP = SP – 1
ITEM = STACK[SP]

This non–standard approach is easier for me to code.

A Stack Example
Here we push four integers, one after the other. We then pop the values.

Push onto the stack

Pop from the stack: note the order is reversed.

S/370 Assembler Language Writing Macros

Page 334 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Our Stack Implementation: Macro or Subroutine?
We have a choice of implementation method to use for our stack handler.
I have chosen to use an approach using macros for two reasons.

1. I wanted to discuss macros.
2. I wanted to use a stack to illustrate the subroutine call mechanism.

That makes it difficult to use a subroutine for the stack.

We shall write three macros for the stack.

STKINIT This is a macro without parameters.
It will initialize the stack count and also the stack pointer.

STKPUSH This is a macro with a single parameter.
It pushes the 32–bit contents of a register onto the stack.

STKPOP This is a macro with a single parameter.
It pops the contents of the stack top into a 32–bit register.

AGAIN: These names are chosen to avoid name conflicts with existing macros.

Mechanics of Writing Macros
The MACRO definitions should occur very early in the source code of the assembler
program. Only comments and assembler control directives may precede a MACRO
definition. This commonly includes the PRINT directive.

A MACRO begins with the key word MACRO, includes a prototype and a macro body, and
ends with the trailer keyword MEND.

Parameters to a MACRO are prefixed by the ampersand “&”.

Here is an example.

Header MACRO
Prototype DIVID ",&DIVIDEND,&DIVISOR
Model Statements ZAP &QOUT,&DIVIDEND

DP ",&DIVISOR
Trailer MEND

Note that the header and trailer must appear exactly as shown above. Each of the terms
“MACRO” and “MEND” begin in column 10. Nothing else is allowed on either line.

The basic idea of a macro is to replace multiple copies of repeated code with a single macro
invocation. Here, the savings are minimal, as we are replacing two lines of code with one
line of code. Again, the reader is cautioned the some teaching examples are quite small.

With the above macro definition, based on packed decimal arithmetic, the idea is to replace
the following two lines of code with the line that follows them.

Replace ZAP X,Y
DP X,Z

With DIVID X,Y,Z

S/370 Assembler Language Writing Macros

Page 335 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Example of Macro Expansion
In assembly language, a macro is a single statement that causes the assembler to emit a
sequence of other statements specified by the macro definition. Consider the above example,
with prototype

DIVID ",&DIVIDEND,&DIVISOR.

The macro body is
ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR

Here is an example of the macro expansion. We assume that the labels used as “parameters”
have been properly defined by DS or DC statements.

DIVID MPG,MILES,GALS MACRO INSTRUCTION
+ ZAP MPG,MILES ITS EXPANSION
+ DP MPG,GALS

What Do We Mean by “Expansion”?
Consider the following code fragment, written to include a call to a macro.

PACK MILES,CARDIN+10(4) COLUMNS 10 - 13
PACK GALS,CARDIN+14(3) COLUMNS 14 – 16
DIVID MPG,MILES,GALS INVOKE THE MACRO
MVC MPGPR,=X‘40202020’ MOVE THE EDIT MASK
ED MPGPR,MPG EDIT FOR PRINTING

Here is the code that is actually generated. I have inserted line numbers.
Note that the macro invocation itself is not an executable instruction.

51 PACK MILES,CARDIN+10(4) COLUMNS 10 - 13
52 PACK GALS,CARDIN+14(3) COLUMNS 14 – 16
54 ZAP MPG,MILES ITS EXPANSION INTO
55 DP MPG,GALS TWO LINES OF CODE
56 MVC MPGPR,=X‘40202020’ MOVE THE EDIT MASK
57 ED MPGPR,MPG EDIT FOR PRINTING

Symbolic Parameters
The macro prototype contains a list of symbolic parameters. Each symbolic parameter is
written as follows:

1. The name begins with an ampersand (&).

2. The ampersand is followed by one to seven alphanumeric characters, the first of
which must be a letter. The total length must be between 2 and 8 characters: first
an “&”, then a letter, then zero to six alphanumeric characters.

3. Symbolic parameters have a local scope; that is, the name and value they are
assigned only applies to the macro definition in which they have been declared.
[Page 251, R_17]

S/370 Assembler Language Writing Macros

Page 336 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Keyword Macros
A standard invocation of the above macro might appear as follows:

DIVID MPG,MILES,GALS

In the above macro invocation, the arguments are passed by position. A macro invoked this
way is called a positional macro. Another use, called a keyword macro, allows arguments
to be passed in any order because each argument is tagged with an explicit symbolic
parameter. Keyword macros also allow default values for each or all of the parameters.

The definition of a keyword macro differs from that of a positional macro only in the form of
the prototype. Each symbolic parameter must be of the form &PARAM=[DEFAULT]. What
this says is that the symbolic parameter is followed immediately by an “=”, and is optionally
followed by a default value. As a keyword macro, the above example can be written as:

Header MACRO
Prototype DIVID2 "=,&DIVIDEND=,&DIVISOR=
Model Statements ZAP &QOUT,&DIVIDEND

DP ",&DIVISOR
Trailer MEND

Here are a number of equivalent invocations of this macro, written in the keyword style.
Note that this definition has not listed any default values.

DIVID2 "=MPG,&DIVIDEND=MILES,&DIVISOR=GALS
DIVID2 &DIVIDEND=MILES,&DIVISOR=GALS,"=MPG
DIVID2 "=MPG,&DIVISOR=GALS,&DIVIDEND=MILES

It is possible to use labels defined in the body of the program as default values.
MACRO
DIVID2 "=MPG,&DIVIDEND=,&DIVISOR=
ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR
MEND

With this definition, the two invocations are exactly equivalent.
DIVID MPG,MILES,GALS
DIVID2 &DIVIDEND=MILES,&DIVISOR=GALS

The invocation of the macro DIVID2 will expand as follows:
ZAP MPG,MILES
DP MPG,GALS

It is interesting to note that a keyword macro cannot be invokes as if it were a positional
macro. The student should consult the following listing to see what happens.

From the listing of the macro invocations, we can infer that the statement
DIVID2 MPG,MILES,GALS

is treated as if there were no arguments present.

S/370 Assembler Language Writing Macros

Page 337 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

One may specify default constants in the keyword macro, being careful to observe the correct
syntax. For example, one might be tempted to specify &DIVISOR=10, but the number by
itself will name a register. The only way to do this would be set &DIVISOR to =P‘10’,
by using the construct required to pass literals to a keyword macro.

MACRO
DIVID3 "=MPG,&DIVIDEND=,&DIVISOR==P‘10’
ZAP &QOUT,&DIVIDEND
DP ",&DIVISOR
MEND

The above usage is explained simply “If the value of a keyword operand is a literal, two
equal signs must be specified.” [R_17, page 300]. A more complete explanation of the
above can be seen by considering the macro DIVID2. The student will note the shortening
of the keywords in what follows, in an attempt to fit the listings on the page.

Here is the prototype DIVID2 "=MPG,&DVD=,&DVS=
Here is a correct invocation DIVID2 QUOT=ARG1,DVD=ARG2,DVS==P'20'

The key here is to remove the text fragments “QUOT=”, “DVD=”, and “DVS=”, and see what
remains. Let’s do that. Consider QUOT=ARG1,DVD=ARG2,DVS==P'20'
What remains is “ARG1”, “ARG2”, and “=P'20'”, each of which is a correct argument.
The third argument is a literal value for the packed decimal with value 20. Had we invoked
the macro with the third argument as DVS=P'20', the third argument would have been just
“P'20'”, which is meaningless to the assembler.

Sample Expansion Listings for Macros
Here is some assembly output from a program that I wrote to test these ideas.

31 *
32 * MACRO DEFINITIONS
33 *
34 MACRO
35 DIVID ",&DVD,&DVS
36 ZAP ",&DVD
37 DP ",&DVS
38 MEND
39 *
40 MACRO
41 DIVID2 "=,&DVD=,&DVS=
42 ZAP ",&DVD
43 DP ",&DVS
44 MEND
45 *
46 MACRO
47 DIVID3 "=,&DVD=,&DVS==P'10'
48 ZAP ",&DVD
49 DP ",&DVS
50 MEND
51 *

S/370 Assembler Language Writing Macros

Page 338 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Here is the listing for the expansions of the macros. Note the use of a literal argument in lines 100 and 109. In the positional
macro, the literal has a single equals sign, while in the keyword macro it has two equals signs.

