Chapter 15: Looping, Use of Index Registers, and Tables

This lecture discusses loop structures within assembly language, and the language constructs
evolved to support loops. We begin with areview of type RX instructions, which are the
instructions that most naturally can use loop structures. During these lectures, we shall
follow a number of examples taken from atextbook by Mr. George W. Struble of the
University of Oregon. Struble stextbook, published last in 1975, is out of print.

RX (Register—Indexed Storage) For mat
Thisisafour-byte instruction of theform OP R1, D2(X2, B2) .

Type Bytes 1 2 3 4

RX 4 R1,D2(X2,B2) OP Ri1 Xz B, Ds D,D,

Thefirst byte contains the 8-bit instruction code. The second byte contains two 4-bit fields,
each of which encodes aregister number. Thefirst hexadecimal digit represents the general
purpose register that is the source or destination of the data. The second hexadecimal digit in
the second byte represents the register used for indexed addressing. As aways, a value of 0
indicates that indexed addressing is not used.

The third and fourth bytes contain an address in base/displacement format, which may be
further modified by indexing. In order to illustrate this, consider the following data layout.

FW DC F 31’
DC F 100’ Note that this full word is not |abel ed

Suppose that FW1 is at an address defined as offset X' 123’ from register 12.
As hexadecimal Cisequa to decimal 12, the address would be specifiedasC1 23.

The next full word might have an address specified asC1 27, but we shall show
another way to do the same thing. The code we shall consider is

L R4, FW Load register 4 from
the full word at FW
A R4, FWL+4 Add the value at the

next full word address
Consider the two line sequence of instructions
L R4, FW Qperation code is X 58 .
A R4, F\W+4 Qperation code is X 5A".

Given that the address of FW1 is specified asCl 23, and that indexing is not used, the
first instruction yields object code asfollows: 58 40 C1 23.

The next instruction is similar, except for its operation code, and the address of the operand.
Note that relative addressing is used, so that the operand addressis FWL+4, stored at an
offset (X' 123" + 4) = X 127 fromtheaddressin baseregister X' C' or decimal 12.

The object code for thisinstructionis 5A 40 Cl1 27

Page 278 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

RX Format (Using an I ndex Register)
Here we shall suppose that we want register 7 to be an index register. Asthe second
argument is at offset 4 from the first, we set R7 to have value 4.

Thisis afour-byte instruction of theform OP R1, D2(X2, B2) .

Type Bytes 1 2 3 4

RX 4 R1,D2(X2,B2) OP R1 X2 B, D2 D,D>

Thefirst byte contains the 8-bit instruction code. The second byte contains two 4-bit fields,
each of which encodes aregister number. Thefirst hexadecimal digit represents the general
purpose register that is the source or destination of the data. The second hexadecimal digit in
the second byte represents the register used for indexed addressing. Aswe are assuming now
that indexed addressing is being used, the value of thisdigit will be nonzero.

The third and fourth bytes contain an address in base/displacement format, which may be
further modified by indexing.

Consider the three line sequence of instructions
L R7,=F4& Regi ster 7 gets the val ue 4.
L R4, FW Operation code is X 58 .
A R4, FW(R7) Operation code is X 5A .

The object code for the last two instructionsis now.

58 40 C1 23 This address is at displacenent 123
fromthe base address, which is in R12.
5A 47 Cl1 23 R7 contains the val ue 4.

The address is at displacenent 123 + 4
or 127 fromthe base address, in R12.

Address M aodification: Use of Index Registers
Asnoted above, atype RX instruction hastheform OP R1, D2(X2, B2) .

Thisimpliesthat the effective address is the sum of three values:
1. A displacement,
2. Anaddressin abase register, and
3. Avaueinanindex register.

Addresses may be modified by changing the valuesin any one of these three parts.
The most natural of these choicesisto change the value in the index register.

We now consider an exampl e taken from atextbook Assembler L anguage Programming:

the IBM System/360 and 370 (Second Edition) by George W. Struble. This example
presents a number of ways to achieve the same goal. We shall comment on each of the
approaches, but not claim that any one is better than the other. Before considering the entire
loop, we should first examine afew lines of code aswritten in Mr. Struble’ s style. These can
be quite interesting. Struble uses R3 as the general purpose register, so we shall also.

Page 279 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

The Structure of an Indexed Address
Consider thisline of code taken from the loop example.

LOOP C R3, ARG R10)

Theinstruction is a Compare Fullword, which is atype RX instruction used to compare the
binary value in aregister to that in afullword at the indicated address. Aswe shall see, the
intent of this comparison isto set up for a BE instruction. The item of real interest hereis the
second operand ARG R10) . How does the assembler map thisto the form D2(X2, B2) 7

According to Struble (page 168) “The assembler inserts the address of an
implied base register B2 for the second operand. The assembler also
calculates and inserts the appropriate displacement D2 so that D2 and B2
together address ARG. The assembler also includes X2 = 10 [hexadecimal A]
without knowledge or thought of the contents of register 10.”

