Chapter 16: Direct Conversions Between EBCDIC and Fullword For mats

This chapter presents a discussion of direct conversions between digitsin the EBCDIC
format and binary integers stored in the 32-bit two’ s—complement format. This material is
presented within the context of an academic exercise focused on gaining a more compete
understanding of the basic principlesinvolved. In reality, a program is much more likely to
use the existing tools (PACK, CVB, CVD, and ED) provided by the §/370 assembler.

In other words, the goa of this chapter is not to add to the student’s “bag of assembler tricks”
but to add to the student’ s knowledge.

Two's—=Complement Binary For mat

Binary integer data are stored on the System/370 in two basic formats.
1. Hafword 16-bit two’ s—complement integers
2. Fullword 32-bit two’ s—-complement integers.

The halfword format is conventionally represented by four hexadecimal digits, which
occupy two bytes of storage. A properly aligned halfword has an address that is a multiple
of 2. Therange of valuesthat can be represented is from —32,768 to 32,767 inclusive. The
print representation of a halfword integer contains at most five digits.

The fullword format is conventionally represented by eight hexadecimal digits, which
occupy four bytes of storage. A properly aligned hafword has an address that isa multiple
of 4. Therange of valuesthat can be represented is from —2,147,483,648 to 2,147,483,647.
The print representation of afullword integer contains at most ten digits.

The name “ two’ s-complement” refers to the manner of storing negative integers. The
student should review the material in chapter 4 of this textbook, especialy that on conversion
from decimal to binary format, binary to decimal format, and taking the two’s complement.
Hereis avery short presentation on the topic.

The positive decima number 165 can be represented in hexadecimal as X* A5’ . Asan eight
bit binary number, thisis1010 0101. We now consider the representation of the negative
decimal number —165. In order to give the binary representation, we must specify the format.

Asal16-bit number +165is 0000 0000 1010 0101 or X 00AS5’
taketheone’'scomplement 1111 1111 0101 1010

add one to get the result 1111 1111 0101 1011 or X FF5A
This last number is the binary representation of —165 as a 16-bit integer.

Asa32-bit number +165is 0000 0000 0000 0000 0000 0000 1010 0101
taketheone’'scomplement 1111 1111 1111 1111 1111 1111 0101 1010
add oneto get the result 1111 1111 1111 1111 1111 1111 0101 1011

This last number, also represented as X' FFFF FF5A’ | isthe binary representation of
— 165 as a 32-hit binary integer.

Integers are converted from fullword (32 bits or 4 bytes) to halfword (16 bits or 2 bytes)
format by copying the rightmost two bytes, represented by four hexadecimal digits. If the
number is too large in magnitude for the halfword format, it is truncated.

Page 298 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

Integers are converted from halfword (16 bit or 2 bytes) to fullword (32 bits or 4 bytes)
format by sign extension. This process insures that the sign of the number is preserved.

+165in 16 bitsis 0000 0000 1010 O101
+165in 32 bitsis0000 0000 0000 0000 0000 0000 1010 0101
—-1651in 16 bitsis 1111 1111 0101 1011

-165in32 bitsis1111 1111 1111 1111 1111 1111 0101 1011

In each case, it isthe leftmost bit in the 16-bit (halfword) representation that is
copied to the leftmost 16 bits added when moving to the 32-bit (fullword) format.

The assumption is that the binary number to be considered will be stored in a
general—purpose register, such as R7. Theregister might be loaded by an instruction such as
one of the two following.

L R7,FW Load R7 froma fullword in nmenory

LH R7, HA Load R7 froma halfword in nenory,
and sign extend to a fullword format.

The goal of theinput program will be to convert from the EBCDIC digit representation,
whichisredly just a sequence of character codes, into abinary number in aregister.

EBCDIC Representation of Digits
When digits are read in from an input device, they are treated as character data that only
incidentally have numeric value. These must be converted to a numeric format.

The EBCDIC codes of interest in the representation of integer data are the following.

Code Digit Code Digit
X FO’ 0 X F5’ 5
X FLl 1 X' F6’ 6
X F2’ 2 X F7’ 7
X F3’ 3 X' F8’ 8
XF4 4 X' F9’ 9

The two other codes of interest are X* 40’ for the space and X' 60’ for the minus sign.

