Chapter 17: Conversionsfor Floating—Point Formats

This chapter discusses conversion to and from the IBM floating point format. Specifically,
the chapter covers the following four topics.

1. Conversion of datain 32-bit fullword to a an equivaent valuein
single—precision floating—point format.

2. Conversion of datain single—precision floating—point to a an equivalent value in
32-hit fullword format.

3. Conversion of datain the Packed Decimal format to an equivalent valuein
double—precision floating—point format. We shall discuss the problem of |ocating
the decimal point, which isimplicit in the Packed Decimal format.

4. Conversion of datain double—precision floating—point to an equivalent valuein
Packed Decimal format. This discussion may be abit general, as the detailed
assembler code is somewhat difficult to design.

The true purpose of this chapter isto focus the reader’ s attention on one of the many services
provided by the RTS (Run-Time System) of a modern compiled high-level language. This
ismore of the text’s focus on assembl er language as atool to understanding the workings of
amodern computer as opposed to being alanguage in which the reader islikely to program.

The IBM Mainframe F oating—Point Formats

Thefirst thing to do in this presentation is to give a short review of the IBM Mainframe
format for floating—point numbers. We might note that the modern Series Z machines, such
asthe z/10 running z/OS, support three floating—point formats: binary floating—point (the
|EEE standard), decimal floating—point, and hexadecimal floating—point. The older S/370
series supported only what is called “hexadecima” format. Thisformat is so named because
the exponent is stored as a power of 16. This chapter will use only two of the standard
floating—point formats for the §/370: single—precision (E) and double—precision (D).

Each floating point number in this standard is specified by three fields: the sign bit, the
exponent, and the fraction. The IBM standard allocates the same number of bits for the
exponent of each of itsformats. The bit numbers for each of the fields are shown below.

Format Sign bit Bits for exponent Bits for fraction
Single precision 0 1-7 8-31
Double precision 0 1-7 8-63

In IBM terminology, the field used to store the representation of the exponent is called the
“characteristic field”. Thisisa7-bit field, used to store the exponent in excess-64 format;
if the exponent is E, then the value (E + 64) is stored as an unsigned 7—bit number. Thisfield
is prefixed by asign bit, which is 1 for negative and O for non-negative. These two fields
together will be represented by two hexadecimal digitsin a one-byte field.

Recalling that the range for integers stored in 7-bit unsigned format is0 < N < 127, we have
0<(E+64) <127, 0or-64 < E <63. Thesize of the fraction field does depend on the format.
Single precision 24 bits 6 hexadecimal digits,
Double precision 56 bits 14 hexadecimal digits.

Page 311 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

The Sign Bit and Characteristic Field
We now discuss the first two hexadecimal digits in the representation of a floating—point
number in these two IBM formats. In IBM nomenclature, the bits are allocated as follows.

Bit 0 the sign bit

Bits1-7 the seven-bit number storing the characteristic.
Bit Number o | 1] 2] 3 4 | 5|67
Hex digit 0 1
Use Sign bit | Characteristic (Exponent + 64)

Consider the four bits that comprise hexadecimal digit 0. The sign bit in the floating—point
representation isthe “8 bit” in that hexadecimal digit. Thisleadsto asimplerule.

If the number is not negative, bit 0is 0, and hex digit Oisoneof 0, 1, 2, 3,4, 5, 6, or 7.
If the number isnegative, bit 0is1, and hex digit Oisoneof 8,9, A,B,C, D, E, or F.

Some Single Precision Examples

We now examine a number of examples, using the IBM single—precision floating—point
format. The reader will note that the methods for conversion from decimal to hexadecimal
formats are somewhat informal, and should check previous notes for a more formal method.
Note that the first step in each conversion is to represent the magnitude of the number in the
required form X 165, after which we determine the sign and build the first two hex digits.

Example 1: Positive exponent and positive fraction.

The decimal number is 128.50. The format demands a representation in the form X 16,
with 0.625 < X < 1.0. As128< X < 256, the number is converted to the form X ¢16°.
Note that 128 = (1/2)e16° = (8/16)e16° , and 0.5 = (1/512)e16> = (8/4096)e16°.

Hence, the value is 128.50 = (8/16 + 0/256 + 8/4096)e167 it is 16%e0x0.808.

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010. The first
two hexadecimal digits in the eight digit representation are formed as follows.

Fied Sign Characteristic
Value 0 1] 0| 0 0 |of1]o0
Hex value 4 2

The fractional part comprises six hexadecimal digits, the first three of which are 808.
The number 128.50 is represented as4280 8000.

Example 2: Positive exponent and negative fraction.

The decimal number is the negative number —128.50. At this point, we would normally
convert the magnitude of the number to hexadecimal representation. This number has the
same magnitude as the previous example, so we just copy the answer; it is 16%e0x0.808.

We now build the first two hexadecimal digits, noting that the sign bit is 1.

Field Sign Characteristic
Value 1 1] 0] 0 0 |]of1]o0
Hex value C 2

The number 128.50 is represented as C280 8000.
Note that we could have obtained this value just by adding 8 to the first hex digit.

Page 312 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Example 3: Negative exponent and positive fraction.
The decimal number is0.375. Asafraction, thisis 3/8 = 6/16. Put another way, it is
16°0.375 = 16%(6/16). Thisisin the required format X 16, with 0.625 < X < 1.0.

The exponent value is 0, so the characteristic value is either 64 or 0x40 = 100 0000. Thefirst
two hexadecimal digits in the eight digit representation are formed as follows.

Fied Sign Characteristic
Value 0 1] 0] 0 0O |]ojJo]oO
Hex value 4 0

The fractional part comprises six hexadecimal digits, the first of whichisa®.
The number 0.375 is represented in single precision as 4060 0000.
The number 0.375 isrepresented in double precisonas 4060 0000 0000 0000.

Example 4: A Full Conversion
The number to be converted is 123.45. Aswe have hinted, thisis a non-terminator.

Convert the integer part.

123 / 16 = 7 withremainder 11 thisis hexadecimal digit B.
7/ 16 = Owithremainder 7 thisis hexadecimal digit 7.

Reading bottom to top, the integer part converts as Ox7B.

Convert the fractional part.

0.45 o 16 = 7.20 Extract the 7,

0.20 o 16 = 3.20 Extract the 3,

0.20 o 16 = 3.20 Extract the 3,

0.20 « 16 = 3.20 Extract the 3, and so on.

In the standard format, this number is 16%e0x0.7B33333333......

The exponent value is 2, so the characteristic valueis either 66 or 0x42 = 100 0010. Thefirst
two hexadecimal digits in the eight digit representation are formed as follows.