If register R12 (hexadecimal C) is being used as the implied base register, and if the
label ARG isat displacement X' 234’ from the addressin that register, the object
code for the above instructionis59 3A C2 34.

I ncrementing an Indexed Register

Much of this lecture will be focused on methods to change the value in the index register and
so change the value of the effective address of the second argument. This set of slides, which
follows Struble’' s example closely, begins with an early example that he modifies to show the
value of the really interesting instructions.

Consider theinstruction LA R10, 80(R1L0) . What doesit do?

This instruction appears to be computing an address, but isit really doing that?
The LA instruction isindeed a“load address’ instruction.

Consider the value that is to be loaded into register R10.

Onetakesthe value aready in R10, adds 80 to it, and placesit back into R10.
In another style, this might bewrittenasR10 = R10 + 80.

Thisline of codeillustrates how programmers use features of the language.
Struble' sFirst Loop

* PROGRAM TO SEARCH 20 NUMBERS AT ADDRESS ARG ARG+80,
* ARG+160, ETC. FOR EQUALITY WTH A NUMBER | N REG STER 3.

LA R10,0 SET VALUE IN R10 TO O
LOOP C R3, ARG R10) COMPARE TO A NUMBER
BE QUT | F FOUND, GO PROCESS IT.
LA R10, 80(R10) ADD 80 TO VALUE OF | NDEX REGQ STER.
C R10, =F 1600’ COMPARE TO 1600.
BNE LOOP I F NOT EQUAL, TRY AGAI N.

DO SOVETHI NG HERE. THE ARGUMENT | S NOT THERE
ouT DO SOMVETH NG HERE

This program has only one obvious flaw, but it isabig one. The loop termination code
should be BL LOOP. If thevalue in R10 goes from 1580 to 1660 and continues
incrementing, the loop with BNE will never terminate properly.

Page 280 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Structure Analysis of Struble’ sFirst L oop

After correcting the obvious logic error in the above loop, it is time to discuss the structure
that isimplied by the program fragment. While| extend Struble’ s analysis, | remain entirely
consistent with it.

START Initialize the index register.
LOOP Do the conparison and branch to QUT if equal
Update the index register
Test value in index register and |l oop if necessary.

FALL Wite the “fall through” code here. The code
i medi ately following the loop will execute only
I f the value is not found.

B MORE Junp around the code to execute if the val ue
has been found.

out The val ue has been found. The value in R10
indicates its location in the data structure
| abel ed as ARG Execute the commopn code next.

MORE This code is executed for any option. It
Is the continuation of the processing.
Another Example from Struble
Here we have three zero-based arrays, each holding 20 fullword (32-bit) values.
We want an array sum, so that CC[K] = AA[K] + BB[K] for 0 <K < 19.
Here is one way to do this, again using R10 as an index register.
LA R10,0 I NI TI ALI ZE THE | NDEX REG STER
LOOP L R4, AA(R10) GET THE ELEMENT FROM ARRAY AA
R4, BB(R10) ADD THE ELEMENT FROM ARRAY BB
ST R4, CC(R10) STORE THE ANSVER

LA R10, 4(R10) I NCREMENT THE | NDEX VALUE BY FOUR
C Ri10, =F 80’ COMPARE TO 80
BL LOOP

Here we see a very important feature: the index register holds a byte offset for an address
into an array and not an “index” in the sense of a high-level language. Specifically, the
address of the K™ element of array AA is at the byte address given by adding 4eK to the
address of element O of the array.

Notealsotheuseof LA R10, O toinitializetheregister R10 to zero. Thisismore
common in standard assembly programsthan theequivalent L R10, =F* 0’ .

Page 281 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

How the VAX-11/780 Would Do This

The standard for the IBM System/360 and rel ated mainframe computers isto use the index
register as holding a byte offset from a base address. In using this feature to move through
an array of particular datatypes, the standard isto add the size of the dataitem to the index
register. More complex computers, such as the VAX-11/780 automatically account for
the size of the data. Here is the above code written in the VAX style, while still retaining
most of the structure of a System/370 assembler language program.

LA R10,0 I NI TI ALI ZE THE | NDEX REGQ STER
LOOP L R4, AA(R10) GET THE ELEMENT FROM ARRAY AA
R4, BB(R10) ADD THE ELEMENT FROM ARRAY BB

ST R4, CC(R10++) STORE THE ANSVER, | NCREMENT | NDEX
BY 1 FOR USE I N NEXT LOOP.

C Ri10, =F 20’ COVPARE TO 20
BL LOOP

Inthe VAX style of programming, the address AA(R10) would be interpreted as

AA + 4e(Val ue in R10), because AA isan array of four-byte entries. Thisisatrue
use of an index value, as would be expected from our study of algebra. However, it is not the
way that the System/370 assembler handles the addressing.

Other Optionsfor the L oop
We now note atypical structure found in many loops. The loops tend to terminate
with code of the form seen below.

LA REG | NCR(REG I ncrement the val ue
CREGLIMT Conpare to a limt value
BL LOOP Branch if necessary

The only part of this structure that is not general is the assumption that the loop is
“counting up”. For aloop that counts down, we replace the last by BH LOOP.