Print Representation of Integers

It goes without saying that the print representation of any integer will involve the use of
EBCDIC characters, especially the ones listed just above. What must be considered is how
to present negative integers. Consider the negative integer 165 to be printed as four digits.

The standard algebraic way to do thisis - 165.
A less used way isto print it in thisform - 165.
A way commonly seen in mainframe programsis as follows 165-.

The last way, though appearing strange, is quite easy to program. For this reason, many
assembler language programs will use the “postfix minus sign” for negative numbers. The
second way involves a bit more code to produce, and the first way considerably more code.
It isthis algebraically correct representation that is our goal in this chapter.

Page 299 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

NUMIN: A Program to Input Binary Integers
Numeric data are input into a computer in athree step process.

1. The data are read in as a sequence of characters.
For the IBM System/360, the characters are encoded as EBCDIC.

The data are converted to the proper form for numeric use.

3. The data are stored, either in memory or general—purpose registers,
for use in computations.

We shall focus on the input of integer datato be stored in one of the general—purpose
registers. Asan arbitrary constraint, we shall limit the numbersto 9 digits, though the
numbers are alowed to be smaller.

Note that any possible nine—digit integer can be stored as a 32-bit fullword. Whileit isthe
case that some ten—digit numbers can be stored as a fullword, this does not hold for all such
numbers; for example:

The ten digit number 2, 100, 000, 000 can be converted to fullword format.

The ten digit number 2, 200, 000, 000 cannot be converted to fullword format.

It isfor this reason that our code will focus on numbers with a maximum of nine digits,
represented by ten characters, allowing for an optional sign character.

NUMIN: The Scenario
Remember that input should be viewed as a card image of 80 columns. Consider afield of
N characters found beginning in column M.

Scan this range

M |
M+1 M+N-1

Suppose that the leftmost byte in this array is associated with the label CARDI N. The
leftmost byte in the range of interest will be denoted by the label CARDI N+IV. Elementsin
thisrange will be referenced using an index register as CARDI N+M Reg) , where the
number in parentheses represents the index register to be used.

Our specific example will assume the following:

1. The character field to hold the integer occupies ten columns on the card,
beginning in column 20 and running through column 29.

The number isright justified. If negative, the number has aleading minus sign.
An entirely blank field is accepted as representing the number zero.

Page 300 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

NUMIN: The Standard Approach

We begin this set of notes by recalling a more standard approach to conversion from a
sequence of EBCDIC charactersto a binary number in aregister. This sample code will
assume that all numbers are non-negative.

Here are some data declarations that are used in the code. Note that the data declaration
seems to call for ten digits. Here the assumption will be that the input has at least one
leading space and at most nine numeric digits with no sign.

* THE CHARACTERS FOR | NPUT ARE FOUND BEG NNI NG
* AT CARDI N+20 THROUGH CARDI N+29. NO M NUS SI G\.

DA TSIN DS CL10 TEN BYTES TO HOLD 10 CHARACTERS
PACKEDI N DS PL6 SI X BYTES HOLD 11 DIGA TS
PACKDBL DS D DOUBLE WORD TO HOLD PACKED

Here is the code that uses the above data structures.
MVC DI A TSIN(10), CARDI N+20 CGET 10 CHARACTERS

PACK PACKEDI N, DI G TSI N CONVERT TO PACKED
ZAP PACKDBL, PACKEDI N FORVAT FOR CVB
CvB R7, PACKDBL Bl NARY | NTO R7.

NUMIN: The Strategy
The figure below shows the part of the 80—column card image that contains the digits to be
interpreted. We now discuss the strategy to be followed in our direct conversion routine.

Scan this range
| |

T T T
CARDIN CARDIN®20 T CARDIN+30

CARDIN+29

The agorithm works as follows:

1. It initializes an output register to 0. Arbitrarily, | choose R7.

2. It scans | eft to right, looking for a nonblank character.

Assuming that a nonblank character is found in thisfield, it does the following.

3. If the character isaminus sign, set a flag that the number is negative
and continue the scan.

4, If the number isadigit, processit. If not adigit or “-”, ignoreit.

One problem of this codeistypical of most sample code. In an attempt to focus on one
point, the code ignores all error processing. Just be aware of the fact.