Fied Sign Characteristic
Value 0 1] 0] 0 0O |]oj1]o0
Hex value 4 2

The number 123.45 isrepresented in single precisionas ~ 427B 3333.
The number 0.375 isrepresented in double precissonas 427B 3333 3333 3333.

Example5: TrueO

The number 0.0, called “true 0" by IBM, isstored as al zeroes [R_15, page 41].
In single precision it wouldbe 0000 0000.

In double precision it would be 0000 0000 0000 0000.

The format of this “true zero” will be important when we consider conversions to and from
the fullword format used for 32—bit integers. In particular, note that the bit field interpreted
as asingle—precision true zero will be interpreted as a 32-bit integer zero.

Page 313 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

The structure of the formats facilitates conversion among them. For example, consider the
positive decimal number 80.0, which in hexadecimal is X* 50’ . Conversion of thisto
floating—point format involves noting that 80 = 64 + 16 = 256e(0/2 + 1/4 + 0/8 + 1/16). Thus
the exponent of 16 is 2 and the characteristic field stores X' 42’ . Thefraction field for this
number is0101, which is hexadecimal 5. The representation of the number in the two
standard IBM floating—point formats chosen for this chapter’s discussion is as follows.

Single precision (E) format 42 50 00 00
Double precision (D) format 42 50 00 00 00 00 00 00

Conversion from single precision to double precision format is quite easy. Just add 8
hexadecimal zeroes. Conversion from double precision to single precision is either easy or a
bit trickier, depending on whether one truncates or attempts to round.

Convert the double precisionvalue 42 50 00 00 11 10 00 00
Simple truncation will yield 42 50 00 00
A reasonable rounding will yield 42 50 00 01

The Floating-Point Registers

In addition to the sixteen general—purpose registers (used for binary integer arithmetic), the
S/360 architecture provides four registers dedicated for floating—point arithmetic. These
registers are numbered 0, 2, 4, and 6. Each isa64-bit register. It is possible that the use of
even numbers to denote these registers is to emphasi ze that they are not 32-bit registers.

The use of the registers by the floating—point operations depends on the precision:
Single precision formats use the leftmost 32 bits of a floating—point register.
Double precision formats use all 64 bits of the register.

Toillustrate this idea consider the two data declarations.

EFLOAT DS E Declare a 32-bit single precision
DFLOAT DS D Decl are a 64-bit doubl e precision

Consider the following instructions that use floating—point register 0. Remember that this
register holds 64 bits, which is enough for a double—precision (D) floating—point vaue.

LD O,DFLOAT Load the full 64-bit register from
t he doubl e precision 64-bit val ue.

LE 0, EFLOAT Load the leftnost 32 bits of the register
fromthe single precision 32-bit val ue.
The rightnost 32 bits of the register are
not changed [R_15, page 43].

STD O, DFLOAT Store the 64 bits fromthe register into
the 64-bit double precision target.

STE O, EFLOAT Store the leftnost 32 bits of the register
into the 32-bit single precision target.

Page 314 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Another Look at Two's-Complement | ntegers

In order to develop the algorithms for converting between two’ s—complement integers and
floating—point formats, we must examine the structure of positive integers from aslightly
different viewpoint, onethat is of little view in the “pure integer” world.

We shall focus on conversions for positive fullword integers. Aswe shall see, handling
negative integersis a simple extension of the above. Handling halfword integersis even
easier, as we shall usethe LH (Load Halfword) instruction to load them into aregister. All
of our conversions from integer format to floating—point format will assume that the integer
argument is found in a general—purpose register.

The fullword conversion code will begin with an instruction such as
L RO,FW Load the fullword into register 9

The halfword conversion code will begin with an instruction such as
LH RO, HW Load the halfword into register 9,
extending the sign to nake a fullword.

The handling of negative numbersis quite ssimple. We first declare a single-character (one
byte) area called THESI G\, to hold arepresentation of the sign in aformat that will assist
the processing of the resulting floating point number.

For anegative number, THESI GN will be setto X' 80’ .
For a non—negative number, its value will be set to X' 00’ .

In the code, the location THESI GN would be declared as follows[R_17, page 41].
THESIGN DS X1 One byte of storage

Hereisafragment of the code, assuming that the signed integer valueisin R9. Note the use
of the MVI instruction with the hexadecimal equivalent of acharacter [R_17, page 41].

MVC THESI G\, =X' 00’ Initialize the sign field
CH R9,=HO Look at the integer val ue
Bz DONE It is zero, nothing to do.
BNL NOTNEG I's the val ue negative?
WC THESI G\, =X 80’ Yes, it is negative.

LCR R9,R9 Get the absol ute val ue

NOTNEG Now process the positive nunber in R9.

For ease of illustration | shall discuss the structure of asigned 16-bit hafword. Asseen
above, we may assume that the halfword represents a positive integer.

Hex digit 0 1 2 3

Power of 16 | 4 3 2 1 0

Powerof2 |16[15/14|13|12|11|10, 9|8 | 7|6 |5[4]3]2|1]|0

Ao | AL [A [As | AL [As | As [Ar | Ag | Ao [Ap | Al [An [Az [A | Ass

In asigned halfword, the bits Ag through A5 would represent the binary bits of the 16-bit
integer. Aswe have specified that we have a positive integer, we know that Ay = 0 and that
at least one of the other bitsisequal to 1.

The value of the halfword is Age2™ + A1e2 + A2 + Aze2'2 + .. + Agze2’.

Page 315 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Another way to write thiswould be as follows:
2% (A2 + A4+ Ayl8+ Ay/16 + ... + A15/2™°), which can also be written as

16%(A/2 + Asld + Asl8 + Ag/16 + ... + A15/2™). Thisseemsto bein aform that is ready for
tranglation into the IBM floating—point representation. If one of A, Ay, or Az isnonzero, this
will work. The exponent will be 4 and the fraction AgA1A2A3...As.

Please note that the IBM Single-Precision Floating—Point format is a 32-bit format, so the
above should not be taken literally. It isjust anindicator of where we need to go.

The above method, as extended to 32 bits, might work if it were not for the issue of
normalization. All IBM floating point standards require that the first two bytes (four hex
digits) of the representation be of the following format.

Digit 0 | 1 2 3
Contents | Sign bit and 7-bit characteristic High order bits of the fraction. | Next four bits of
field holding the exponent. At least one non-zero hit. the fraction.

In other words, the value of hexadecimal digit 2 cannot be azero. Thisisarequirement of
the normalized representation, which calls for representing the floating—point value in the
form 165 e F, where /16 < F < 1.