A loop termination structure of this sort is so common that the architects of the IBM
System/360 provided a number of special instructions to facilitate it.
The four instructions to be discussed here are as follows.

BXLE Branch on index lower or equal.
BXH Branch on index high.
BCT Branch on count. Whilethisiseasier to use, it is
less general than the above.
BCTR Branch on count to addressin aregister.
Page 282 Chapter 15 Last revised July 13, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

ToLoop or Not To Loop

Consider the following code, which sums the contents of atable of agiven size.

Here | assume that the table contents are 16-bit halfwords, beginning at address AO
and continuing at addresses A0+2, AO+4, etc. | am using 16-bit halfwords hereto
emphasi ze the fact that the vaue in the index register must account for the length of the
operands; here each is 2 byteslong.

Thefirst code isthe genera loop. Itisillustrated for an array of 50 two-byte entries.

SR R6, R6 I NI TI ALI ZE | NDEX REGQ STER
SR R7, R7 SET THE SUM TO 0

LOCOP AH R7, TAB(R6) ADD ONE ELEMENT VALUE TO THE SUM
A R6,=F 2 | NCREMENT TO NEXT HALFWORD ADDRESS
C R6,=F 99’ LAST VALID OFFSET | S 98
BL LOOP

On the other hand, if the table had only three entries, one might write the following code.
LH R7, TAB Load elenent O of the table

AH R7, TAB+2 Add elenment 1 of the table
AH R7, TAB+4 Add el enment 2 of the table.

Remember that the function of looping construct isto reduce the complexity of the
source code. If an unrolled loop reads more simply, then it should be used.

Branch on Index Value

The two instructions of interest here are:
BXLE Branch on index lower or equal. Opcode= X' 87’ .
BXH Branch on index high. Opcode=X 86’ .

Each of theseinstructionsistype RS, there are two register operands and a
reference to amemory address. TheformisOP R1, R3, D2(B2) .

Type Bytes 1 2 3 4

RS 4 R1,R3,D2(B2) OP Ri Rs B2 D2 D.D>

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. The
first register isthe one that will be incremented and then tested. The second hexadecimal
digit in the second byte encodes a third register, which indicates an even—odd register pair
containing the increment value to be used and the limit value to which the incremented value
is compared.

The third and fourth byte contain a4-bit register number and 12-bit displacement,
used to specify the memory address for the operand in storage.

Remember that this form of addressing does not use an index register.

Page 283 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

The Even—Odd Register Pair
The form of each of the BXLE and BHX instructionsisOP R1, R3, D2(B2) .

The source code form of the instructions might be OP R1, R3, S2, in which the
argument S2 denotes the memory location with byte address indicated by D2(B2) .

Thefirst register , R1, isthe one that will be incremented and then tested. The third register ,
R3, indicates the even register in an even—odd register pair. It isimportant to note that this
value really should be an even number. While the instruction can work if R3 references an
odd register, it tends to lead to the instruction showing bizarre unintended behavior.

The even register of the pair contains the increment to be applied to the register indicated
by R1. Itisimportant to note that the increment can be a negative number.

The odd register of the pair contains the limit to which the new valuein the
register indicated by R1 will be compared.

NOTATION: R3 will denote the even register of the pair, with contents C(R3) .
R3+1 will denote the odd register of the even—odd pair,
with contents C(R3+1) .

Discussion of BXLE: Branch on Index Less Than or Equal

This could aso be called “Branch on Index Not High”.

Theinstruction is written as BXLE R1, R3, S2.

The object code hastheform 87 R1, R3, D2(B2) . The processing for this
instruction is as follows.

Step 1 ChangethevalueinR1l: Rl « C(Rl) + C(R3)
Step 2 Test the new value GotoS2if CRL) < C(R3 +1).
Assumethat (R4) = 26, (R6) = 62, (R8) = 1, and (R9) = 40.
BXLE 4, 8, S2 The even—odd register pair is R8 and R9.
Thevaluein R4 isincremented by the value in R8.

Thevaluein R4 isnow 27. Thisiscompared to the value
in R9. 27 <40, so the branch is taken.

BXLE 6, 8, S2 The even—odd register pair is R8 and R9.
Thevaluein R6 isincremented by the value in R8.

Thevauein R6isnow 63. Thisiscompared to the value
in R9. 62 > 40, so the branch is not taken.

Page 284 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Discussion of BXH: Branch on Index High
Theinstruction iswritten as BXH R1, R3, S2.

The object code hastheform86 R1, R3, D2(B2) .
Step 1 Changethevauein R1 Rl « C(Rl) + C(R3)

Step 2 Test the new value Goto S2if C(RL) > C(R3 + 1).
Assume that (R4) = 4, (R6) = 12, (R8) = -4, and (R9) = 0.
BXH 4, 8, S2 The even—odd register pair is R8 and R9.

Thevaluein R4 isincremented by the value in R8.

Thevaluein R4isnow 0. Thisiscompared to the value
inR9. 0<0, so the branch is not taken.