Page 301 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

NUMIN: EXAMPLE
Consider processing the number represented by the digit string “9413”. We shall illustrate
the process used by our conversion routine.

Inthisexample, let N bethe value of the number,
D bethedigit read in, and
V be the numeric vaue of that digit.

Start with N = 0.

ReadinD ="“9”. ConverttoV =9. N=Nel0+V =010 +9 =9
ReadinD =“4". ConverttoV =4. N=Nel0+V =9¢10 +4 =94
ReadinD =“1". ConverttoV =1. N=Nel0+V =94¢10 +1 =941
ReadinD =“3". ConverttoV =3. N=Nel0+V =941e¢10 +3 =9413

The integer value of this string is 9413.

Review of the Instructions: LCR and IC
The code below will use two instructions that should be reviewed at this point. These are
LCR (Load Complement Register) and IC (Insert Character).

Load Complement Register: LCR R1, R2

This loads register R1 with the negative (two’ s-complement) of the value in register R2.
Thisis aconvenient way to change the sign of the integer in aregister; set the value in the
register equal to the negative of the value now there.

Insert Character: | C R8, CARDI N+20(R3) GET THED AT
Thisinserts the eight bits of the EBCDIC character into the low order 8 bits (bits 24 — 31) of
the destination register. The other bits are not changed.

High order bytes
are unchanged
I I

Register

]

There are many interesting uses of thisinstruction. | elect to usethisto set the valuein the
register equal to the value of adigit. Thusif the character with EBCDIC representation
X F7’ isinstorage, | can set thevaluein theregister to 7.

Byte in
storage

Page 302 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

Placing the Numerical Value of a Digit in a Register
Thefirst thing to do is get the EBCDIC code into the register. My solution usesthe IC
(Insert Character) instruction.

SR RS, R8 CLEAR R8
IC R8, CARDI N+20(R3) GET THE DIG T
S R8, =X FO’ CONVERT TO VALUE OF DIG T

In order to be sure that register R8 contains the EBCDIC code for the digit, | first clear the
register to zero and then move the character. This step guarantees that bits 0 —23 of the
register are 0 and that the value in the register, taken as a 32-bit fullword, isthe EBCDIC
code for the digit. | then subtract the value of the EBCDIC codefor ‘O’ to get the value.

Another way to do thisisload the register and use the logical instruction, with mnemonic N,
to mask out all but the last hexadecimal digit. Hereisthe code.

IC R8, CARDI N+20(R3) GET THE DIG T
N R8, =X'F

I now present my agorithm in fragments of code. We start with the beginning code. Each
fragment will be listed along with its associated data declarations. Thisfirst code fragment
just clears the result registers and checks to seeif the input field, in the ten columns
beginning at CARDI N+20, isall blanks.

If itisall blanks, the routine interprets the field as containing a 0 and returns.

NUM N SR R7,R7 SET R7, THE RESULT, TO O
SR R6, R6 CLEAR HI GH- ORDER PRCODUCT
MWI THESI GN, C P DEFAULT TO PCSI Tl VE
CLC CARDI N+20(10) , SPACE10 'S THE | NPUT ALL BLANKS
BE DONE IF SO JUST EXIT WTH

* THE VALUE SET TO 0.

* MORE CODE HERE

* 0123456789 BE SURE OF THE COUNT BELOW
SPACE10 DC CL' ' JUST TEN SPACES
THESIGN DS CL1

The next part scans left to right looking for a non-blank character, which should be there. If
noneisfound, it just quits. Admittedly, this should not happen, as we have tested and found
at least one non-blank character in the input. Thisis defensive coding.

* NOW SCAN LEFT TO RI GHT TO FI ND FI RST NON- BLANK.
* USE BXLE W TH REGQ STER PAIR (R4, RS).

*

SR R3,R3 CLEAR | NDEX USED TO SCAN
* THE | NPUT CHARACTER ARRAY

LA R4,1 SET I NCREMENT TO 1

LA R5,9 OFFSET 9 IS THE LAST DIG T
SCAN1 CLI CARDI N+20(R3),C DO VEE HAVE A SPACE?

BNE NOTBLANK NO IT MAY BE ADGET

BXLE R3, R4, SCAN1 I TS BLANK. LOCOK AT NEXT

B DONE ALL BLANKS, WE ARE DONE
Page 303 Chapter 16 Last Revised July 15, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

This next section of code checks the first non-blank character. If itisaminussign, thesetsa
flag, which would be a Boolean in ahigh-level language. Hereit isjust the character “N”.