In our 16-bit example, suppose that the four high order bits are all zero, but that at least one
of the next four bitsisnot zero. What we haveis of the following form.

Hex digit 0 1 2 3

Power of 16 | 4 3 2 1 0

Powerof2 |16(15/14|13|12|11|10, 9 |8 | 7|6 |54 |3]2|1]0

0 0 0 0 Ao Al Az A3 A4 A5 Ae A7 Ag Ag AlO All

Thevalue of the halfword is Age2™ + A1e2'% + A2 + Aze2® + .. + A e2°.
Another way to write thiswould be as follows:
2%e(Ag/2 + A4 + Ayl8 + Ag/16 + ... + A15/2'%), which can also be written as

16%0(Ao/2 + Asld + Agl8 + Ag/16 + ... + As5/2"%). Thisseemsto bein aform that is ready for
tranglation into the IBM floating—point representation. If one of A, Az, or Az isnonzero, this
will work. The exponent will be 3 and the fraction AgA1A2A3...A1;.

Before continuing our discussion, let us reflect on a method to detect whether or not the four
high—order bitsin aregister areall zero. For this, we need to turn to the logical AND, which
was covered in the last pages of Chapter 12 of this textbook.

Thetype of instruction | choose to useisthe type RX logical AND instruction, N.

LR RS, RO COPY RO | NTO R8 SO THAT THE FOUR
* H GH ORDER BI TS CAN BE TESTED
* W THOUT LOSI NG THE VALUE.

N R8, =X F0000000’ MASK OQUT THE 4 H GH ORDER BI TS
* THE MASK | S FO 00 00 00.

BNZ HAVE1 FOUND A 1 BIT.

Note that the block aboveis that to be used for 32-bit integers. Thelogical AND will raise
the zero condition flag only when all bitsin R8 become 0 after the operation.

Page 316 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

The Range of Exponents

Thefirst thing to do is predict the largest exponent that can arise from converting a 32-bit
fullword. The magnitude of such an integer cannot exceed 2 = 2,147,483,648, which isthe
same as 2% e 1/2. This value can be represented as 16° e 1/2, indicating that the largest
exponent for afloating—point number converted from a fullword is 8.

The smallest positive integer is 1 = 16" 1/16, indicating that the smallest exponent for a
floating—point number converted from afullword is1. Recall that the characteristic field part
of the floating—point representation contains the exponent stored in excess-64 format; the
value stored is (Exponent + 64). The range of possible characteristicsisfrom 72 down to 65.

In our example and in our code, we shall manipulate the characteristic directly.

A Fullword Example

The algorithm to be developed for fullwords will be inspired by the halfword example above.
It will involve multiple shifts and logical operations to locate the most significant 1 bit and
use the information obtained to generate the characteristic field and fraction. But first, let’s
do a computation “by hand”. Our exampleis 32,685.

Asa 16-hit integer, thiscan berepresented as0111 1111 1010 1101. In 32 bitsit
would be 0000 0000 0000 0000 0111 1111 1010 1101. To avoid this mess of
ones and zeroes, this chapter will use hexadecimal notation; the valueis 0000 7FALD.

This a gorithm functions by testing the leftmost hexadecimal digit in the value, which
represents the four high—order bitsin the representation. If the digit is zero, the valueis
shifted left by four bits, equivalent to shifting one hexadecimal digit. The SLL (Shift Left
Logical) instruction will be used for thistask, asit pads the right with zeroes.

1. Stat Characteristic=72, Vaue=0000 7FAD
The most significant digit is 0, so shift left and reduce the characteristic by 1.

2. Characteristic =71, Value= 0007 FADO
The most significant digit is 0, so shift left and reduce the characteristic by 1.

3. Characteristic = 70, Value =007F AC00
The most significant digit is 0, so shift left and reduce the characteristic by 1.

4. Characteristic = 69, Vaue=07FA D000
The most significant digit is 0, so shift left and reduce the characteristic by 1.

5. Characteristic = 68, Value=7FAD 0000
The most significant digit is not 0, so we have both our fraction and our characteristic
withvalue68 or X' 44’ . Thefractionis X ‘7FADOOQ’.

The representation of this value in the 32-bit single—precision floating—point format is:
44 7F AD 00. Just for fun, let’s reverse engineer this value.

The characteristic field is X' 44’ | indicating an exponent of 4. The value represented is
16" o (7/16 + 15/16% + 10/16° + 13/16") = 7016° + 15¢16% + 10016 + 13 =
704096 + 15256 + 160 + 13 = 28,672 + 3,840 + 173 = 32,685.

Page 317 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Why Convert to Single-Precision Floating—Point?

The topic of this section is the conversion of 32-bit fullword integer values into equivalent
floating—point values. One might wonder why we have selected the single—precision format
asthetarget, in preference to the double—precision floating—point (D) format.

One reason for the choice is smplicity; it is easier to discuss single—precision format in this
context. Another reason is precision. The single—precision floating—point format has a
precision of seven digits. A fullword has at most 10 digits, with the most significant digit
being restricted to O, 1, or 2; one might stay that the format has only nine digits. In other
words, for most cases, conversion to the single—precision format does not |ose accuracy.

Two Unusual Cases

There are two cases in which the above “shift left to find the most significant 1 bit” strategy
does not work. In each of these cases, one finds that one of the bitsin the leftmost byte of
the 32-bit integer isnot zero. Recall that the format of the single—precision floating—point
format may beexpressedasC C | F F F F F F, wherethefirst byte (denoted C C)
holds the sign bit and the characteristic field.

Consider the case illustrated below, in which we assume that not all of Ao, A1, Ay, and Az are
zero. Since the number is positive, we do know that Ao = 0, but that is not significant here.

Hex Digit 0 1 2134|567
Power 16 8 7 6
Power 2 32| 31 30 29 | 28 27 26 25 24

Aq Aq A, Az A, Asg Ag A, Ag through Az

The value of the fullword is A12% + A,02% + Aze2%8 + A4e2%" + ... + Az e2’.

Another way to write thiswould be as follows:

2%2e(A1/4 + Ao/8 + A3/16 + ... + A31/2%), which can also be written as

16%(A1/4 + Aol8 + Ag/16 + ... + A31/2%). The single-precision floating—point format calls
for an 8-hit field holding the sign and characteristic, followed by a 24-bit fraction, which
here would be A through A,s. The characteristic field would hold X* 48’ , indicating a
positive number with an exponent field of 8.

The conversion for this caseisto start with the 32-bit (8 hexadecimal digit) value.