Note the errors in the first expansion of DIVID2. Consider line 104 in particular. The macro definition indicates that the text “ZAP”
is to be followed by a text string forthe first argument, followed by a comma, followed by a text string for the second argument.
However, neither text string has been provided properly, so it attempts to generate the string “ZAP , ”, which has no meaning.

95 * SOME MACRO INVOCATIONS
96 *

97 DIVID ARG1,ARG2,ARG3
00004A F831 C0B2 C0B6 000B8 000BC 98+ ZAP ARG1,ARG2
000050 FD31 C0B2 C0B8 000B8 000BE 99+ DP ARG1,ARG3

100 DIVID ARG1,ARG2,=P'30'
000056 F831 C0B2 C0B6 000B8 000BC 101+ ZAP ARG1,ARG2
00005C FD31 C0B2 C322 000B8 00328 102+ DP ARG1,=P'30'

103 DIVID2 ARG1,ARG2,ARG3
000062 0000 0000 0000 00000 00000 104+ ZAP ,
** ASMA074E Illegal syntax in expression - ,

000068 0000 0000 0000 00000 00000 105+ DP ,
** ASMA074E Illegal syntax in expression - ,

106 DIVID2 DVD=ARG2,DVS=ARG3,QUOT=ARG1
00006E F831 C0B2 C0B6 000B8 000BC 107+ ZAP ARG1,ARG2
000074 FD31 C0B2 C0B8 000B8 000BE 108+ DP ARG1,ARG3

109 DIVID2 DVD=ARG2,DVS==P'20',QUOT=ARG1
00007A F831 C0B2 C0B6 000B8 000BC 110+ ZAP ARG1,ARG2
000080 FD31 C0B2 C324 000B8 0032A 111+ DP ARG1,=P'20'

112 DIVID3 DVD=ARG2,QUOT=ARG1
000086 F831 C0B2 C0B6 000B8 000BC 113+ ZAP ARG1,ARG2
00008C FD31 C0B2 C326 000B8 0032C 114+ DP ARG1,=P'10'

115 *

S/370 Assembler Language Writing Macros

Page 339 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

A Potential Problem with Macros.
It might appear that a macro invocation cannot be the target of a branch instruction. Here is
some of my early code. I had defined a macro, STKPOP, in the proper place. It was used by
a routine, called DOFACT, to be discussed later. As we shall see, DOFACT computes the
factorial of a small integer, hence the name.

At the time, I was working with non–standard ways to invoke subroutines.
I tried the following code:

B DOFACT CALL THE FACTORIAL CODE

Here is the branch target.
DOFACT STKPOP 4 POP THE ARGUMENT INTO R4

STKPOP 8 POP THE RETURN ADDRESS
BR 8 BRANCH TO RETURN ADDRESS

That did not assemble. The complaint was that the symbol DOFACT was not defined. What
happened? The label was clearly there in the source code. Where did the label go?

Here is What Happened.
Consider the following expansion from a macro call. It has been edited for clarity. At
present, the reader should not worry about lines 134 – 136 of the listing, but just focus on
line 137 (the macro invocation) and its expansion.

0000BA 4840 C4AE 134 A92POP LH 4,STKCOUNT
0000BE 4940 C5B4 135 CH 4,=H'0'
0000C2 47D0 C0FE 136 BNP A98DONE

137 STKPOP 4
0000C6 4830 C4AE 138+ LH 3,STKCOUNT
0000CA 4B30 C5B2 139+ SH 3,=H'1'
0000CE 4030 C4AE 140+ STH 3,STKCOUNT
0000D2 8B30 0002 141+ SLA 3,2
0000D6 4120 C4B2 142+ LA 2,THESTACK
0000DA 5843 2000 143+ L 4,0(3,2)
0000DE The next instruction

Note that the STKPOP instruction on line 137 is not assigned an object code address.

The instruction on line 136 is at address C2 and has length 4. The next instruction will be
at address C6. Only the expanded code is “real”. Line 137 is basically a comment.

In other words, we note two facts:
1. The expansion code is what counts for code accuracy.
2. The label DOFACT does not “make it” into the expanded code.

In my early work on the subject I had concluded that a macro invocation could not also be a
branch target. Then I did something almost radical, I actually read the relevant portion of the
IBM Assembler Language Manual [R_17]. I found the solution.

S/370 Assembler Language Writing Macros

Page 340 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

The Solution to the Branch Target Problem
In order to solve the above problem, we need to focus on a more precise statement of the
form of a macro definition. We must focus on the prototype and body.

The general form of a prototype statement is as follows.
Symbolic Name Name of macro Zero or more symbolic parameters

If the symbolic name is to be used, it has the form of a symbolic parameter.
If the symbolic name is to be used, it must be duplicated on the first line of the body.
Here is an example, using the DIVID macro.

MACRO
&LABEL DIVID ",&DIVIDEND,&DIVISOR
&LABEL ZAP &QOUT,&DIVIDEND

DP ",&DIVISOR
MEND

Note that the symbolic parameter “&LABEL” is treated as any other such parameter. In
particular, it has local scope; thus the parameter has meaning only within the macro. The
most important point is that the label, first seen in the prototype is repeated in the first model
statement. It is that repetition that allows the label to be present in the expanded code.

Consider the prototype &LABEL DIVID ",&DIVIDEND,&DIVISOR

matched against the invocation B10DIV DIVID X,Y,Z

This forces the following substitutions in the model statements of the macro body.
&LABEL is replaced by B10DIV, " is replaced by X, etc. This positional replacement
mimics that seen in arguments to functions as used in high–level languages.

Code Example to Illustrate the Solution
MACRO

&LABEL DIVID ",&DIVIDEND,&DIVISOR
&LABEL ZAP &QOUT,&DIVIDEND

DP ",&DIVISOR
MEND

*
* NOW THE MACRO INVOCATIONS AND EXPANSIONS
*
B10DIV DIVID X,Y,Z
+B10DIV ZAP X,Y
+ DP X,Z
B20DIV DIVID A,B,C
+B20DIV ZAP A,B
+ DP A,C
*

Note that each of the labels B10DIV and B20DIV now appears in the expanded code
and can be used as a branch target address.

S/370 Assembler Language Writing Macros

Page 341 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Concatenation: Building Operations
In a model statement, it is possible to concatenate two strings of characters.
Consider the macro prototype to load a register from one of several sources.
Note the use of the string “&NAME” to allow this to be a branch target.

MACRO
&NAME LOAD ®,&TYPE,&ARG
&NAME L&TYPE ®,&ARG

MEND

Consider a number of invocations.

LOAD R7,R,R6 becomes LR R7,R6
LOAD R7,H,HW becomes LH R7,HW
LOAD R7,,FW becomes L R7,FW

Note that the second argument in the third example is empty. The empty string is
concatenated to “L” to produce the single character “L”.

Our Stack Data Structure
The stack is implemented as an array of full words, with two auxiliary counters.
There is a halfword that counts the number of items on the stack.
There is a halfword constant that gives the maximum stack capacity. This is not changed by
the code. There is the fixed–size array that holds the stack elements.

Here is the declaration of the stack.

STKCOUNT DC H’0’ THE NUMBER OF ITEMS STORED ON STACK
STKSIZE DC H’64’ THE MAXIMUM STACK CAPACITY
THESTACK DC 64F’0’ THE STACK IS ACTUALLY AN ARRAY OF 64

FULLWORDS, REQUIRING 256 BYTES OF STORAGE.

Note that the elements are full–words while the addresses are byte addresses. The elements
of the stack will be stored at the following addresses.

THESTACK, THESTACK + 4, THESTACK + 8, THESTACK + 12
up to a full word starting at THESTACK + 252.

Initialize the Stack
Here is the macro that initializes the stack.

*STKINIT
MACRO

&L1 STKINIT
&L1 SR 4,4 CLEAR R4 – SUBTRACT FROM SELF

STH 4,STKCOUNT STORE AS THE STACK COUNT
MEND

*
Note the standard trick of clearing a register by subtracting it from itself. The register exists
only for the purpose of placing a 0 into the stack count. Following standard practice, the
contents of the stack are not changed, because the elements of interest will be overwritten
before they are used. Note that this macro does not have any symbolic parameters.