If the first non-blank character is a minus sign, then the next character is assumed to be the
first digit. Theindex valueisincremented by 1 to address the character after the “-".

If the first non-blank character is not aminus sign, it is assumed to be adigit and processed
asone. Note however that the processing loop explicitly makes two tests and processes the
character only if it isnot less than “0" and not greater than “9”.

* AT THS PONT, R3 IS THE | NDEX OF THE NON- BLANK

* CHARACTER. THE VALUES IN (R4, R5) ARE STILL VALID.

* I N PARTI CULAR R4 STILL HAS VALUE 1.

*

NOTBLANK CLI CARDI N+20(R3), C - DO VVE HAVE A M NUS SI GN?
BNE 1SDC
M/ THESIGN, C N NOTE THE SI GN AS NEGATI VE
AR R3, R4 ADD 1 TO VALUE I N R3.
CR R3,R5 R3 HAS BEEN | NCREMENTED
BH DONE QUTIFITIS TOO BI G

At this point, we know that CARDI N+20(R3) references a non-blank character that

isin the range of card columns that might contain adigit. Here isthe conversion loop. Note
that the first four lines check to see if the character isadigit by performing two tests
equivalent to the compound inequality ‘0’ < Code<*9'. If the character isnot adigit, itis
ignored and a branch to the end of the loop is taken.

| SDI G CLI CARDI N+20(R3),C O’ ISITADGT
BL LOOP NO — CODE < ‘0O
CLI CARDI N+20(R3),C 9’ AGAIN, ISIT ADGAT?
BH LOOP NO — CODE > ' 9
M R6, =F 10’ MULTI PLY (R6, R7) BY 10
SR R8,R8 CLEAR R8
IC RS, CARDI N+20(R3) GET THEDIG T
S R8, =X' FO’ CONVERT TO VALUE OF DDA T
AR R7, R8 ADD TO THE PRODUCT
LOOP BXLE R3, R4, | SDI G END OF THE LOOP
CLI THESIGN, C N WAS THE | NPUT NEGATI VE
BNE DONE I T IS NOT NEGATI VE
LCR R7,R7 TAKE 2° S COVPLENMENT
DONE * HERE R7 CONTAI NS THE Bl NARY VALUE
Page 304 Chapter 16 Last Revised July 15, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

Hereisthe complete code for NUMIN.

NUM N

b B

SCAN1

o

NOTBLANK

I SDI G

LOOP

*
DONE
*
*

SPACE10
THESI GN

Page 305

SR R7,R7
SR R6, R6

M/l THESI CN, C P’

CLC CARDI N+20(10) , SPACEL0
BE DONE

Direct Conversion of Integer Data

SET R7, THE RESULT, TO O
CLEAR HI GH- ORDER PRODUCT
DEFAULT TO PGCsI Tl VE

'S THE | NPUT ALL BLANKS
IF SO, JUST EXIT WTH
THE VALUE SET TO 0.

NOW SCAN LEFT TO RI GHT TO FI ND FI RST NON- BLANK.
USE BXLE W TH REGQ STER PAIR (R4, R5).

SR R3,R3
LA R4,1
LA R5,9

CLI CARDI N+20(R3),C °
BNE NOTBLANK

BXLE R3, R4, SCAN1

B DONE

CLEAR | NDEX USED TO SCAN
THE | NPUT CHARACTER ARRAY
SET | NCREMENT TO 1

OFFSET 9 IS THE LAST DG T
DO VE HAVE A SPACE?

NO IT MAY BEADAGT

I TS BLANK. LOCK AT NEXT
ALL BLANKS, WE ARE DONE

AT TH'S PO NT, R3 CONTAINS THE | NDEX OF THE NON- BLANK

CHARACTER.

THE VALUES I N (R4, R5) ARE STILL VALID.

I N PARTI CULAR R4 STILL HAS VALUE 1.