Digit 0 1 2 3 4 5 6 7

Ag-As

AsA;

Ag-Ax

A-Ass

Ase-Aig

Az-Azs

Azg-Azy

Azg-Az

Thisislogicaly right shifted by 8 bits (2

hexadecimal digits) to get the value:

Digit

0

1

2

3

4

5

6

7

0000

0000

AgAs

ArA,

AB'A 11

AlZ'A 15

AlG'A 19

AZO'A 23

The two hexadecimal digits for the characteristic field are then

inserted to get the final value.

Digit 0 1 2 3 4 5 6 7
4 8 Ag-As AgAq Ag-Ax A-Ass Aie-Ag Ax-Ax
Page 318 Chapter 21 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

The Other Case

Conversions for Floating Point

Consider now the second case. Again we assume that not all of Ao, A1, Ao, and Az are zero.

Hex Digit

0

1

2 |3

4

5

6

7

Power 16

8

7

6

Power 2

32

31

30

29

28

27

26

25 24

0

0

0

0

Ao

A1

A, As

A4 through A27

The value of the fullword is Age2?” + A102% + A,02%° + Ase2%* + A2 + . + A, 020,

Another way to write thiswould be as follows:
2%e(Ag/2 + A4 + Asl8+ A3l16 + ... + Ay/2%°), which can also be written as
16"0(Ag/2 + Ar/d + A8 + Ag/16 + ... + Ax/2%®). The characteristic field is X' 47" .

Remember that the single—precision format calls for a 24-bit fraction field.

The conversion for this caseisto start with the 32-bit (8 hexadecimal digit) value.

Digit

0

1

2

3

4

5

6

0000

AgAs

AsA,

AS'A 11

AlZ'A 15

AlG'A 19

AZO'A 23

Ags-Ay

Thisislogicaly right shifted by 8 bits (2 hexadecimal digits) to get the value:

Digit

0

1

2

3

4

5

6

7

0000

0000

Ag-Aj

AsA;

AS'A 11

AlZ'A 15

AlG'A 19

AZO'A 23

The two hexadecimal digits for the characteristic field are then

inserted to get the final value.

Digit 0 1 2 3 4 5 6 7
4 7 AO'A3 A4'A7 A8'A11 AlZ'AlS AlG'AlQ AZO'AZS
The “Left Shifter” Cases
In al other cases, the positive integer to be converted has the following format.
Digit 0 1 2 3 4 5 6 7

The two hexadecimal digits that will be occupied by the characteristic field are aready clear,
so we do not require any right shifting to move the most significant part of the fraction to its
proper location. We are only assured that at least one of bits Ag through A3 isnot zero. The
procedure to follow is the test and shift left procedure sketched above for the halfword case.

The operation to be used in left shifting register R9 will bethe SLL (Logica Left Shift),
which will insert 4 binary zeroes on the right part of RO every time it isleft shifted by 4 bits.
This usage is consistent with building a fraction with trailing zeroes; 0.4 = 0.400000.

At the end of the code to be developed, we shall store the integer contents of athe register R9
into aword declared to be in single—precision floating—point format. Note that both the
fullword (F) format and single—precision (E) floating—point formats are 32—bit (four byte)
formats, so that one value can be stored into another.

What we are doing here is manipulating each part of the formatted number asif it were an
integer, and then creating a bit pattern that will bear interpretation as a fl oating—point value.

Page 319 Chapter 21 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

Conversions for Floating Point

Here is the code developed as aresult of the discussions so far. The assumption isthat the
integer value to be converted is found in general—purpose register R9 and that the result isto

be deposited in an area of memory declared as EFLOAT

NOTNEC

* ok kX

DOl SO

* ok * *

D1l SO

LFTSHFT
*

*

*

SETSI GN

DONE

Page 320

DS E.

WI THESI G\, X' 00’ Initialize the sign field

CH RO, =HCO Look at the integer val ue
BZ DONE It is zero, nothing to do.
BNL NOTNEG I s the val ue negative?

MWI THESI G\, X' 80’ Yes, it is negative.

LCR R9,R9 Get the absol ute val ue

LR R8,R9 Get a copy into R8

At this point, RO wll contain the value as it is

bei ng transforned from 32-bit integer format into
Si ngl e- Preci si on Fl oati ng-Poi nt format.

R8 is a work register used to test val ues.

N R8, =X' FOO00000" Is the high-order hex digit O
Bz DOl SO Yes, not this special case
SRL R9,8 Cl ear out the characteristic
@) R9, =X 48000000° Set the exponent

B SETSI GN Set the sign

LR R8,R9 Get the value back into R8

N R8, =X' FFO00000" Is the next digit O

BZ D11 SO Yes, not this special case
SRL R9, 4 Cl ear out the characteristic
@) R9, =X 47000000 Set the exponent

B SETSI GN Set the sign

Here we make sure that the two high-order digits in
RO are zero, and test that we have a positive val ue.

N R9, =X' OOFFFFFF Sanity check:
BZ SETSI GN NO, the result
EQU *

Here we do the left shifting of the nunber to

generate the proper characteristic field and
normal i zed fraction.

is any bit =1
is O

SR R8,R8 Set R8 to zero

IC R8, THESI GN Get the sign byte into R8

CH R8,=H O Is it zero (non-negative)?
Bz DONE Yes, value is not negative
0] R9, =X 80000000 Set the sign bit

ST R9, EFLOAT Store the result into the

32-bit field EFLOAT

Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

L eft Shifting

Having disposed of the two cases that are unusual due to the bit structure of the single—
precision floating—point format, let us consider the “more general” case. In this case, the first
two hexadecimal digits of the integer value are 0 and one (or more) of the other six is non—
zero. From a magnitude consideration, this covers numbers with integer values at least 1 and
less than 2% = 16,777,216. Many commonly used integer values easily fit within this range.

The preconditions for this section of the code are simple. Register R9 contains the absolute
value of the integer, with the sign having been tested and recorded for use later. As noted
above, this magnitude is not greater than 16,777,215, which in hexadecimal is X' FFFFFF’ .

LFTSHFT

| SD3A0 LR R8,R9 Copy value into R8

N R8, =X 00F00000’ Is the third digit nonzero?

BNz SETVAL Yes, it i s non-zero.

SHL R9,4 No, it is not. Shift left by 4
* bits to exam ne another digit

B | SD3A0 Try again

SETVAL EQU *

Thereis quite a bit missing from the above loop. What we need to do is begin with the
characteristicfield as X' 46’ , or decimal 70, representing an exponent of +6. As each test
reveals digit 3 to be zero, we need to count down the exponent and shift left. The lowest
admissible exponent is 1, represented in the characteristic field as65 or X' 41’ .

The construct appropriate for thisis BXH, which will branch on avaue higher than X* 41" .