S/370 Assembler Language Writing Macros

Page 342 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

PUSH: Placing Items Onto the Stack
Here is the macro STKPUSH

*STKPUSH
MACRO

&L2 STKPUSH &R
&L2 LH 3,STKCOUNT GET THE CURRENT STACK SIZE
* SLA BY 2 TO MULTIPLY BY FOUR

SLA 3,2 BYTE OFFSET OF INSERTION POINT
LA 2,THESTACK GET ADDRESS OF STACK START
ST &R,0(3,2) STORE THE ITEM INTO THE STACK
LH 3,STKCOUNT GET THE (NOW) OLD STACK SIZE
AH 3,=H’1’ INCREASE THE SIZE BY ONE
STH 3,STKCOUNT STORE THE NEW SIZE
MEND

*
This macro has one symbolic parameter: &R. It is to be a register number.
When called as STKPUSH 4, the operative statement is changed by the
assembler to ST 4,0(3,2) and executed as such at run time.

POP: Removing Items From the Stack
Here is the macro STKPOP

*STKPOP
MACRO

&L3 STKPOP &R
&L3 LH 3,STKCOUNT GET THE STACK COUNT

SH 3,=H’1’ SUBTRACT 1 WORD OFFSET OF TOP
STH 3,STKCOUNT STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK BASE
L &R,0(3,2) LOAD ITEM INTO THE REGISTER
MEND

*
Again, this macro has one symbolic parameter: &R. Again, a register number.
When called as STKPOP 6, this is assembled with the last statement as

L 6,0(3,2).

NOTE:When invoked as STKPOP MYDOG, this will
assemble as L MYDOG,0(3,2); the assembler takes anything.

Needless to say, this last invocation will generate nonsense code if it assembles at all. If the
code does assemble, it will likely generate a run time error. The only way in which this bit of
doggerel (pardon the pun) would assemble is if the symbol MYDOG were equated (with EQU)
to an integer that could be interpreted as a general purpose register.

S/370 Assembler Language Writing Macros

Page 343 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Using the Macros
Here is the part of the unexpanded source code that uses the macros. Here, it is obvious
that I have retained register R4 for communicating results with macros and subroutines.
That is an arbitrary choice.

STARTUP OPEN (FILEIN,(INPUT)) OPEN THE STANDARD INPUT
OPEN (PRINTER,(OUTPUT)) OPEN THE STANDARD OUTPUT
PUT PRINTER,PRHEAD PRINT HEADER
STKINIT INITIALIZE THE STACK
GET FILEIN,RECORDIN GET THE FIRST RECORD, IF THERE

*
A10LOOP MVC DATAPR,RECORDIN MOVE INPUT RECORD

PUT PRINTER,PRINT PRINT THE RECORD
PACK PACKIN,FIELD01 CONVERT DIGITS INPUT TO PACKED
CVB R4,PACKIN CONVERT THE NUMBER TO BINARY
STKPUSH 4 PUSH THE NUMBER ONTO THE STACK
GET FILEIN,RECORDIN GET THE NEXT RECORD
B A10LOOP GO BACK AND PROCESS

*
A90END CLOSE FILEIN

PUT PRINTER,ENDNOTE ANNOUNCE THE END OF INPUT DATA
A92POP LH 4,STKCOUNT GET THE STACK COUNT

CH 4,=H’0’ IS THE COUNT POSITIVE?
BNP A98DONE NO, WE ARE DONE
STKPOP 4 GET NEXT NUMBER INTO R4
MVC PRINT,BLANKS CLEAR THE OUTPUT BUFFER
BAL 8,NUMOUT PRODUCE THE FORMATTED SUM
MVC DATAPR,THENUM AND COPY TO THE PRINT AREA
PUT PRINTER,PRINT PRINT THE RESULT
B A92POP GO AND GET ANOTHER OUTPUT

A98DONE CLOSE PRINTER

Expansion of the Stack Pop
Here is the expanded code, edited from the assembler listing.
136 A92POP LH 4,STKCOUNT
137 CH 4,=H'0'
138 BNP A98DONE
139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ SH 3,=H'1'
143+ STH 3,STKCOUNT
144+ SLA 3,2
145+ LA 2,THESTACK
146+ L 4,0(3,2)
147 MVC PRINT,BLANKS
148 BAL 8,NUMOUT
149 MVC DATAPR,THENUM
150 PUT PRINTER,PRINT
151 *

Note: There is no RETURN statement or the like. The code is inserted in line.

S/370 Assembler Language Writing Macros

Page 344 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

A Problem with the Macros
There is a problem with each of the macros STKPUSH and STKPOP. We show it for
STKPOP, because it is easier to see in this macro. Suppose we have code with the following
two macro calls, one immediately following the other.

STKINIT
STKPOP 6 NOTE: WE HAVE NOT PUSHED AN ITEM

The macro STKINIT will set the value at location STKCOUNT to 0. Now look at the code
in the expansion of macro STKPOP.

139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ SH 3,=H'1'
143+ STH 3,STKCOUNT

STKCOUNT will be set to –1, and the pop will reference the full word just before the stack.
This is the pair STKCOUNT, STKSIZE: an error. After line 143, the values will be.

STKCOUNT DC X‘FFFF’ MINUS ONE
STKSIZE DC X‘0040’ HEXADECIMAL REPRESENTATION OF 64.

Register 6 would be loaded with X‘FFFF0040’, which is a negative number. A bit of
arithmetic reveals this to be the negative of the number represented in hexadecimal as
X‘0000FFC0’ or as 65,472 in decimal.

Avoiding the Problem: A Flawed Solution
The obvious solution is to test the value of STKCOUNT and avoid popping a value if the
stack is empty. Here is some code that appears to do just that.

*STKPOP
MACRO
STKPOP &R
LH 3,STKCOUNT GET THE STACK SIZE
CH 3,=H'0'
BNP NOPOP
SH 3,=H'1' SUBTRACT 1 WORD OFFSET OF LAST
STH 3,STKCOUNT WORD AND STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK START
L &R,0(3,2) LOAD ITEM INTO R4

NOPOP NOP A DO NOTHING TARGET FOR BNP
MEND

*

If the macro is written this way, the code will assemble and run correctly. Actually, it runs
correctly due only to a quirk in the code. It is a general principle that erroneous code might
run on occasion, but it will not run always.

We shall hold out for code that is correct in that it will always assemble, always run,
and always produce the correct result.

S/370 Assembler Language Writing Macros

Page 345 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

What Is the Flaw?
The macro definition given above works ONLY because the macro is invoked only
one time. If the macro is invoked twice, trouble appears. In this modification of
running code, the macro is called twice in a row.

A90END CLOSE FILEIN NO MORE INPUT TO PROCESS
PUT PRINTER,ENDNOTE NOTE THE END OF DATA INPUT

A92POP LH 4,STKCOUNT GET THE STACK COUNT
CH 4,=H'0' IS IT POSITIVE
BNP A98DONE NO - WE ARE DONE HERE
STKPOP 4 GET NEXT NUMBER INTO R4
STKPOP 5 **** BAD CALL
MVC PRINT,BLANKS CLEAR THE OUTPUT AREA
BAL 8,NUMOUT PRODUCE THE FORMATTED SUM
MVC DATAPR,THENUM AND MOVE TO PRINT AREA
PUT PRINTER,PRINT PRINT THE NUMBER
B A92POP GO GET ANOTHER

A98DONE CLOSE PRINTER

Listing for Double Use of the Macro
Notice in the listing below that the first macro expansion produces no problems. It is the
second expansion that gives rise to the assembler error. The symbol NOPOP has already been
used when it is redefined in the second expansion. This is not allowed.

Note that this would not be a problem for a symbolic parameter, which has scope local to the
particular expansion of the macro.