BXH 6, 8, S2 The even—odd register pair is R8 and R9.
Thevaluein R6 isincremented by the value in R8.
Thevaluein R6 isnow 8. Thisiscompared to the value
inR9. 8> 0, so the branch istaken.
A New Version of the Array Addition
Again we have three zero-based arrays, each holding 20 fullword (32-bit) values.
We want an array sum, so that CC[K] = AA[K] + BB[K] for 0 <K < 19.
Here is one way to do this, again using R10 as an index register.
Thistime, we use BXLE with R8 as the increment register and R9 as the limit register.

LA R10,0 I NI TI ALI ZE THE | NDEX REG STER
LA RS, 4 | NCREMENT BY 4 BYTES FOR FULLWORD
LA R9, 76 OFFSET OF 19TH ELEMENT

LOOP L R4, AA(R10) GET THE ELEMENT FROM ARRAY AA
A R4, BB(R10) ADD THE ELEMENT FROM ARRAY BB
ST R4, CC(R10) STORE THE ANSVEER
BXLE R10, R8, LOOP | NCREMENT R10 BY 4, COWPARE TO 76

When the 19" element is processed R10 will have the value 76 (the proper byte offset).
After the 19" element is processed, R10 will be incremented to have the value 80,
and the branch will not be taken.

Page 285 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Polynomial Evaluation Using Horner’s Rule

Horner’ srule is a standard method for evaluating a polynomial for a given argument.
Let P(X) = AneX™N + Ao XN+ L+ AgeXZ + AjeX + Ag.

Let X be aspecific value of the argument. Evaluate P(Xg).

For example, let P(X) = 2eX3 + 5eX? — 76X + 10, with Xo = 2.

Then P(2) = 2e8 + 564 — 7¢2 + 10=16 + 20— 14 + 10 = 32.

Examination of the specific polynomial will show the motivation for Horner’ s rule.
P(X) =2eX>+5eX?—7eX +10
=(20X? + 5eX — 7)eX + 10
=([2eX + 5]eX — 7)eX + 10
SoP(2) =([2e2+ 5]e2—7)e2 + 10
=([9]e2-T7)e2+ 10
=(11)e2+ 10

([4+5]e2—-7)e2 + 10
(18—-7)e2 + 10
22+10=32

A Standard Algorithm for Horner’sRule
The basic loop is quite smple. In ahigher—level language, we would something
like the following, which has no error checking code.

P=AN
For J = (N - 1) Down To 0 Do
P = PeX + Al J] ;
Consider again the polynomial P(X) = 2eX> + 5eX? — 7eX + 10, with X = 2.
In anotation appropriate for coding we have the following.
A[3] =2,A[2] =5, A[1] =-7,A[0] = 10, and X0 = 2.

Let’ s use the loop above to evaluate the polynomial. N = 3.
Start with P= A[3] = 2.

J=2 P=Pe2+A[2] =202 +5 =9
J=1 P=Pe2+A[1] =927 =11
J=0 P=Pe2+A[0] = 1162 + 10 =32

NOTE: Thisisentirely different from finding the root of a polynomial.

A Sketch of Our Algorithm for Horner’sRule
Our version of the assembler does not support explicit loops, so we write the equival ent
code. Inthis, | shall useregister names as “variables’, so R3 will contain avalue.

Al gorit hm Hor ner
On entry: R3 contains N, the degree of the pol ynom al
R4 contains X, the value for evaluation.
Set R8 = 0 This will be the answer.
If R3 <0 Go to END No negative degrees

LOOP R8 = R8eR4 + AQO[R3]
R3=R3 -1
If R3>0 Go to LOCP
END
Page 286 Chapter 15 Last revised July 13, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

This implementation will assume halfword arithmetic; all values are 16-bit integers.
More commonly, one would use floating—point arithmetic. Since my goal hereis
to illustrate the loop structure, | stick to the simpler arithmetic of halfwords.

More Noteson Our I mplementation

The array will belaid out as a sequence of halfword (two byte) entriesin memory.

The base address of the array will be denoted by the label AO.

Thereare (N + 1) entries, from Ag through Ay, found at byte addresses AQ, ..., AO+2eN.
Hereis an example for a 5" degree polynomial, with address offsets in decimal.

Address AO AO0+2 | AO+4 | AO+6 | AO+8 A0+10

Entry Ag A1 A A3z Az As

Each halfword in the array will be referenced as AO(R3) , where R3 contains the byte
offset of theitem. Thevauein R3 will be set to 2eN and counted back to O.

Theincrement value for R3 is—-2 (X' FFFFFFFE'), so that the register is actually
decremented by 2. Itsvalues arethe byte offsets: 2eN, 2N - 2, ..., 4, 2, 0.

As| want to use the BXH instruction for thisillustration, and want to allow for R3 = 0,

| shall set the limit for the comparison to —1, though —2 would do as well. At the last
execution of the loop, R3 will be decremented from R3 = 0to R3 =- 2. The branch will not
be taken.