CLI CARDI N+20(R3), C -’
BNE 1SDIC
M/ THESIGN, C N

AR R3, R4
CR R3,R5
BH DONE

CLI CARDI N+20(R3), C O’
BL LOOP

CLI CARDI N+20(R3),C 9’
BH LOOP

M R6,=F 10’

SR R8,R8

IC RS, CARDI N+20(R3)

S RS, =X FO’

AR R7,R8

BXLE R3, R4, | SDI G

CLI THESIGN,C N

BNE DONE

LCR R7,R7

DO VE HAVE A M NUS S| GN?

NOTE THE SI GN AS NEGATI VE
ADD 1 TO VALUE I N R3.

R3 HAS BEEN | NCREMENTED
QUTIFITIS TOO BI G

ISITADGT

NO - CODE < 'O’

ARAIN, ISITADGT?
NO - CODE > ' 9’

MULTI PLY (R6, R7) BY 10
CLEAR R8

GET THED AT

CCNVERT TO VALUE OF DIGA T
ADD TO THE PRODUCT

END OF THE LOCP

WAS THE | NPUT NEGATI VE
I T IS NOT NEGATI VE
TAKE 2' S COVPLEMENT

* HERE R7 CONTAINS THE BI NARY VALUE

0123456789
DC CL '
DS CL1

Chapter 16

BE SURE OF THE COUNT BELOW
JUST TEN SPACES

Last Revised July 15, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

Printing Packed Data
The standard solution to convert binary integer data into printable form uses two
of the standard System/370 assembl er language instructions.

CvD Converts the binary to packed decimal.

UNPK Converts the packed decimal to zoned decimal format.

The unpack command, UNPK, has an unfortunate side effect. Consider the decimal number
42, represented in binary in register R4.

CVD R4, PACKQUT produces the value in standard packed decimal format: 042C.

This should be unpacked tothe EBCDIC ~ FO F4 F2
Unpack produces the zoned format FO F4 C2.

Thisprintsas” 04B” , because 0xC2 isthe EBCDIC code for the letter * B’ .
Here is the code that works.

NUMOUT CVD R4, PACKOUT CONVERT THE NUMBER TO PACKED
UNPK THESUM PACKOUT PRODUCE FORVATTED NUMBER
MWZ THESUWMF7(1), =X FO’ CHANGE THE ZONE FI ELD AT
* ADDRESS THESUM+7
BR 8 RETURN ADDRESS | N REG STER 8
PACKOUT DS PL8 HOLDS THE PACKED OUTPUT
THESUM has eight characters stored as eight bytes. The addresses are:
SUM | SUM +1 | SUM +2 SUM +3 | SUM +4 SUM +5 SUM +6 | SUM +7
Hundreds Tens Units

Again, the expression THESUMt7 is an addr ess, not avalue.
If THESUM holds C 01234567’ , then THESUM+7 holdsC' 7’ .
A Problem with the Above Routine

Consider the decimal number —42, stored in aregister in binary two’ s—complement form.
CvD produces 042D
UNPK produces FO F4 D2

The above MVZ will convert thisto FO F4 F2, apositive number. There are some easy
fixes that are guaranteed to produce the correct representation for a negative number.

Most of the fixesusing CVD and UNPK depend on placing the minus sign to the right of the
digits. So that the negative integer —1234 would be printed as“1234-".

Page 306 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

My Version of NUMOUT (Number Out)
This routine avoids packed decimal numbers. We are given a binary number (negative or
non—negative) in register R4.

1. Isthe number negative?
If s, set thesignto ‘—’ and take the absolute value.
Otherwise, leave the sign aseither ‘+' or * ’ (ablank).

We now have anon—negative number. Assumeit is not zero.

2. Dividethe number by 10, get a quotient and a remainder.
The remainder will become the character output.

3. Theremainder is a positive number in the range [0, 9].
Add =X*F0O’ to produce the EBCDIC code.

4. Placethisdigit codein the proper output slot.
Isthe quotient equal to 0? If so, quit.
If it is not zero, place the quotient in the dividend and return to 2.

Hereis apaper example of the proper execution of the algorithm. Consider the positive
integer 9413. Do repeated division by 10 and watch the remainders.

9413 divided by 10: Quotient = 941 Remainder = 3. Generatedigit “3”.
941 divided by 10: Quotient = 94 Remainder = 1. Generatedigit “1”.
94 divided by 10: Quotient =9 Remainder = 4. Generatedigit “4”.
9 divided by 10: Quotient =0 Remainder = 9. Generatedigit “9”.