139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ BNP NOPOP
143+ SH 3,=H'1'
144+ STH 3,STKCOUNT
145+ SLA 3,2
146+ LA 2,THESTACK
147+ L 4,0(3,2)
148+NOPOP NOP
148 STKPOP 5
149+ LH 3,STKCOUNT
150+ CH 3,=H'0'
151+ BNP NOPOP
152+ SH 3,=H'1'
153+ STH 3,STKCOUNT
154+ SLA 3,2
155+ LA 2,THESTACK
156+ L 4,0(3,2)
157+NOPOP NOP
** ASMA043E Previously defined symbol - NOPOP

S/370 Assembler Language Writing Macros

Page 346 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Avoiding the Problem: A Correct Solution
Here is a solution to the problem. It works, but it complex to write. The solution is based on
the current location operator, *. It is a jump to a relative address in bytes. The complexity in
writing this is due to counting the bytes in each instruction beginning with the branch
instruction and ending just before the branch target. It is easy to miscount.

*STKPOP
MACRO
STKPOP &R
LH 3,STKCOUNT GET THE STACK SIZE
SH 3,=H'1' SUBTRACT 1 TO GET WORD OFFSET

* OF THE TOP ITEM IN THE STACK
CH 3,=H'0' IS THE NEW SIZE NEGATIVE?
BM *+20 YES, SO CANNOT POP AN ITEM
STH 3,STKCOUNT WORD AND STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK START
L &R,0(3,2) LOAD ITEM INTO R4
SLA 3,0 A NO-OP TO SERVE AS A TARGET
MEND

Observations on the First Solution
The complexity of the above instruction is based on the necessity of counting bytes in the
object code, not instructions in the source code. The above example is simple, because all
instructions to be skipped have the same length. Let’s look at this again.

CH 3,=H'0' IS THE NEW SIZE NEGATIVE?
BM *+20 RX 4 A type RX instruction, length 4 bytes
STH 3,STKCOUNT RX 4 This instruction is at address *+4
SLA 3,2 RS 4 A type RS instruction at address *+8
LA 2,THESTACK RX 4 This is at address *+12
L &R,0(3,2) RX 4 Another 4-byte instruction at *+16
SLA 3,0 The branch target at address *+20

The Preferred Solution
What we need is a way to generate a branch target that would be unique to each expansion of
the macro. As should be expected, the System/370 assembler provides a method, which is
based on concatenation of system variable symbols. We describe this process in two stages,
first reviewing the idea of using concatenation to build symbols and operations. In our
earlier discussion we used concatenation to build load operators for various types.

MACRO
&NAME LOAD ®,&TYPE,&ARG
&NAME L&TYPE ®,&ARG

MEND
Consider a number of invocations, each of which constructs a load operator.
LOAD R7,R,R6 becomes LR R7,R6
LOAD R7,H,HW becomes LH R7,HW
LOAD R7,,FW becomes L R7,FW

S/370 Assembler Language Writing Macros

Page 347 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

System Variable Symbols
The System/370 assembler provides a large number of special predefined symbols called
“system variable symbols”. There are a number of these symbols. I mention three.

&SYSDATE The system date, in the 8 character form “MM/DD/YY”.
Use in the form of a declaration of initialized storage, as in
TODAY DC C‘&SYSDATE’

&SYSTIME The system time of day, in the five character form “HH.MM”.
Also used in the form of a declaration, as in
NOW DC C‘&SYSTIME’

&SYSNDX The macro expansion index. For the first macro expansion, the
Assembler initializes &SYSNDX to the string “0001”. Each
expansion of any macro invocation increases the value represented
by 1, giving rise to the sequence “0001”, “0002”, “0003”, etc.

The &SYSNDX system variable symbol can prevent a macro from generating duplicate labels.
The system symbol is concatenated to a leading character, which begins the label and must
be unique within the macro definition. In what follows, we use the letter “L”. Consider the
following string, used as a label within the body of a macro definition.
L&SYSNDX L R4,STKSAV4

Note that the string “L&SYSNDX”, as written, contains eight characters: the initial character
“L” followed by the 7 character sequence “&SYSNDX”. On expansion, this will be converted
to labels such as “L0001”, “L0002”, etc. As the string “&SYSNDX” already takes seven
characters, it is better to make the prefix a single letter, though multiple letters are allowed.

In actual fact, the requirement for the leading characters, to which the &SYSNDX is to be
appended can be any sequence of one to four characters, provided only that the first character
is a letter. Thus the following are valid, but they disrupt the flow of the listing.
A12&SYSNDX ... This label might become A120003.
WXYZ&SYSNDX ... This might become WXYZ0117.

A Simple Example of Label Generation
Consider the simple macro used for packed division in the previous lecture.
We adapt it to prevent division by zero.

MACRO
&LABEL DIVID ",&DIVIDEND,&DIVISOR
&LABEL ZAP &QOUT,&DIVIDEND

CP &DIVISOR,=P‘0’ IS IT ZERO
BNE A&SYSNDX NO, DIVISION IS OK
ZAP ",=P‘0’ YES, SET QUOTIENT TO 0
B B&SYSNDX

A&SYSNDX DP ",&DIVISOR
B&SYSNDX NOPR R3 DO NOTHING

MEND

Note that the format of the NOPR instruction requires a register number
(here R3), even though the instruction does nothing.

S/370 Assembler Language Writing Macros

Page 348 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Sample Expansion of the Macro
With the above definition, consider the following expansions.

A10START DIVID X,Y,Z
+A10START ZAP X,Y
+ CP Z,=P‘0’ IS IT ZERO
+ BNE A0001 NO, DIVISION IS OK
+ ZAP X,=P‘0’ YES, SET QUOTIENT TO 0
+ B B0001
+A0001 DP X,Z
+B0001 NOPR R3 DO NOTHING
A20DOIT DIVID A,B,C

+A20DOIT ZAP A,B
+ CP C,=P‘0’ IS IT ZERO
+ BNE A0002 NO, DIVISION IS OK
+ ZAP X,=P‘0’ YES, SET QUOTIENT TO 0
+ B B0002
+A0002 DP A,C
+B0002 NOPR R3 DO NOTHING

Note that each invocation has distinct labels. This removes the name clashes.

For the first expansion of the macro DIVID, the label &SYSNDX is replaced by the
string “0001” and on the second expansion, the label is replaced by “0002”.

It is important to note that the &SYSNDX is incremented due to the expansion of any macro.
Were there another macro expansion between the two invocations of the macro DIVID, the
second invocation of that macro would be associated with the replacement of the label
&SYSNDX by the string “0003”. The string “0002” would be associated with the
intermediate macro expansion, assuming that it used the system symbol &SYSNDX.

The Preferred Solution Applied to STKPOP
Here is a revision of the code that will avoid the problem of duplicate labels.

*STKPOP
MACRO
STKPOP &R
LH 3,STKCOUNT GET THE STACK SIZE
CH 3,=H'0'
BNP L&SYSNDX
SH 3,=H'1' SUBTRACT 1 WORD OFFSET OF LAST
STH 3,STKCOUNT WORD AND STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK START
L &R,0(3,2) LOAD ITEM INTO R4

L&SYSNDX NOP A DO NOTHING TARGET FOR BNP
MEND

*

S/370 Assembler Language Writing Macros

Page 349 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

STKPOP: Preferred Solution with Two Invocations
The following listing was produced when the revised macro definition above was
implemented in the source code.

139 STKPOP 4
140+ LH 3,STKCOUNT
141+ CH 3,=H'0'
142+ BNP L0001
143+ SH 3,=H'1'
144+ STH 3,STKCOUNT
145+ SLA 3,2
146+ LA 2,THESTACK
147+ L 4,0(3,2)
148+L0001 NOP
148 STKPOP 5
149+ LH 3,STKCOUNT
150+ CH 3,=H'0'
151+ BNP L0002
152+ SH 3,=H'1'
153+ STH 3,STKCOUNT
154+ SLA 3,2
155+ LA 2,THESTACK
156+ L 4,0(3,2)
157+L0002 NOP

Pushing from Various Sources
We look first at the handling of our STKPUSH. The only restriction on the stack is that every
value pushed be treated as a 32–bit fullword. As a result, a 16–bit halfword will be sign–
extended to a 32–bit fullword before being pushed onto the stack. This is similar to the
function of the LH instruction, which loads a register from a halfword.

The key instruction in the original STKPUSH macro is the following.

ST &R,0(3,2) STORE THE ITEM INTO THE STACK

In this case, the item to be placed on the stack is found in the register
indicated by the symbolic parameter &R.
The way to extend this instruction to all data types is as follows.

1. Select a register to be a fixed source for the word on the stack, and
2. Construct instructions to load that fixed register from the source.