Recall the format of the source code for thisinstruction.
BXH Regi ster, Regi ster_Pair, Target _Address

Where Regi st er denotesaregister containing a count; here the characteristic field.

Regi st er _Pai r containsthe even register of an even—odd pair.
The even register contains avalue to be used in incrementing the count.
The odd register contains avalue to be used as alimit.

Tar get _Addr ess contains the branch target.

The design hereisto start the characteristic field at X* 46’ , representing an exponent of +6.
For each time the digit is found to be zero, we shift left by 4 bits (one hexadecimal digit), and
decrement the exponent. This continues until the characteristic fieldis X' 41’ , indicating
the smallest characteristic field for a positive non-zero integer.

With R8 and R9 in use, this design calls for the following.
R6 and R7 are selected as the even—odd register pair.
R5 will be used to hold the value of the characteristic field.

Here is an example of the shift strategy. Let RO contain X' 0000 2BAD . (R5) =X 46’ .
Isdigit 3a0? Yes. Shift left and decrement (R5). X' 0002 BADO’ . (R5) =X 45’ .
Isdigit 3a0? Yes. Shift left and decrement (R5). X' 002B ADOO’ . (R5) =X 44’ .
Isdigit 3a0? No, itisnot. Keep (R9) = X' 002B AC00’ and (R5) = X' 44’ .

The answer is that the floating—point representation is X' 442B ADOO’ .

Page 321 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Hereis the code.

WI THESI G\, X' 00’ Initialize the sign field
CH R9,=HO Look at the integer val ue
BZ DONE It is zero, nothing to do.
BNL NOTNEG I s the val ue negative?
WI THESI G\, X' 80’ Yes, it is negative.
LCR R9, R9 Get the absolute val ue
NOTNEG LR R8,R9 Get a copy into R8
* At this point, RO will contain the value as it is
*

bei ng transforned from 32-bit integer format into
Si ngl e- Preci si on Fl oati ng-Poi nt format.

N R8, =X FOO00000’ Is the high-order hex digit O

BZ DOl SO Yes, not this special case
SRL R9, 8 Cl ear out the characteristic
@) R9, =X 48000000° Set the exponent
B SETSI GN Set the sign

DOl SO LR R8, R9 Get the value back into R8
N R8, =X FFO00000' Is the next digit O
Bz D1l SO Yes, not this special case
SRL R9, 4 Cl ear out the characteristic
@) R9, =X 47000000 Set the exponent
B SETSI GN Set the sign

D11 SO N R9, =X' OOFFFFFF Sanity check: is any bit =1
Bz SETSI GN NO the result is O

LFTSHFT LH R5, =H 70’ Start value for characteristic
LH R6, =H -1’ | ncrenent val ue.
LH R7, =H 65’ Limt value

| SD3A0 LR R8,R9 Copy value into R8
N R8, =X 00F00000’ Is the third digit nonzero?
BNZ SETVAL Yes, it is non-zero.
SHL R9,4 No, it is not. Shift left by 4
BXH R5, R6, | SD3AO Try again

SETVAL SHL R5, 24 Move characteristic into place
OorR R9, R5 Create the number

SETSI GN SR R8, R8 Set RB to zero
IC R8, THESI GN Get the sign byte into R8
CH R8,=HCO Is it zero (non-negative)?
BZ DONE Yes, value is not negative
O R9, =X 80000000 Set the sign bit

DONE ST R9, EFLOAT Store the result into the

* 32-bit field EFLOAT

Page 322 Chapter 21 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Conversion of Single-Precision Floating—Point to | nteger

Here again, the first step is to detect and note the sign of the number. We shall focus on
converting positive va ues, with the sign added at the end of the conversion process. Inthis
case the process of “adding the sign” will be that of taking the two’s complement.

The process will begin with the floating—point value stored in location EFLOAT, declared as:
EFLOAT DS E A 32-bit (4 byte) storage allocation.

Note however that, throughout this conversion, EFLOAT will be treated asif it were a 32—bit
fullword integer. Again, we are processing this bit by bit, and hexadecimal digit by hex digit.
We are not really interested in its value when considered as a floating point number.

Thefirst step isto access this four—byte location using an integer instruction.
L RO, EFLOAT

Now, we use a characteristic common to both integer and floating—point arithmetic. If bit 0
(the leftmost bit) of the 32-hit representation is 1, the number is negative. Otherwise, the
number is non-negative, and might be zero. We immediately test for this.

Recall two things when examining the code below.
1. Thevaue X' 00000000’ , viewed as a single—precision floating—point valueis
what IBM callsa“true zero”. It convertsto integer zero.

2. Thevaue X 7FFFFFFF’ represents a 32-bit number in which al bits, save bit O
(the sign bit) are 1. We use this to mask out the sign bit and keep in R9 avalue
that would be interpreted as the absolute value of the floating—point number.

MVl THESI GN, X 00’ Initialize the sign field

L RO, EFLOAT Load the floating-point val ue

CH R9, =H 0O’ and exam ne the sign bit.

Bz DONE The value is zero, nothing to do.
BNL NOTNEG Is the val ue negative?

WI THESI GN, X' 80’ Yes, it is negative.

N R9, =X' 7TFFFFFFF Zero out the sign bit.

The next section of code reflects the fact that, if the fraction part of the representation is zero,
then the val ue represented is 0 without regard to the characteristic field.

NOTNEC LR R8, RO Copy the value into R8
N R8, =X’ OOFFFFFF Exam ne the fraction. Is it 0?
BNZ FRNZ No, keep on working
SR RO, RO Yes, the value is zero. So set
B DONE the result as 0 and exit.

FRNZ EQU * Keep on processi ng.

We now check the range of the characteristic field to determine if the exponent is consistent
with conversion to an fullword integer. If the characteristicislessthan 65 (X' 41’), the
valueislessthan 1 and will be converted to a0. If the characteristic is greater than 72

(X" 48’), the magnitude is too large to be represented as a fullword. What the code should
dointhis situation is up to the designer; here we set the integer to the maximum value. This
is probably a poor design choice, but for now it isas good as any. Hereisthiscode.

Page 323 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

LR
N
SRL
CH
BH
SR
B
CH
BNH
L

B

EQU *

OVER1

CANDO

R8, R9

R8, =X* FF000000
R8, 24

R8, =H' 64’

OVERL

R9, RO

DONE

R8, =H 72’
CANDO

R9, =X‘ 7FFFFFFF’
SETVAL

Hereisthe code as it exists at this point.