Horner’s Rule Polynomial Evaluation with BXH

* ALGORI THM HORNER
* ON ENTRY: R3 CONTAINS THE DEGREE CF THE POLYNOM AL
* R4 CONTAINS THE VALUE OF X FOR P(X)
* PROCESS: R6 AND R7 WLL BE USED FOR THE BXH
* ON EXIT: R9 CONTAINS THE VALUE OF P(X).
SR R9, RO SET R9 TO ZERC
AR R3,R3 DOUBLE R3 TO MAKE BYTE COUNT.
LH R6,=H -2 LOAD | NCREMENT OF -2
LH R7,=H -1’ LOAD LIMT FOR TESTI NG
LOOP MR RS, R4 PRODUCT I N REG STER PAI R R8, R9
FOR HALFWORDS, R8 |S NOT USED
AH R9, AO(R3) ADD THE CCEFFI CI ENT

BXH R3,R6,LOOP LOOP IF Q(R3) > -1.

For this example, | assume 16-bit integers (hafwords) for both the value of X and
the values of all coefficients of the polynomial.

Given this, the sign bit in R9 will be correct after the multiplication and R8 is not used.

Page 287 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Branch on Count
The two instructions of interest now are:

BCT The branch on count instruction is atype RX instruction, with op code X' 46’ .

BCTR The branch on count (register) instruction is atype RR instruction.
Thishasop code X' 06’ . The register holds the branch address.

Theformsof theinstructionsare: BCT R1, S2

BCTR R1, R2.
Each of these instructions decrement the count in the R1 register by 1.
The action of each of these instructions is described formally as follows.

BCT: Rl « C(R1) -1
Branch to S2 if C(Rl) # O.
BCTR: Rl « C(R1) -1

Branch to C(R2) if C(Rl) # 0 and R2 = 0.
Note that BCTR R1, 0 will decrement R1 by 1, but not branch for any value in R1.
Scanning Text for Input/Output

Remember that input should be viewed as a card image of 80 columns and that output
should be viewed as aline—printer line of 132 columns, with leading print control.

Consider afield of N characters found beginning in column M.
Scan this range

— — — — I — — — —
™M |
M+1 M+N-1

Suppose that the leftmost byte in this array is associated with the label BASE.
The leftmost byte in the range of interest will be denoted by the label BASE+V.

Elementsin this range will be referenced using an index register as BASE+M Req) .

For example, suppose that the field of interest contains 12 characters and
begins with column 20. It then goes between columns 20 and 31, inclusive.

Using R3 as an index, we reference this as BASE+20(R3) , with 0 < (R3) < 20.
Scanning left to right will use BXLE and scanning right to left will use BXH.

Page 288 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Arraysand Tables

We now begin our discussion of arrays and tables with yet another presentation of the
various ways in which addresses can be computed. The two primary modes are indexed
addressing and explicit use of base registers. We shall investigate how these two modes can
be combined. The primary issue being addressed once again is the fact that some address
specifications require detailed inspection in order to understand.

The reason for this endless repetition is your author’s desire to have each chapter contain a
compl ete description of the topic, without too much direct reference to other chapters.

All classes of instructions, except type RR, can use the explicit base register format of
address specification. These notes focus on four types that are of interest to our discussion of
tables and arrays: type RS, type RX, and the two variants of type SS. Of these, only the type
RX instructions can directly use indexed addressing. The other 3 types use a non—negative
displacement from an address stored in a base register; this can be viewed as being
equivalent to indexed addressing (if one is of amind to do so).

Type RS Instruction For mat
Thisis afour-byte instruction of the form OP R1,R3,D2(B2).

Type | Bytes Operands 1 2 3 4
RS 4 | R1,R3,D2(B2) OP R1 R3 B, D, D,D,

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. Some
RS format instructions use only one register, here R3 isset to 0. Thisinstruction format
followsthe IBM architecture standard that “0” is taken as no register, rather than register RO.

Thethird and fourth byte contain a 4-bit register number and 12-bit displacement, used to
specify the memory address for the operand in storage. Recall that each label in the
assembly language program references an address.

Any addressin the format of base register and displacement will appear in the form.

| BD; | D;Ds |
B isthe hexadecimal digit representing the base register.

The three hexadecimal digits D; D, D3 form the 12-bit displacement, which isto be
interpreted as a non—negative integer in the range from 0 through 4095, inclusive.

As an example of the type, we consider the BXH instruction with opcode X' 86’ .

A standard use of the instruction would be as foll ows.
BXH R6, R8, L10LOOP

It isimportant to remember that the above could be written in source code in this form.
LA R4, L10LOOP ADDRESS OF LABEL L10LOOP I NTO R4
BXH R6, R8, 0(4) BRANCH TARGET ADDRESS | N R4.

One might have an instruction of the following form as well.
BXH R6, R8, 12(4) BRANCH TARGET ADDRESS | S DI SPLACED
12 (X C) FROM ADDRESS | N R4.

Page 289 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

RX (Register—Indexed Storage) For mat
Thisis afour-byte instruction of the form OP R1,D2(X2,B2).