What Shall Be Stored on the Stack?
At this point, we have a decision to make. What data types to store? The size restriction on
the stack limits the simple choices to addresses and the contents of registers, halfwords, and
fullwords. We must select a working register for the new macro. I select R4.
The “key code” becomes as follows.
Stacking an address LA R4,&ARG Load address into R4.
Stacking a halfword LH R4,&ARG Load halfword into R4.
Stacking a fullword L R4,&ARG Load fullword into R4.
Stacking a register LR R4,&ARG Load value from source register

S/370 Assembler Language Writing Macros

Page 350 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Passing the Type in a Macro Invocation
The solution adopted to the problem above is to pass the type in the macro call and use
concatenation to build the load operator. Here is some code taken from a macro definition
that has been run and tested.

First, we show the macro prototype.
&L2 STKPUSH &ARG,&TYP

Next we show the “key instruction” in the macro body.
L&TYP R4,&ARG

Here are four typical invocations of the macro.

STKPUSH R7,R PUSH VALUE IN REGISTER.
STKPUSH HHW,H PUSH A HALFWORD VALUE.
STKPUSH FFW,A PUSH AN ADDRESS.
STKPUSH FFW PUSH A FULLWORD.

Note that the last invocation lacks a second argument. In the expansion, this
causes &TYP to be set to ‘ ’, a blank; “L&TYP” becomes “L ”.

The Macro Definition
Here is the definition for the macro at this stage of its development.

MACRO
&L2 STKPUSH &ARG,&TYP
&L2 LH R3,STKCOUNT

SLA R3,2
LA R2,THESTACK
L&TYP R4,&ARG
ST R4,0(3,2)
LH R3,STKCOUNT
AH R3,=H'1'
STH 3,STKCOUNT
MEND

Again, the “&L2” allows the macro invocation to be a branch target. This is a practice that
your author has decided to employ, even absent a present need to use any invocation of the
macro as a branch target. This is a flexibility option only; one that is easy to implement.

At this point, the code fixes on general–purpose registers R3 and R4 for use. There is no
particular logic to these choices; it is just that two registers had to be chosen. The point here
is to focus on the construction of the operator using the concatenation “L&TYP”.

This macro will be invoked with four distinct values for the second parameter, &TYP. Again,
the value is “” for push fullword, “H” for push a sign–extended halfword, “A” for an
address, and “R” for register. As always, there is insufficient error checking code. It is
assumed that the macro will always be invoked with the correct type.

S/370 Assembler Language Writing Macros

Page 351 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Some Invocations of this Macro
91 STKPUSH R7,R
92+ LH R3,STKCOUNT
93+ SLA R3,2
94+ LA R2,THESTACK
95+ LR R4,R7
96+ ST R4,0(3,2)
97+ LH R3,STKCOUNT
98+ AH R3,=H'1'
99+ STH 3,STKCOUNT

100 STKPUSH HHW,H
101+ LH R3,STKCOUNT
102+ SLA R3,2
103+ LA R2,THESTACK
104+ LH R4,HHW
105+ ST R4,0(3,2)
106+ LH R3,STKCOUNT
107+ AH R3,=H'1'
108+ STH 3,STKCOUNT

More Invocations of this Macro
109 STKPUSH FFW
110+ LH R3,STKCOUNT
111+ SLA R3,2
112+ LA R2,THESTACK
113+ L R4,FFW
114+ ST R4,0(3,2)
115+ LH R3,STKCOUNT
116+ AH R3,=H'1'
117+ STH 3,STKCOUNT

118 STKPUSH FFW,A
119+ LH R3,STKCOUNT
120+ SLA R3,2
121+ LA R2,THESTACK
122+ LA R4,FFW
123+ ST R4,0(3,2)
124+ LH R3,STKCOUNT
125+ AH R3,=H'1'
126+ STH 3,STKCOUNT

NOTE: The originals of the program listing are found at the end of the chapter.

S/370 Assembler Language Writing Macros

Page 352 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Saving the Work Registers
As written, this macro has the side effect of changing the values of three registers:
R2, R3, and R4. The value of R4 is preserved only if it is being pushed. We should write
macros so that they operate without side effects. The only way to do this is to save and
restore the values of the work registers. There are many ways to do this. The simplest is to
alter the stack data structure. Here is the new version.

STKCOUNT DC H‘0’ NUMBER OF ITEMS STORED ON STACK
STKSIZE DC H‘64’ MAXIMUM STACK CAPACITY
STKSAV2 DC F‘0’ SAVES CONTENTS OF R2
STKSAV3 DC F‘0’ SAVES CONTENTS OF R3
STKSAV4 DC F‘0’ SAVES CONTENTS OF R4
THESTACK DC 64F‘0’ THE STACK HOLDS 64 FULLWORDS

This new definition does not alter the STKINIT macro. It does affect the
other two macros: STKPOP and STKPUSH. We illustrate the latter.

The First Revision of STKPUSH
Here is the revision that allows the work registers to be saved.

MACRO
&L2 STKPUSH &ARG,&TYP
&L2 ST R2,STKSAV2 THE ORDER OF SAVING

ST R3,STKSAV3 IS NOT IMPORTANT.
ST R4,STKSAV4
LH R3,STKCOUNT
SLA R3,2
LA R2,THESTACK
L&TYP R4,&ARG
ST R4,0(3,2)
LH R3,STKCOUNT
AH R3,=H'1'
STH R3,STKCOUNT
L R4,STKSAV4 THE ORDER OF RESTORATION
L R3,STKSAV3 IS NOT IMPORTANT EITHER.
L R2,STKSAV2
MEND

The Status of the Macros at This Point
There are a few issues to be addressed at this point.
The only macro that will not change is the initialization macro, STKINIT.

1. We have not yet dealt with generalizing the STKPOP macro.
2. We have not yet dealt with either the stack empty problem or

that of the stack being full. Each has to be addressed.

Each of these issues requires some additional code. We now move towards the final versions
of each of the macros.

S/370 Assembler Language Writing Macros

Page 353 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

The First Revision of STKINIT
Here is a revision of the STKINIT code that allows initialization of its size. This was done in
order to show how to concatenate the symbolic parameter &SIZE as a prefix.

35 MACRO
36 &L1 STKINIT &SIZE
37 &L1 ST R3,STKSAV3
38 SR R3,R3
39 STH R3,STKCOUNT
40 L R3,STKSAV3
41 B L&SYSNDX
42 STKCOUNT DC H'0'
43 STKSIZE DC H'&SIZE'
44 STKSAV2 DC F'0'
45 STKSAV3 DC F'0'
46 STKSAV4 DC F'0'
47 THESTACK DC &SIZE.F'0'
48 L&SYSNDX SLA R3,0
49 MEND

Note the “.” in the definition of THESTACK as DC &SIZE.F'0'. This concatenates the
value of the symbolic parameter with “F‘0’”, as in “128F‘0’”

The Second Revision of STKPUSH
Here is the final version of the macro for pushing onto the stack.

MACRO
&L2 STKPUSH &ARG,&TYP
&L2 ST R3,STKSAV3

LH R3,STKCOUNT GET COUNT OF ITEMS ON THE STACK
CH R3,STKSIZE IS THE STACK FULL?
BNL Z&SYSNDX YES, DO NOT ADD ANOTHER.
ST R4,STKSAV4 NO, WE CAN PUSH ANOTHER ITEM.
ST R2,STKSAV2 START BY SAVING THE OTHER 2 REGISTERS
SLA R3,2 MULTIPLY THE INDEX BY 4.
LA R2,THESTACK
L&TYP R4,&ARG FORM THE ADDRESS
ST R4,0(3,2) STORE THE ITEM
LH R3,STKCOUNT GET THE OLD COUNT OF ITEMS
AH R3,=H'1' INCREMENT THE COUNT BY 1
STH R3,STKCOUNT STORE THE CURRENT COUNT
L R4,STKSAV4 RESTORE THE REGISTERS.
L R2,STKSAV2

Z&SYSNDX L R3,STKSAV3
MEND

S/370 Assembler Language Writing Macros

Page 354 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Conditional Assembly
Consider the problem of generalizing STKPOP. We shall want to pop the following from the
stack: register values, halfwords, and fullwords. The type for the argument refers to the
destination; an address can be popped into either a register or fullword. In order to see the
problem for STKPOP, consider the “key instruction”.