WI THESI GN, X' 00’ Initialize the sign field
L R9, EFLCAT Load the floating-point val ue
CH R9, =H 0O’ and exam ne the sign bit.
Bz DONE The value is zero, nothing to do.
BNL NOTNEG Is the val ue negative?
MWVl THESI G\, X 80’ Yes, it is negative.
N R9, =X' 7TFFFFFFF Zero out the sign bit.
NOTNEC LR R8, RO Copy the value into R8
N R8, =X' OOFFFFFF Examine the fraction. |Is it 07?
BNZ FRNZ No, keep on working
SR R9, RO Yes, the value is zero. So set
B DONE the result as 0 and exit.
FRNZ LR R8, RO Copy the value into R8
N R38, =X FFO00000’ | solate the characteristic field
SRL RS, 24 Shift to least significant byte
CH RS, =H 64’ I s exponent big enough?
BH OVER1 Yes, nunber is not < 1.
SR R9, RO No, set result to zero
B DONE and be done with it.
OVERL CH R8,=H 72 Is the exponent too big?
BNH CANDO NO it is fine.
L R9, =X 7TFFFFFFF This is the bi ggest positive nunber
B SETVAL Go adjust the sign
CANDO EQU * Val ue can be converted.
* Here is the code for processing the val ues that
* can be converted into a fullword 32-bit integer
SETVAL SR R8,R8 Set R8 to 0.
| C R38, THESI GN Load the sign val ue
CH R8,=HO Is the sign bit set?
BZ | SPCS No, we are K
LCR R9, RO Negat e t he absol ute val ue
DONE EQU * We are done here.

Now we discuss the code for converting those floating point values that can be converted into

Conversions for Floating Point

Copy the value into R8

I solate the characteristic field
Shift to | east significant byte
I s exponent big enough?

Yes, nunber is not < 1.

No, set result to zero

and be done with it.

Is the exponent too hig?

NO, it is fine.

Bi ggest positive nunber

Go adjust the sign.

Val ue can be convert ed.

positive fullword values. This codewill use SLDL (Shift Left Double Logical).

Page 324

Chapter 21
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Revised August 3, 2009

S/370 Assembler Language Conversions for Floating Point

We begin with another test to account for a case that cannot be converted. When the
characteristicfidld is X' 48’ (decimal 72, representing an exponent of 8) and the most
significant bit in the fraction is a 1, the absolute value will be not less than 2**, which cannot
be represented as afullword integer. In other words, we are looking for this value.

Digit 0 1 2 3-7

4 8 1 Al A2 A3 A4'A23

We use the SLDL instruction on the register pair (8, 9). At first, we shall clear R8 and shift
the two high—order hexadecimal digits of R9 into it (SLDL by 8 bits). If thisvalueisnot
X 48’ , we proceed with the conversion. Otherwise one more SLDL will tell thetale.

CANDO SR RS, R8 Set R8 to zero
SLDL RS, 8 Shift two high-order digits into R3
CH R8,=H 72 I s the exponent an 8?
BL DO T Yes, we can continue
*
* At this point, the nost significant fraction bit occupies
* the sign bit in RO, Check to see if RO is negative.
*
CH R9, =H O’ Is the sign bit set?
BP DAOT No, the high-order fraction bit is O
L R9, =X 7TFFFFFFF Set to the biggest positive integer
B SETVAL Co adjust the sign.

At this point, the register values are as follows:
1. R8 containsthe characteristic value, equal to (Exponent + 64).
2. R9 contains the fraction in which the most significant hex digit is not O.
Thisisaresult of the fact that the number was stored in a normalized format.
3. Thelow order eight bits (two hexadecimal digits) of R9 are dl zero.
Thisis due to the execution of the logical left shift SLDL.

Thefina processing of R9 to produce an integer that contains the absolute value of the
desired result isto shift it right by a count related to the exponent. Thiswill shift some
1 bits off the right, thus truncating the value. The requirements are as follows.

Characteristic | Exponent | Shift right by
72 8 0 bits
71 7 4 bits (1 hexadecimal digit)
70 6 8 bits (2 hexadecimal digits)
69 5 12 bits (3 hexadecimal digits)
68 4 16 bits (4 hexadecimal digits)
67 3 20 bits (5 hexadecimal digits)
66 2 24 hits (6 hexadecimal digits)
65 1 28 hits (7 hexadecimal digits)

The formulafor the shift count is seen to be (72 — Characteristic)e4.

Page 325 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Hereisthe code to do that computation and produce the absolute value of the integer.

Recall that the source code format of the logical right shift can be in the following form.

SRL R1, D2(B2) inwhich the shift amount is determined by adding the value in D2 to the
contents of the register indicated by B2. Thisis base/displacement form used to compute a
number and not an address.

DAOT SH R8, =H 72’ Produce (Characteristic — 72)
LCR R8,R8 Produce (72 — Characteristic)
SLL RS, 2 Multiply by 4
SRL R9, 0(R8) Shift RO by the anmobunt in R8

Let’stry afew examples to seeif thisworks.

1. A large positive number. In hexadecimal, it isrepresented as46 7F 03 00.
Note immediately that the characteristic field is X' 46’ , so that the exponent is6. We first
compute the value directly; it is 16°%(7/16 + 15/256 + 0/16° + 3/16%) =

7016° + 1516" + 3016° =
701048576 + 15065536 + 3256 =
7340032 + 983040 + 768 = 8,323,840.

We now apply our dgorithm. At the time that the characteristic is tested, R8 contains
decimal 70 and R9 contains 7F 03 00 00. Thealgorithm calls for alogical right shift of
R9 by 8 bits or 2 hexadecimal digits. The new valueis X' 007F0300’ , which represents
the value 0016’ + 0016° +7016° + 15016" + 00 16° + 3016° + 0016 + 0, the value above.

2. A much smaller number related to the above. Itisrepresentedas42 7F 03 00. |
have elected to keep the same fraction to simplify my work in doing the calculations. We
first compute the value directly; it is 16%(7/16 + 15/256 + 0/16° + 3/16"%) =

7016 + 15 + 3/256 =
112 + 15+ 0.01171875 = 127.01171875.

We now apply our dgorithm. At the time that the characteristic is tested, R8 contains
decimal 66 and R9 contains 7F 03 00 00. Thealgorithm calls for alogical right shift of
R9 by 24 bits or 6 hexadecimal digits. The new vaueis X' 0000007F , which represents
the value 0e16” + 0016° +0016° + 0016 + 0e16° + 0e16” + 7¢16 + 15, which is 127. Note
that thisinteger conversion has simply dropped the fractional part. Writing code to round off
isnot very tricky; your author just elects not to do it.