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP Ri X, | BoDy | D2D2

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. The
first hexadecimal digit, denoted R, identifies the register to be used as either the source or
destination for the data. The second hexadecimal digit, denoted X, identifies the register to
be used astheindex. If thevalueisO, indexed addressing is not used.

The third and fourth bytes contain a standard address in base/di splacement format.

As an examples of thistype, we consider the two following instructions:
L Load Fullword Opcodeis X' 58’
A Add Fullword Opcodeis X' 5A

We consider a number of examples based on the following data declarations. Note that the
data are defined in consecutive fullwords in memory, so that fixed offset addressing can be
employed. Each fullword has alength of four bytes.

DAT1 DC F 1111’
DAT2 DC F* 2222’ AT ADDRESS (DAT1 + 4)
DAT3 DC F* 3333’ AT ADDRESS (DAT2 + 4) OR (DAT1 + 8)
A standard code block might appear as follows.
L R5, DAT1
A R5, DAT2
A R5, DAT3 NOW HAVE THE SUM
One variant of this code might be the following. See page 92 of R_17.
LA R3, DAT1 GET ADDRESS | NTO R3
L R5,0(,3) LOAD DAT1 I NTO R5
A R5,4(,3) ADD DAT2, AT ADDRESS DAT1+4.
A R5,8(,3) ADD DAT3, AT ADDRESS DAT1+8.

Note the leading comma in the construct (, 3) , which is of the form (Index, Base). This
indicates that no index register is being used, but that R3 is being used as a base register.

Here is another variant of the above code.

LA R3, DAT1 GET ADDRESS | NTO R3

LA R8, 4 VALUE 4 | NTO REG STER 8
LA R9, 8 VALUE 8 | NTO REG STER 9
L R5,0(,3) LOAD DAT1 I NTO R5

A R5,0(8,3) ADD DAT2, AT ADDRESS DAT1+4.
A R5,0(9,3) ADD DAT3, AT ADDRESS DAT1+8.

Page 290 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Explicit Base Addressing for Character I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 271 — 273].

Assume that general—purpose register 4 is being used as the base register, as assigned at
the beginning of the CSECT. Assume also that the following statements hold.

1. Generd purpose register 4 contains the value X' 8002’ .

2. Thelabel PRI NT represents an address represented in base/offset form as 401A; that
isitisat offset X 01A’" from the value stored in the base register, which is R4.
The addressthenis X' 8002’ + X' 01A’ =X 801C .

3. Given that the decimal number 60 is represented in hexadecimal as X' 3C'
the address PRI NT+60 must then be at offset X* 01A" + X' 3C =X' 56’ from
the addressin the baseregister. X' A' + X' C ,indecimal,is10+ 12=16+ 6.

Note that this gives the address of PRI NT+60 as X' 8002’ + X' 056’ = X' 8058’
whichisthesameas X' 801C' + X' 03C'. Thesum X' C + X' C' ,indecimdl, is
represented as 12 + 12 =24 =16 + 8.

4. Thelabel ASTERS is associated with an offset of X' 09F' from the valuein the
base register; thusit islocated at address X' 80A1’ . Thislabel references a storage
of two asterisks. Asadecimal value, the offset is 159.

5. That only two characters are to be moved by the MV C instruction examples to be
discussed. Since the length of the move destination is greater than 2, and since the
length of the destination is the default for the number of charactersto be moved, this
implies that the number of characters to be moved must be stated explicitly.

Thefirst example to be considered has the ssmplest appearance. It is asfollows:
MVC PRI NT+60(2) , ASTERS

The operands here are of theform Dest i nati on(Lengt h), Sour ce.
The destination is the address PRI NT+60. The length (number of characters
to move) is2. Thiswill be encoded in the length byteas X* 01’ , asthe length
byte stores one less than the length. The source is the address ASTERS.

Asthe MV C instruction is encoded with opcode X* D2’ , the object code hereis as follows:

Type | Bytes Operands 1 2 3 4 5 6
SS(1) 6 D1(L,B1),D2(B2) OP L [B;D,| DD, | B,D, | D:D,
D2 01 40 56 40 9F

The next few examples are given to remind the reader of other ways to encode
what is essentially the same instruction.

Page 291 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

These examples are based on the true nature of the source code for a MWC instruction, which
ismwC Di(L, B1), D2(B2). Inthisformat, we have the following.

1. Thedestination addressis given by displacement D1 from the address stored in
the base register indicated by B1.

2. The number of charactersto moveisdenoted by L.

3. Thesource addressis given by displacement D2 from the address stored in
the base register indicated by B2.

The second example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT+60 GET ADDRESS PRI NT+60 | NTO R8
MVC 0(2, 8), ASTERS MOVE THE CHARACTERS

Note the structure in the destination part of the source code, whichis0(2, 8) .

0(2,8)
Displac Ement T tB ase
Length
The displacement is 0 from the address X* 8058’ , which isstored in R8. The object codeis:
Type | Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | D:D,
D2 01 80 00 40 9F

The instruction could have been written as MWC 0(2, 8), 159(4) , asthelabel
ASTERS isfound at offset 159 (decimal) from the addressin register 4.