Halfword: STH R4,&ARG
Fullword: ST R4,&ARG
Register: LR &ARG,R4 No STR for store register.

We could write a STR macro, but I want to use another solution. We have already seen how
concatenation can be used to construct different instructions in a macro expansion. We now
investigate conditional assembly, in which the expansion of a macro can lead to a number of
distinct code sequences.

Conditional assembly permits the testing of attributes such as data format, data value, or field
length, and to use the results of such testing to generate source code that is specific to the
case in question. This chapter will focus on five specific conditional assembly instructions.

AGO an unconditional branch
AIF a conditional branch. This means “Ask If”.
ANOP A NOP that can be the branch target for either AGO or AIF.
MNOTE print a programmer defined message at assembly time
MEXIT exit the macro definition.

Attributes for Use by Conditional Assembly
The assembler can generate code specified by certain attributes of the arguments to the
macro definition at the time it is expanded. There are six types of attributes that can be
associated with a parameter. Here are three if the more useful attributes.

L’ Length The length of the symbolic parameter
I’ Integer The integer attribute of a fixed–point,

floating–point, or packed decimal number.
T’ Type The type of the parameter, as specified by the

DC or DS declaration with which it is defined.

Some types for the T’ attribute are as follows.
A Address H Halfword
B Binary I Instruction
C Character P Packed Decimal
F Fullword X Hexadecimal

The Sequence Symbol
Conditional assembly is built on the ability to generate conditional branching in the code
generation process. In this, it is not that branch assembler language statements are used, but
that entire segments of code will not even be assembled.

The assembler uses sequence symbols, denoted by the “.” (period) prefix. More on this later.

S/370 Assembler Language Writing Macros

Page 355 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

The Ask If (AIF) Instruction
The AIF instruction has two parts.

1. A logical expression in parentheses, and
2. A sequence symbol immediately following, which serves as the branch target.

The AIF logical expression may use the following relational operators, which
are quite similar to those seen in early versions of the FORTRAN language.

EQ Equal To NE Not Equal To
LT Less Than GE Greater Than or Equal To
GT Greater Than LE Less Than or Equal To

If the type of &AMT is packed, go to .B23PACK
AIF(T’&AMT EQ ‘P’).B23PACK

If the type of &LINK is not an instruction, go to .R30ERROR

AIF(T’&LINK NE ‘I’).R30ERROR

Here, each of .B23PACK and .R30ERROR are sequence symbols.

Testing the Value of a Symbolic Parameter
What we want for the STKPOP instruction is a conditional assembly based on the value of
the second parameter. The prototype for the macro will be something like
&L1 STKPOP &ARG,&TYP

What we want to issue is an AIF statement such as
AIF (&TYP EQ ‘R’).ISREG

There is a well–known peculiarity in any assembler language, not just in the IBM Assembler,
that disallows this straightforward construct.

We must put the symbolic parameter in single quotes. The statement is thus:
AIF (‘&TYP’ EQ ‘R’).ISREG

If &TYP is the character R, the logical expression becomes (‘R’ EQ ‘R’),
which immediately evaluates to True, and the branch is taken. [Page 384, R_17]

Targets for Use by Conditional Assembly
Each of the AGO and AIF instructions is a branch instruction that takes effect at assembly
time. Neither persists into the assembly source code. It should be expected that the targets
for either of these conditional assembly branch instructions should be of a distinct type. The
targets for these are called sequence symbols.

The format of a sequence symbol is as follows. A sequence symbol begins with a period (.)
followed by one to seven letters or digits, the first of which must be a letter.
Unlike the symbols created by use of the &SYSNDX system symbol, sequence symbols do
not persist into assembly time, and thus cannot generate a name conflict for the assembler.

S/370 Assembler Language Writing Macros

Page 356 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

A Sample of Conditional Assembly
Here is the DIVID macro, with conditional assembly instructions to
insure that it is expanded only for parameters that are packed decimal.

MACRO
&LABEL DIVID ",&DIVIDEND,&DIVISOR

AIF (T’" NE ‘P’).NOTPACK
AIF (T’&DIVIDEND NE T’").NOTPACK
AIF (T’&DIVISOR NE T’").NOTPACK
AGO .DOIT

.NOTPAK MNOTE ‘ONE PARAMETER IS NOT PACKED DECIMAL’
MEXIT

.DOIT ANOP
&LABEL ZAP &QOUT,&DIVIDEND

CP &DIVISOR,=P‘0’ IS IT ZERO
BNE A&SYSNDX NO, DIVISION IS OK
ZAP ",=P‘0’ YES, SET QUOTIENT TO 0
B B&SYSNDX

A&SYSNDX DP ",&DIVISOR
B&SYSNDX NOPR R3 DO NOTHING

MEND

Some Examples of the Conditional Assembly Divide Macro
In the following, assume that each of X, Y, and Z is defined by a DC statement as packed
decimal, but that A, B, and C are defined as halfwords. Here are some possible expansions.

F10DOIT DIVID X,Y,Z
+F10DOIT ZAP X,Y
+ CP Z,=P‘0’ IS IT ZERO
+ BNE A0032 NO, DIVISION IS OK
+ ZAP X,=P‘0’ YES, SET QUOTIENT TO 0
+ B B0032
+A0032 DP X,Z
+B0032 NOPR R3 DO NOTHING
F25NODO DIVID A,B,C

+ONE PARAMETER IS NOT PACKED DECIMAL

The Original Definition of Macro STKPOP
We now begin our redefinition of the STKPOP macro.
We begin with the original definition, which popped a value into a register.
*STKPOP

MACRO
&L3 STKPOP &R
&L3 LH 3,STKCOUNT GET THE STACK COUNT

SH 3,=H’1’ SUBTRACT 1 WORD OFFSET OF TOP
STH 3,STKCOUNT STORE AS NEW SIZE
SLA 3,2 BYTE OFFSET OF STACK TOP
LA 2,THESTACK ADDRESS OF STACK BASE
L &R,0(3,2) LOAD ITEM INTO THE REGISTER.
MEND

S/370 Assembler Language Writing Macros

Page 357 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Again, this macro has one symbolic parameter: &R. Again, a register number. We want to
expand this definition in a number of ways. We begin by introducing the type &TYP.
At this point, it will become necessary to have another work register.

Mechanics of the Revised STKPOP
The new design will use register R4 to transfer the value at the top of the stack.

The new prototype will be as follows.
&L3 STKPOP &ARG,&TYP

Each type of instruction will include the following as the first statement
in the “key code” – that which actually places the value into the destination.

L R4,0(3,2) LOAD ITEM INTO REGISTER R4.

The second statement of the “key code” depends on the type of the destination.
&TYP == H STH R4,&ARG
&TYP == F ST R4,&ARG
&TYP == A ST R4,&ARG (SAME AS FULLWORD)
&TYP == R LR &ARG,R4 COPY R4 INTO REGISTER

Here is the key code section, with the conditional assembly.
The first statement is common to all types.

L R4,0(3,2) LOAD ITEM INTO REGISTER R4.
AIF (‘&TYPE’ EQ ‘R’).ISREG
ST&TYP R4,&ARG
AGO .CONT

.ISREG LR &ARG,R4

.CONT The next statement.

STKPOP: Revision 2
Here I am going to add some code to save and restore the work registers.