Hereis a sketch of one approach to the round—off question. Thiswill be based on the use of
the shift right logical double instruction SRDL. The value to be converted must be placed in
the even register of an even—odd register pair and the odd register cleared. To illustrate,
suppose that it is R8 that contains the value, represented as43 7F 03 00.

1. Clear R9. Theregister pair contains 43 7F 03 00 | 00 00 00 00.
2. Shiftright double by 5 digitstoget 00 00 04 37 | FO 03 00 00

3. The bit pattern in R8 represents the integer 4256 + 3016 + 7 = 1079
The bit pattern in R9 represents a fraction (15/16 + 3/16%), bigger than 0.50.
Thisis noted by detecting the sign bit in R9.

4. Round off the value to 1080.

Page 326 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Packed Decimal For mat to Floating—Point

Here we face a problem with no precise solution unless we give some additional input.
Recall that a number in the packed decimal format is represented by a sequence of
hexadecimal digits (all having decimal values in the range O through 9) followed by asingle
hexadecimal digitintherange X' A’ through X' F' . Such a number may have from 1
through 31 decimal digits, with the trailing sign digit being necessary.

The routine for this conversion will be based on selecting individual digits from the packed
format, one at atime. For this purpose, the digits will be numbered |eft to right in a manner
reminiscent of the bit numbering used in aregister. Consider the following.

Digitnumber 0 1 2 3 456 7 8 9 A
Value 31415926536

The reason that this has no precise solution is that the decimal placeis not explicitly specified
in the packed format representation of the value. Since we recognize this value as an

approximate representation of the value 1, we know the number is 3.1415926536. There are
ten digitsto the right of the decimal point and just one beforeit. In our representation we
shall specify the value as apair: (packed value, digit position).

The value here would be (31415926536C, 10), indicating that we produce the floating
point value corresponding to the integer value 31415926536 and then divide that by 10™.
At this point, we do not care that the integer just given cannot be represented as either a
halfword or fullword by the S/370; thisisjust a conceptual calculation. All of our arithmetic
here will be done in double—precision floating—point format.

Design of the Algorithm: Preconditions and Subprograms Used
The agorithm and its implementation in assembly language are designed assuming that:
1. The packed decimal valueisfound at location PACKNUV, and is validly formatted.
In particular, the number has no more than 31 decimal digits and has asign digit.

2. Thesigndigitiseither X' B' or X' D' for anegative number or oneof X' A" , X' C',
X E ,or X' F for anon-negative number.

3. Thedigitsin the number will be indexed by avalue from 0 possibly through 31.

4. One subroutine and one array will be used to help the computation. The subroutine
accepts the digit index in R8 and returns the hexadecimal value of the digit in R9.
The array is an array of double—precision floating—point valuesin which the
Kth entry, at offset Ke4, contains the equivalent of float(K).

5. Thedigits are scanned left to right until asign digit isfound. The numeric digits
are processed very much as was done for the EBCDIC to integer direct conversion,
except that floating—point arithmetic is used.

6. Theresult will be found in floating—point register O.

7. Asaprecaution, the loop will be controlled by a BXLE instruction, to guarantee
that no more than 32 hexadecimal digits are processed.

8. Each addressable byte contains two hexadecimal digits, each of which must be
retrieved individually to compute the value of the Packed Decimal number.

Page 327 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

Conversions for Floating Point

Here is the subprogram used to return the hexadecimal value of adigit. The basic processing
isfirst to convert the digit offset into a byte offset and then to move the digit into position.

Thedigit position is converted to a byte offset by division by 2. Consider the example:

Pl DC P ‘31415926536’

What is stored is shown in the following table.

Address Pl Pl +1 Pl +2 Pl +3 Pl +4 Pl +5
Value 31 41 59 26 53 6C

The goal of thisroutine isto get the hexadecimal value of the digit into the low—order four
bits of the general—purpose register 9 and have al other hexadecimal digits equal to O.

Consider the processing of the digit at offset 2. Thisisthedigit 4.

1.
2
3.
4

5.

Thedigit index in R8 isforced to bein the range [0,31].

. Theindex is copied into R7 and converted to a byte offset. Thisoffsetis 1.

The byte with value X* 41’ isloaded into R9.

. Thedigit index istested for being odd. It is not, so thereisalogical right

shift to place thefirst digit into the least significant place. RO now has X 4’ .
The seven high—order hex digitsin R9 are masked out, returning the value X* 4’ .

Consider the processing of the digit at offset 3. Thisisthedigit 1.

1.
2
3.
4

5.

Thedigit index in R8 isforced to bein the range [0,31].

. Theindex is copied into R7 and converted to a byte offset. Thisoffsetis 1.

The bytewith value X* 41’ isloaded into R9.

. Thedigit index istested for being odd. It isodd, so thereisalogical right so no

right shiftingisrequired. R9 now has X' 41’ .
The seven high—order hex digitsin R9 are masked out, returning the value X* 1’ .

Here is the complete subroutine to get the digit. Itiscaled “GETDI A T".

* Index of digit is in register R3. Value of R8 is preserved
* The value of the digit is returned in RO.
* R7 is used but not saved. R4 contains the return address.
*
GETDIA T N R8,=X 0000001F X 1F =0001 1111; GET 5 LOW ORDER BI TS
LR R7,R8 COPY VALUE OF DIG T I NDEX | NTO R7
SRL R7,1 CONVERT | NTO BYTE OFFSET
SR R9, R9 SET R9 TO ZERC
I C R9, PACKNUM R7) GET THE BYTE | NTO R7
*
LR R7,R8 GET THE DIGA T | NDEX BACK | NTO R7
N R7,=X 00000001" MASK OUT THE UNIT BIT I N THE | NDEX
BNz | SODD IF UNIT BIT IS NOT O, INDEX | S ODD
SRL R9, 4 SH FT TO GET DIA T | NTO PCSI Tl ON
| SCDD N R9,=X 0000000F | SOLATE THAT DIA T
*
* R9 NOW CONTAI NS THE NUMERI C VALUE OF THE DI A T.
* IF VALUE > 9, THEDIGAT IS THE SIGN DI A T.
BR R4 R4 contains the return address.
Page 328 Chapter 21 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

The array in question is just atable holding the double—precision floating—point values
equivalent to the first ten non—negative integers (0 through 9), as well asthe value 10.0
(which will be used for multiplication in forming the number). Thisisjust the easiest way to
convert asingle digit positive integer into its equivalent floating—point value.

* CONVERT SINGLE DIA T | NTEGER TO FLOATI NG PO NT.