The third example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT GET ADDRESS PRI NT | NTO R8
MVC 60(2, 8), ASTERS SPECI FY A DI SPLACEMENT

Note the structure in the destination part of the source code, whichis60(2, 8) .

60(2,8)

+.

Displacement TtBase

Length
The displacement is 60 from the address X' 801C' , stored in R8. The object codeis:
Type Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | DD,

D2 01 80 3C 40 9F

Theinstruction could have been written as \WC 60(2, 8), 159(4) , asthe label
ASTERS Iisfound at offset 159 (decimal) from the addressin register 4.

Page 292 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Explicit Base Addressing for Packed Decimal I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 273 & 274].

Consider the following source code, taken from Abel. Thisisbased on aconversion of a
weight expressed in kilogramsto its equivalent in pounds; assuming 1kg. = 2.2 Ib. Physics
students will please ignore the fact that the kilogram measures mass and not weight.

ZAP POUNDS, KGS MOVE KGS TO POUNDS

MP POUNDS, FACTOR MJLTI PLY BY THE FACTOR
SRP POUNDS, 63, 5 ROUND TO ONE DECI MAL PLACE

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
PCUNDS DS PLS5 LENGTH 5 BYTES, AT ADDRESS KGS+5

The value produced is 12.53¢2.2 = 27.566, which is rounded to 27.57.

The instructions we want to examine in some detail are the MP and ZAP, each of which
isatype SSinstruction with source code format OP D1(L1, B1), D2(L2, B2) . Each of
the two operands in these instructions has a length specifier.

In the first example of the use of explicit base registers, we assign a base register to
represent the address of each of the arguments. The above code becomes the following:

LA R6, KGS ADDRESS OF LABEL KGS
LA R7, FACTOR ADDRESS
LA R8, POUNDS

ZAP 0(5, 8), 0(3, 6)
MP 0(5,8),0(2,7)
SRP 0(5, 8), 63,5

Each of the argumentsin the MP and ZAP have the following form:

0{5,8) 0(3,6) 02,7}
DﬂsetTtBase DHSJ;TLBE[SE DHSETIZTLB&SE
Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 0(5,8),0(3,6) Destination is at offset 0 fromthe address
stored in R8. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R6. The source has length 3 bytes.

MP 0(5,8),0(2,7) Destination is at offset 0 fromthe address
stored in R8. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R7. The source has length 2 bytes.

Page 293 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

But recall the order in which the labels are declared. The implicit assumption that the labels
are in consecutive memory locations will here be made explicit.

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
PCUNDS DS PLS5 LENGTH 5 BYTES, AT ADDRESS KGS+5

In this version of the code, we use the label KGS as the base address and reference all other
addresses by displacement from that one. Hereisthe code.

LA R6, KGS ADDRESS CF LABEL KGS

ZAP 5(5,6),0(3, 6)

MP 5(5,6), 3(2,6)

SRP 5(5,6), 63,5

Each of the argumentsin the MP and ZAP have the following form:

5(5,6) 0{3,6) 3(2,6)

+ + +
fosetTtBase fosetTtBase fosetTtBase

Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 5(5,6),0(3,6) Destination is at offset 5 fromthe address
stored in R6. The destination has Iength 5 bytes.

Source is at offset 0 fromthe address stored
in R6. The source has |ength 3 bytes.

MP 5(5,6),3(2,6) Destination is at offset 5 fromthe address
stored in R6. The destination has |length 5 bytes.

Source is at offset 3 fromthe address stored
in R6. The source has length 2 bytes.

In other words, the base/displacement 6000 refersto a displacement of O from the address
stored in register 6, which is being used as an explicit base register for this operation. As
the addressin R6 isthat of KGS, this value represents the address KGS. Thisis the object
code address generated in response to the source code fragment 0(3, 6) .

The base/displacement 6003 refers to a displacement of 3 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+3, which is the address FACTOR. Thisis
the object code address generated in response to the source code fragment 3(2, 6) .

The base/displacement 6005 refers to a displacement of 5 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+5, which is the address POUNDS. Thisis
the object code address generated in response to the source code fragment 5(5, 6) .

It isworth notice, even at this point, that the use of asingle register as the base from which to
reference a block of data declarations is quite suggestive of what is done with a DSECT, aso
called a“Dummy Section”.

Page 294 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Tablesand Arrays

In an early way of speaking, before the term “data structures’ became common, structured
datain a program might be organized in atable. According to [R_02, p 278] datatables
“contain a set of related data arranged so that each item can be referenced according to its
location inthetable. ... A static table contains defined data, such asincome tax steps....
A dynamic table consists of a series of adjacent blank or zero fields defined to store or
accumulate related data.”

We would call these structures “arrays’, with the static table corresponding to an array of
constant values and the dynamic table corresponding to aplain array. The main differencein
the table structure, other than the older terminology, is that the values stored in tables can be
composite values. One might consider these tables as equivalent to an array of records or an
array of structures. In each of tables and arrays, the elements are addressed using an offset
from the base address of the table or array.