MACRO
&L3 STKPOP &ARG,&TYP
&L3 ST R2,STKSAV2

ST R3,STKSAV3
ST R4,STKSAV4
LH R3,STKCOUNT GET THE STACK COUNT
SH R3,=H’1’ SUBTRACT 1 WORD OFFSET OF TOP
STH R3,STKCOUNT STORE AS NEW SIZE
SLA R3,2 BYTE OFFSET OF STACK TOP
LA R2,THESTACK ADDRESS OF STACK BASE
L R4,0(3,2) LOAD ITEM INTO REGISTER R4.
AIF (‘&TYPE’ EQ ‘R’).ISREG
ST&TYP R4,&ARG
AGO .CONT

.ISREG LR &ARG,R4

.CONT L R4,STKSAV4
L R3,STKSAV3
L R2,STKSAV2
MEND

S/370 Assembler Language Writing Macros

Page 358 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

STKPOP: The Complete Version
MACRO

&L3 STKPOP &ARG,&TYP
&L3 ST R3,STKSAV3

LH R3,STKCOUNT GET THE STACK COUNT
CH R3,=H‘0’ IS THE COUNT POSITIVE
BNH Z&SYSNDX NO, WE CANNOT POP.
SH R3,=H’1’ SUBTRACT 1 WORD OFFSET OF TOP
STH R3,STKCOUNT STORE AS NEW SIZE
SLA R3,2 BYTE OFFSET OF STACK TOP
ST R2,STKSAV2 SAVE REGISTER R2
ST R4,STKSAV4 SAVE REGISTER R4
LA R2,THESTACK ADDRESS OF STACK BASE
L R4,0(3,2) LOAD ITEM INTO REGISTER R4.
AIF (‘&TYPE’ EQ ‘R’).ISREG
ST&TYP R4,&ARG
AGO .CONT

.ISREG LR &ARG,R4

.CONT L R4,STKSAV4
L R2,STKSAV2

Z&SYSNDX L R3,STKSAV3
MEND

S/370 Assembler Language Writing Macros

Page 359 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Original Code for the Macro Expansions
33 * MACRO DEFINITIONS
34 *
35 MACRO
36 &L2 STKPUSH &ARG,&TYP
37 &L2 LH R3,STKCOUNT
38 SLA R3,2
39 LA R2,THESTACK
40 L&TYP R4,&ARG
41 ST R4,0(3,2)
42 LH R3,STKCOUNT
43 AH R3,=H'1'
44 STH 3,STKCOUNT
45 MEND
46 *
89 * SOME MACRO INVOCATIONS
90 *
91 STKPUSH R7,R

00004A 4830 C0C6 000CC 92+ LH R3,STKCOUNT
00004E 8B30 0002 00002 93+ SLA R3,2
000052 4120 C0CA 000D0 94+ LA R2,THESTACK
000056 1847 95+ LR R4,R7
000058 5043 2000 00000 96+ ST R4,0(3,2)
00005C 4830 C0C6 000CC 97+ LH R3,STKCOUNT
000060 4A30 C43A 00440 98+ AH R3,=H'1'
000064 4030 C0C6 000CC 99+ STH 3,STKCOUNT

100 STKPUSH HHW,H
000068 4830 C0C6 000CC 101+ LH R3,STKCOUNT
00006C 8B30 0002 00002 102+ SLA R3,2
000070 4120 C0CA 000D0 103+ LA R2,THESTACK
000074 4840 C1CE 001D4 104+ LH R4,HHW
000078 5043 2000 00000 105+ ST R4,0(3,2)
00007C 4830 C0C6 000CC 106+ LH R3,STKCOUNT
000080 4A30 C43A 00440 107+ AH R3,=H'1'
000084 4030 C0C6 000CC 108+ STH 3,STKCOUNT

109 STKPUSH FFW
000088 4830 C0C6 000CC 110+ LH R3,STKCOUNT
00008C 8B30 0002 00002 111+ SLA R3,2
000090 4120 C0CA 000D0 112+ LA R2,THESTACK
000094 5840 C1CA 001D0 113+ L R4,FFW
000098 5043 2000 00000 114+ ST R4,0(3,2)
00009C 4830 C0C6 000CC 115+ LH R3,STKCOUNT
0000A0 4A30 C43A 00440 116+ AH R3,=H'1'
0000A4 4030 C0C6 000CC 117+ STH 3,STKCOUNT

118 STKPUSH FFW,A
0000A8 4830 C0E6 000EC 119+ LH R3,STKCOUNT
0000AC 8B30 0002 00002 120+ SLA R3,2
0000B0 4120 C0EA 000F0 121+ LA R2,THESTACK
0000B4 4140 C1EA 001F0 122+ LA R4,FFW
0000B8 5043 2000 00000 123+ ST R4,0(3,2)
0000BC 4830 C0E6 000EC 124+ LH R3,STKCOUNT
0000C0 4A30 C45A 00460 125+ AH R3,=H'1'
0000C4 4030 C0E6 000EC 126+ STH 3,STKCOUNT

127 *
136 **********************************

S/370 Assembler Language Writing Macros

Page 360 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Revised Code for the Macros
The next few pages show the listing of the final forms of the macros, as actually
coded and tested. These are followed by listings of the expanded macros.
002900 *
002910 MACRO
002911 &L1 STKINIT
002912 &L1 ST R3,STKSAV3
002913 SR R3,R3
002914 STH R3,STKCOUNT CLEAR THE COUNT
002915 L R3,STKSAV3
002920 MEND
002930 *

003000 MACRO
003100 &L2 STKPUSH &ARG,&TYP
003110 &L2 ST R3,STKSAV3 SAVE REGISTER R3
003200 LH R3,STKCOUNT GET THE CURRENT SIZE
003210 CH R3,STKSIZE IS THE STACK FULL?
003220 BNL Z&SYSNDX YES, DO NOT PUSH
003230 ST R4,STKSAV4 OK, SAVE R2 AND R4
003240 ST R2,STKSAV2
003300 SLA R3,2 MULTIPLY BY FOUR
003310 LA R2,THESTACK ADDRESS OF STACK START
003320 L&TYP R4,&ARG LOAD R4 WITH VALUE
003330 ST R4,0(3,2) STORE INTO THE STACK
003331 LH R3,STKCOUNT
003332 AH R3,=H'1'
003333 STH 3,STKCOUNT
003334 L R4,STKSAV4
003335 L R2,STKSAV2
003336 Z&SYSNDX L R3,STKSAV3
003337 MEND
003338 *
003339 *

S/370 Assembler Language Writing Macros

Page 361 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

003340 MACRO
003341 &L3 STKPOP &ARG,&TYP
003342 &L3 ST R3,STKSAV3
003343 LH R3,STKCOUNT GET THE STACK COUNT
003344 CH R3,=H'0' IS THE COUNT POSITIVE?
003345 BNH Z&SYSNDX NO, WE CANNOT POP
003346 SH R3,=H'1' SUBTRACT 1 WORD OFFSET
003347 STH R3,STKCOUNT STORE THE NEW SIZE
003348 SLA R3,2 BYTE OFFSET OF STACK TOP
003349 ST R2,STKSAV2 SAVE REGISTER R2
003350 ST R4,STKSAV4 SAVE REGISTER R4
003351 LA R2,THESTACK ADDRESS OF STACK BASE
003352 L R4,0(3,2) LOAD ITEM INTO R4
003353 AIF ('&TYP' EQ 'R').ISREG
003354 ST&TYP R4,&ARG
003355 AGO .CONT
003356 .ISREG LR &ARG,R4
003357 .CONT L R4,STKSAV4
003358 L R2,STKSAV2
003359 Z&SYSNDX L R3,STKSAV3
003360 MEND
003361 *

Revised Code for the Macro STKINIT
Here is an expansion of the newer definition of STKINIT,
which allows the stack size to be specified.

138 STKINIT 128
00004A 5030 C05E 00064 139+ ST R3,STKSAV3
00004E 1B33 140+ SR R3,R3
000050 4030 C056 0005C 141+ STH R3,STKCOUNT
000054 5830 C05E 00064 142+ L R3,STKSAV3
000058 47F0 C266 0026C 143+ B L0009
00005C 0000 144+STKCOUNT DC H'0'
00005E 0080 145+STKSIZE DC H'128'
000060 00000000 146+STKSAV2 DC F'0'
000064 00000000 147+STKSAV3 DC F'0'
000068 00000000 148+STKSAV4 DC F'0'

S/370 Assembler Language Writing Macros

Page 362 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

Revised Code for the Macro Expansions
128 * SOME MACRO INVOCATIONS
129 *
130 STKINIT

00004A 5030 C22E 00234 131+ ST R3,STKSAV3
00004E 1B33 132+ SR R3,R3
000050 4030 C226 0022C 133+ STH R3,STKCOUNT
000054 5830 C22E 00234 134+ L R3,STKSAV3