Quotient is zero, so the process stops.

Asthey are generated, the digits are placed right to left, so that the result will print asthe
string “ 9413” . We now investigate the specifications for the code.

NUM OUT: Specifications

The code processes a 32-bit two’ s—complement integer, stored as a fullword in register RS
and printsit out as a sequence of EBCDIC characters. The specification calls for printing out
at most 10 digits, each as an EBCDIC character. The sign will be placed in the normal spot,
just before the number. For no particular reason, positive numbers will be prefixed with a
“+”. 1 just thought | would do something different.

Thiswill use repeated division, using the even—odd register pair (R4, R5), which contains a
64-bit dividend. Asapart of our processing we shal insure that the dividend is a 32-bit
positive number. In that case, the “high order” 32 bits of the number areal 0.

For that reason, we initialize the “high order” register, R4, to 0 and initialize the
“low order” register, R5, to the absolute value of the integer to be output.

The EBCDIC characters output will be placed in a 12—byte area associated with
the label CHARSCQUT, at byte addresses CHARSOUT through CHARSOUT+11.

Page 307 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

Review of the Instructions: LCR and STC

Load Complement Register: LCR R1, R2

This loads register R1 with the negative (two’ s-complement) of the value in register R2.
Thisisalso used in my routine NUMIN.

Store Character: STC R§,CHARSOUT(R3) PLACE THEDIGIT
Thistransfers the EBCDIC character, with code in the low order 8 bits of the source register,
to the target address. None of the bits in the register are changed.

Theideabehind NUMOUT isto compute the numerical value of adigit in a source register,
convert it to an EBCDIC code, and move it to the print line. Thefirst part checks the sign of
the integer in register R4 and sets the sign character appropriately.

Note that the first thing to do is clear the output field to that expected for a zero result.

NUMOUT M/C CHARSQUT, ZEROOUT DEFAULT TO O
MWI THESI GN, C +’ DEFAULT TO A PLUS SI GN
C R5, =F O’ COWARE R5 TO O
BE DONE VALUE IS 0, NOTH NG TO DC
BH | SPCS VALUE | S PGCSI Tl VE
MWI THESIGN, C -’ PLACE A M NUS SI G\
LCR R5, RS 2'S COWLEMENT RS TO MAKE PGS
| SPCS SR R4, R4 CLEAR REG STER 4
Here are some data declarations used with this part of the code.
* 123456789012
ZEROCOUT DC C o’ 11 SPACES AND A ZERC
CHARSQUT DS CL12 UP TO 11 DDA TS AND A SI GN

Division (Specifically D — Divide Fullword)

This instruction divides a 64-bit dividend, stored in an even—odd register pair,
by afullword, and places the quotient and remainder back into the register pair.

Thiswill use the even—odd register pair (R4, R5). The specifics of the
divide instruction are as follows.

R4 R5

Beforedivision | Dividend (high order 32 hits) Dividend (low order 32 hits)

After division Remainder Quotient

There are specific methods to handle dividends that might be negative.
Aswe are considering only positive dividends, we ignore these general methods.

Page 308 Chapter 16 Last Revised July 15, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Direct Conversion of Integer Data

Our Example of Division
Start with a binary number in register R5.

We assume that register R4 has been cleared to O, as this exampleis limited to a 32-bit
positiveinteger. This code will later be modified to process the remainder, and store
the result as a printable EBCDIC character.

Here is the broad outline of the conversion loop, called DIVIDE because it achieves the
result by repeated division by ten.

DVIDE D R4,=F 10 Dl VI DE (R4, R5) BY TEN
*
* THE REMAI NDER, IN R4, MJUST BE PROCESSED AND STORED
*
SR R4, R4 CLEAR R4 FOR ANOTHER LOOP
C R5 =F0O CHECK THE QUOTI ENT
BH DI VI DE CONTINUE | F QUOTI ENT > O

Placing the Digits
At this point, our register and storage usageis as follows:
1. Register R3 will be used as an index register.
2. Register pair (R4, R5) isbeing used for the division.
3. Register pair (R6, R7) isreserved for use by the BXH instruction.

CHARSQUT DS CL12 contains the twelve characters that form the print representation
of theinteger. The number 12 isarbitrary; it could be 10.