Let’s now learn some of the older IBM terminology for tables.

SampleTable
Consider the following table, adapted from the [R_02, page 279].
* 123456789
MONTAB DC C 01',‘ JANUARY
DC C 02', ‘' FEBRUARY ’
DC C 09, ‘' SEPTEMBER
DC C 10’, ‘' OCTOBER
DC C 11’ ,‘ NOVEMBER ’
DC C 12’ , ‘' DECEMBER ’

In the terminology of the book, the first string (representing the month number) is called the
table argument. The month nameis called the table function.

Thetable isto be searched using a value that may match one of the table arguments.
Thisvalueis called the search argument.

While one might think of thisin terms of a database table, there is no requirement (other than
good coding practice) that the table arguments be unique. There are no keysto thistable.

Note that the following tableis exactly equivalent.

* 12345678901
MONTAB C 01JANUARY
C 02FEBRUARY '’

C' 09SEPTEMBER
C 100CTOBER
C 11NOVEMBER '’
C 12DECEMBER '’

Note also that every table entry has exactly the same length (11 characters).
Thisisrequired by the table search agorithm.

8888 88

Page 295 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Searching the Table by “Key Value”
Hereis afragment of code, written in a better style, that searches the above table.
The search argument, MONIN, is defined as two digits.

USI NG *, 4,5

LA 8, MONTAB Address of table in R8

L 9, =H 12’ Nunber of entries in table
Cl0LOOP CLC MONIN, 0(8) Conpare to tabl e argunent

BE C30EQUAL Have a match

BL C20NOTEQ Table is ordered; no hit.

AH 8, =H 11’ Mbve to next row

BCT 9, C10LOOP Decrenment counter, branch if > 0
C20NOTEQ Do sonet hi ng

BR C40DONE
C30EQUAL Do sonet hing el se.
C40DONE Commpn code here.

Note that the search argument is being compared to the two characters at the addresses
MONTAB, MONTAB + 11, MONTAB + 22, ..., etc. One of the interesting features of this
loop is the address of the second argument in the instruction at address CLOLOOP. The
addressis specified by 0(8) , which isadisplacement of 0 from the addressin R8.

Note that thisis a counted loop. It will search no more than twelve table entries. Thisisabit
unusua in that the index used to count the loop is not directly used to address the table; that
is done by explicitly adding 11 to the address in R8 for each loop.

Again, thislooping construct is alowed due only to the regular nature of the table;
all entries stored have the same length. In this case, the length is 11 bytes.

Ordered and Unordered Tables

Quite often, atable of the above form will be ordered by the table argument. The most
common order isthat the table entries are sorted in increasing order by table entry. Hereis
the approach to searching such atable. There are three possibilities for the comparison.

1. Thesearch argument isequal. The table function has been found and
can be used.

2. Thesearch argument is high. Continue the search unless thisisthe
last entry in the table.

3. Thesearch argument islow. Stop the search and take action appropriate
to the type of table. If it isatable with steps, return with the step number.

For unordered tables, the basic comparisons are restricted to Equal or Not Equal.

Aswe know, ordered tables can be searched using binary search. Thisvery efficient search
technique is discussed in the textbook.

Page 296 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Arrays, Tables, and Address Computation

Linked Lists
It is possible to use the table structure to implement alinked list. Every entry in the table
contains an additional field specifying the offset in the table of the next itemin thelist.

Hereis atable structured in the form of alinked list that is sorted by increasing part
number. The next offset isfound at the end of the list.

O f set Part No. Price Next O fset
0000 0103 12. 50 0036
0012 1720 08. 95 0024
0024 1827 03.75 0000
0036 0120 13. 80 0048
0048 0205 25.00 0012

There are many improvements in this structure that would lead to more flexibility and an
improved set of agorithms to accessthelist. We may consider some of these later; by
developing an insert and delete method, as well as a more modern create method.

Direct Table Addressing

Consider atable in which the table arguments are sequential and consecutive. One good
example would be the table of months, already discussed. In thistype of table, the table
argument isimplied by the entry position in the table. This could be written as:

MONTAB C JANUARY
C FEBRUARY '’

C SEPTEMBER
C OCTOBER '
C NOVEMBER '’
C DECEMBER '’

Entry K inthetableisat offset (K — 1)e9
Let us define the following terms.

8888 88

A(F) is the address of the required function (table entry).
A(T) is the address of the table.
SA is the numeric value of the search argument
with range 1 through table_length.
L isthe length (in bytes) of each function (table entry).

All table entries have the same length.
The equation of interest is
A(F)=A(T) + (SA - 1)eL

Thisisjust the access formulafor describing asingly dimensioned array in memory. Note
that this formula assumes that the base index has value 1, so that an array declared as A[10]
would have SA as an index value in the range 1 through 10 inclusive.

For an array that hasitsfirst index as 0, the equation would be A(F) = A(T) + SAeL .

Page 297 Chapter 15 Last revised July 13, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