135 *

* Stack Push with a Register as an Argument

136 STKPUSH R7,R
000058 5030 C22E 00234 137+ ST R3,STKSAV3
00005C 4830 C226 0022C 138+ LH R3,STKCOUNT
000060 4930 C228 0022E 139+ CH R3,STKSIZE
000064 47B0 C08C 00092 140+ BNL Z0010
000068 5040 C232 00238 141+ ST R4,STKSAV4
00006C 5020 C22A 00230 142+ ST R2,STKSAV2
000070 8B30 0002 00002 143+ SLA R3,2
000074 4120 C236 0023C 144+ LA R2,THESTACK
000078 1847 145+ LR R4,R7
00007A 5043 2000 00000 146+ ST R4,0(3,2)
00007E 4830 C226 0022C 147+ LH R3,STKCOUNT
000082 4A30 C5A2 005A8 148+ AH R3,=H'1'
000086 4030 C226 0022C 149+ STH 3,STKCOUNT
00008A 5840 C232 00238 150+ L R4,STKSAV4
00008E 5820 C22A 00230 151+ L R2,STKSAV2
000092 5830 C22E 00234 152+Z0010 L R3,STKSAV3

* Stack Push with a Halfword as an Argument

153 STKPUSH HHW,H
000096 5030 C22E 00234 154+ ST R3,STKSAV3
00009A 4830 C226 0022C 155+ LH R3,STKCOUNT
00009E 4930 C228 0022E 156+ CH R3,STKSIZE
0000A2 47B0 C0CC 000D2 157+ BNL Z0011
0000A6 5040 C232 00238 158+ ST R4,STKSAV4
0000AA 5020 C22A 00230 159+ ST R2,STKSAV2
0000AE 8B30 0002 00002 160+ SLA R3,2
0000B2 4120 C236 0023C 161+ LA R2,THESTACK
0000B6 4840 C33A 00340 162+ LH R4,HHW
0000BA 5043 2000 00000 163+ ST R4,0(3,2)
0000BE 4830 C226 0022C 164+ LH R3,STKCOUNT
0000C2 4A30 C5A2 005A8 165+ AH R3,=H'1'
0000C6 4030 C226 0022C 166+ STH 3,STKCOUNT
0000CA 5840 C232 00238 167+ L R4,STKSAV4
0000CE 5820 C22A 00230 168+ L R2,STKSAV2
0000D2 5830 C22E 00234 169+Z0011 L R3,STKSAV3

S/370 Assembler Language Writing Macros

Page 363 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

* Stack Push with a Fullword as an Argument
170 STKPUSH FFW

0000D6 5030 C22E 00234 171+ ST R3,STKSAV3
0000DA 4830 C226 0022C 172+ LH R3,STKCOUNT
0000DE 4930 C228 0022E 173+ CH R3,STKSIZE
0000E2 47B0 C10C 00112 174+ BNL Z0012
0000E6 5040 C232 00238 175+ ST R4,STKSAV4
0000EA 5020 C22A 00230 176+ ST R2,STKSAV2
0000EE 8B30 0002 00002 177+ SLA R3,2
0000F2 4120 C236 0023C 178+ LA R2,THESTACK
0000F6 5840 C336 0033C 179+ L R4,FFW
0000FA 5043 2000 00000 180+ ST R4,0(3,2)
0000FE 4830 C226 0022C 181+ LH R3,STKCOUNT
000102 4A30 C5A2 005A8 182+ AH R3,=H'1'
000106 4030 C226 0022C 183+ STH 3,STKCOUNT
00010A 5840 C232 00238 184+ L R4,STKSAV4
00010E 5820 C22A 00230 185+ L R2,STKSAV2
000112 5830 C22E 00234 186+Z0012 L R3,STKSAV3

* Stack Push with an Address as an Argument
187 STKPUSH FFW,A

000116 5030 C22E 00234 188+ ST R3,STKSAV3
00011A 4830 C226 0022C 189+ LH R3,STKCOUNT
00011E 4930 C228 0022E 190+ CH R3,STKSIZE
000122 47B0 C14C 00152 191+ BNL Z0013
000126 5040 C232 00238 192+ ST R4,STKSAV4
00012A 5020 C22A 00230 193+ ST R2,STKSAV2
00012E 8B30 0002 00002 194+ SLA R3,2
000132 4120 C236 0023C 195+ LA R2,THESTACK
000136 4140 C336 0033C 196+ LA R4,FFW
00013A 5043 2000 00000 197+ ST R4,0(3,2)
00013E 4830 C226 0022C 198+ LH R3,STKCOUNT
000142 4A30 C5A2 005A8 199+ AH R3,=H'1'
000146 4030 C226 0022C 200+ STH 3,STKCOUNT
00014A 5840 C232 00238 201+ L R4,STKSAV4
00014E 5820 C22A 00230 202+ L R2,STKSAV2
000152 5830 C22E 00234 203+Z0013 L R3,STKSAV3

204 *

* Stack Pop with a Register as an Argument
205 STKPOP R8,R

000156 5030 C22E 00234 206+ ST R3,STKSAV3
00015A 4830 C226 0022C 207+ LH R3,STKCOUNT
00015E 4930 C5A4 005AA 208+ CH R3,=H'0'
000162 47D0 C186 0018C 209+ BNH Z0014
000166 4B30 C5A2 005A8 210+ SH R3,=H'1'
00016A 4030 C226 0022C 211+ STH R3,STKCOUNT
00016E 8B30 0002 00002 212+ SLA R3,2
000172 5020 C22A 00230 213+ ST R2,STKSAV2
000176 5040 C232 00238 214+ ST R4,STKSAV4
00017A 4120 C236 0023C 215+ LA R2,THESTACK
00017E 5843 2000 00000 216+ L R4,0(3,2)
000182 1884 217+ LR R8,R4
000184 5840 C232 00238 218+ L R4,STKSAV4
000188 5820 C22A 00230 219+ L R2,STKSAV2
00018C 5830 C22E 00234 220+Z0014 L R3,STKSAV3

S/370 Assembler Language Writing Macros

Page 364 Chapter 18 Revised August 3, 2009
Copyright © by Edward L. Bosworth, Ph.D.

* Stack Pop with a Fullword as an Argument
221 STKPOP FFW

000190 5030 C22E 00234 222+ ST R3,STKSAV3
000194 4830 C226 0022C 223+ LH R3,STKCOUNT
000198 4930 C5A4 005AA 224+ CH R3,=H'0'
00019C 47D0 C1C2 001C8 225+ BNH Z0015
0001A0 4B30 C5A2 005A8 226+ SH R3,=H'1'
0001A4 4030 C226 0022C 227+ STH R3,STKCOUNT
0001A8 8B30 0002 00002 228+ SLA R3,2
0001AC 5020 C22A 00230 229+ ST R2,STKSAV2
0001B0 5040 C232 00238 230+ ST R4,STKSAV4
0001B4 4120 C236 0023C 231+ LA R2,THESTACK
0001B8 5843 2000 00000 232+ L R4,0(3,2)
0001BC 5040 C336 0033C 233+ ST R4,FFW
0001C0 5840 C232 00238 234+ L R4,STKSAV4
0001C4 5820 C22A 00230 235+ L R2,STKSAV2
0001C8 5830 C22E 00234 236+Z0015 L R3,STKSAV3

* Stack Pop with a Halfword as an Argument
237 STKPOP HHW,H

0001CC 5030 C22E 00234 238+ ST R3,STKSAV3
0001D0 4830 C226 0022C 239+ LH R3,STKCOUNT
0001D4 4930 C5A4 005AA 240+ CH R3,=H'0'
0001D8 47D0 C1FE 00204 241+ BNH Z0016
0001DC 4B30 C5A2 005A8 242+ SH R3,=H'1'
0001E0 4030 C226 0022C 243+ STH R3,STKCOUNT
0001E4 8B30 0002 00002 244+ SLA R3,2
0001E8 5020 C22A 00230 245+ ST R2,STKSAV2
0001EC 5040 C232 00238 246+ ST R4,STKSAV4
0001F0 4120 C236 0023C 247+ LA R2,THESTACK
0001F4 5843 2000 00000 248+ L R4,0(3,2)
0001F8 4040 C33A 00340 249+ STH R4,HHW
0001FC 5840 C232 00238 250+ L R4,STKSAV4
000200 5820 C22A 00230 251+ L R2,STKSAV2
000204 5830 C22E 00234 252+Z0016 L R3,STKSAV3

253 *
00006C 0000000000000000 149+THESTACK DC 128F'0'
00026C 8B30 0000 00000 150+L0009 SLA R3,0