*

* USE: PLACE VALUE I NTO | NDEX REA STER, THEN SLL 2

* LD 2, FPVALS(| ndex Regi ster)

FPVALS DC D 0.0

FPV1 DC D 1.0

FPV2 DC D 2.0

FPV3 DC D 3.0

FPV4 DC D 4.0

FPV5 DC D5.0

FPV6 DC D 6.0

FPV7 DC D7.0

FPV8 DC D 8.0

FPV9 DC D9.0

FPV10 DC D 10.O

Hereisthe code for the conversion routine.

PACKTCOFP LD 0, FPVALS GET THE 0 ENTRY. CLEAR FP REG O

* NOW SET UP FOR THE BXLE | NSTRUCTI ON

*
SR R8, R8 SET COUNT TOO. THIS IS THE DIGA T | NDEX
LH R10, =H 1’ LOOP INCREMENT IS 1, MOVE LEFT TO RI GHT
LH R11, =H 31’ LIMT ON THE DIGA T | NDEX

CONVERT BAL R4, GETDIGA T GET THE DIGA T AT | NDEX = R8
CH R9, =H 10’ DIA T VALUE RETURNED I N RO
BNL DONE VWE HAVE THE SIGN DIA T
MD 0, FPV10 MULTI PLY CURRENT VALUE BY 10.0
SLL R9, 2 MULTIPLY DIG@ T VALUE BY 4
LD 2, FPVALS(R9) GET FP VALUE OF THE D@ T
ADR 0,2 ADD TO ACCUMULATI NG RESULT
BXLE R8, R10, CONVERT GO GET ANOTHER DIA T

DONE LH R8, DECPLACE GET THE DECI MAL PLACE | NDI CATOR
CH R8,=H O’ IS IT PCSITIVE
BNH SETSI GN NO JUST SET THE SI GN

ADJUST DD 0, FPV10 DI VI DE TO ADJUST TO DECI MAL PO NT
BCT R8, ADJUST KEEP DI VI DI NG UNTIL VALUE IS RI GHT

SETSIGN CH RO, =H 11’ RO HAS SIGNDIG@T. ISIT X B ?
BE | SNEG YES, THE VALUE | S NEGATI VE
CH R9, =H 13’ RO HAS SIGNDIGAT. ISITXD?
BNE FIN SH NO. THE VALUE | S PCSI Tl VE

| SNEG LDR 2,0 COPY VALUE TO FP REA STER 2
SDR 0,0 SET FP REA STER TO O
SDR 0,2 NOW FP 0 HAS BEEN NEGATED

FI' NI SH BR R ALL DONE.

Page 329 Chapter 21 Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Conversions for Floating Point

Floating—Point to Packed Decimal Conversion

When considering this conversion, one is presented with a number of technical difficultiesin
handling the floating—point as well as issues due to the fundamental incompatibility of the
two formats under consideration. All are difficult, but none are insurmountable.

Here are some of the issues that must be addressed.

1. How to produce repeatedly the most significant decimal digit from afloating—point
representation, and when to stop producing these digits. The floating—point formats”
call for single—precision to have 7 digits significant, and double—precision to have
15 digits significant. Do we stop at these counts?

Consider the number 1.2345¢10’, which of course will be represented in the IBM
formats using hexadecimal notation. We want to extract the exponent as 7, and then
extract thedigits 1, 2, 3, 4, and 5in that order. The answer might be 012345000C.

2. Asarelated issue, how at any time to determine the largest power of ten that is not
larger than the absolute value of the floating—point number being converted. The
simple way to do this appears to be quite verbose and tedious.

3. The position of the decima point in any floating—point representation is important
and amost explicitly specified in the representation. The position of the decimal
point for the Packed Decimal format is assumed in the code and not stored in the
format. We got around this for the Packed Decimal to Floating—Point conversion by
by specifying the position of the decimal, but this not a part of the standard.

One obvious way to convert from floating—point to packed decimal isfirst to convert the
value to afullword integer and then to convert that value (using CV D) to Packed Format.
Thiswill work for floating—point values that represent integers within the proper range, but
any fractional digitswill belost.

Thisissue of converting from Foating—Point to Packed Decimal is closely related to the
problem of providing a print representation for floating—point values. As the author of your
textbook, | intend to continue investigating these two conversion issues.

Any solutions found that are suitable for publishing in atextbook will appear in the
next revision.

Page 330 Chapter 21 Revised August 3, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

Conversions for Floating Point

Here is the complete code for the floating—point to integer conversion.

NOTNEC

FRNZ

OVER1L

CANDO

DCI'T

SETVAL

DONE

Page 331

Wi
L
CH
BZ
BNL
Wi
N

LR
N
BNZ
SR
B

LR
N
SRL
CH
BH
SR

SLDL
BL

BP

SH

LCR
SLL
SRL

SR
IC

BZ
LCR

EQU

THESI GN, X' 00’
RO, EFLOAT

R9, =H 0’

DONE

NOTNEG

THESI GN, X 80
R9, =X' 7FFFFFFF’

R8, RO
R8, =X' OOFFFFFF’
FRNZ
R9, RO
DONE

R8, RO

R8, =X* FFO00000
R8, 24
R8, =H 64’
OVER1L

R9, RO

DONE

R8, =H 72’
CANDO

R9, =X' 7TFFFFFFF’
SETVAL

R8, R8

RS, 8

R8, =H 72

DAT

R9, =H O’

DA T

R9, =X' 7TFFFFFFF’
SETVAL

RS, =H 72’
RS, R8

RS, 2

R9, O(R8)

R8, R8

R8, THESI GN
R8, =H 0’

| SPCS

R9, RO

*

Chapter 21

Initialize the sign field

Load the floating-point val ue
and exam ne the sign bit.

The value is zero, nothing to do.
Is the val ue negative?

Yes, it is negative.

Zero out the sign bit.

Copy the value into R8

Exam ne the fraction. Is it 07?
No, keep on working
Yes, the value is zero. So set

the result as 0 and exit.

Copy the value into R8

| solate the characteristic field
Shift to least significant byte
I s exponent big enough?

Yes, nunber is not < 1.

No, set result to zero

and be done with it.

Is the exponent too big?

NO it is fine.

This is the biggest positive nunber
Go adjust the sign.

Set R8 to zero

Shift two high-order digits into R3
Is the exponent an 8?

Yes, we can conti nue

Is the sign bit set?

No, the high-order fraction bit is 0
Set to the biggest positive integer
Go adjust the sign.

Produce (Characteristic — 72)
Produce (72 — Characteristic)
Multiply by 4

Shift R9 by the anount

Set R to O.

Load the sign val ue

Is the sign bit set?

No, we are OK

Negat e the absol ute val ue

in R8

We are done here.

Revised August 3, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