The strategy callsfor first placing adigit in the units slot (overwriting the *0’) and then
moving left to place other digits. To allow for asign, no digit isto be placed in dlot O, at
address CHARSOUT. Theideawill beto place the character into a byte specified by
CHARSQUT(R3) .Theregister isinitialized at 11 and decremented by 1 using the BXH
instruction. What the code actually doesisincrement R3 by the negative value -1.

0

—
Place digits right to left

TheDigit Placement Code
Here is a sketch of the digit placement code. It must be integrated into the larger DIVIDE
loop in order to make sense. Theregister pair (R6, R7) isused for the BXH instruction.
R6 holds the increment value
R7 holds the limit value

L R6, =F -1’ SET | NCREMENT TO -1
SR R7, R7 CLEAR RY. LIMT VALUE | S 0.
L R3, =F 11’ SET INDEX TO 11 FOR LAST DIGT.
A R4, =X' FO’ ADD TO GET EBCDI C CODE
STC R4, CHARSQUT(R3) PLACE THE CHARACTER
BXH R3, R6, DI VI DE GO BACK TO TOP OF LOOP
MWC CHARSOUT(R3), THESI GN PLACE THE SI GN
Page 309 Chapter 16 Last Revised July 15, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

The Complete Divide L oop

Direct Conversion of Integer Data

Hereisthe complete code for the divide loop. Note the branch out of the loop. The loop
exits either when the quotient is 0 or when ten digits have been placed.

L R6, =F' - 1’
SR R7,R7
L R3, =F 11’

*

DVIDE D R4,=F 10
A R4, =X FO

STC R4, CHARSOUT(R3)
SR R4, R4

C FR5=FO

BNH PUTSI GN

BXH R3, R6, DI VI DE

*

PUTSI N MVC CHARSOUT(R3), THESI GN

Hereis the complete code for NUMOUT.

SET | NCREMENT TO -1

CLEAR R7. LIMT VALUE IS 0.
SET INDEX TO 11 FCR LAST
DG T AT CHARSOQUT+11.

Dl VI DE (R4, R5) BY TEN AND
ADD X ‘FO’, THE CODE FOR ‘0O’
TO CGET EBCDIC CODE FOR DIGA T
PLACE THE CHARACTER

CLEAR R4 FOR ANOTHER LOGP
CHECK THE QUOTI ENT

EXIT LOOP I F QUOTI ENT <= 0
GO BACK TO TCOP OF LOOP

PLACE THE SI GN

*THE FI RST PART SETS THE DEFAULTS AND PREPARES FOR A 0 QUTPUT

*

NUMOUT MVC CHARSCUT, ZEROOUT
MW THESI GN, C +
C R5=FO0O
BE DONE
BH | SPCS
MWI THESI GN, C -’
LCR R5, RS
| SPOS SR R4, R4
*

L R6, =F' - 1’
SR R7,R7
L R3, =F 11’

*

DVIDE D R4,=F 10
A R4, =X FO

STC R4, CHARSOUT(R3)
SR R4, R4

C FR5=FO

BNH PUTSI GN

BXH R3, R6, DI VI DE

PUTSI N MVC CHARSOUT(R3), THESI GN

DEFAULT TO O

DEFAULT TO A PLUS SI GN
COMPARE R5 TO O

VALUE |'S 0, NOTH NG TO DC
VALUE | S POsI Tl VE

PLACE A M NUS SI GN

2’ S COVPLEMENT R5 TO MAKE POS
CLEAR REG STER 4

SET | NCREMENT TO -1

CLEAR R7. LIMT VALUE IS 0.
SET I NDEX TO 11 FOR LAST
DA T AT CHARSOUT+11.

Dl VI DE (R4, R5) BY TEN AND
ADD X *FO’, THE CODE FOR ‘0O’
TO GET EBCDIC CODE FOR DIG T
PLACE THE CHARACTER

CLEAR R4 FOR ANOTHER LOOP
CHECK THE QUOTI ENT

EXIT LOOP | F QUOTIENT <= 0
GO BACK TO TOP OF LOCP

PLACE THE SIGN I N THE SPOT
FOR STANDARD ALGEBRA

* CODE HERE FOR RETURN FROM SUBROUTI NE

Page 310 Chapter 16

Last Revised July 15, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

