
Page 255 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Chapter 13: Handling Floating Point Data

This chapter presents a brief discussion of floating point data and arithmetic. There are a few
reasons to cover this topic, but none relate to the expectation that a programmer will actually
use this data format in an assembly language program.

The two primary reasons to cover floating point data and arithmetic are simple:
1) So that we can make a plausible claim of a complete coverage of assembler language.
2) So that the student will more fully appreciate some of the complexities (handled by

the run–time system of a HLL) of processing floating point data.

There is another reason for the study; this is one that is found in early texts on assembler
language. It used to be the case that an understanding of floating point format would allow
the programmer to write a High–Level–Language program that was considerably more
efficient. With modern compilers, this is rarely the case.

The first thing to note in this chapter is the difference between floating point data and fixed
point data. It is simple: in the first format the decimal point may be said to float in that it can
assume any position in the data. In the fixed point data, the decimal point is fixed at a
predefined position. The packed decimal format is a good example of a fixed–point format.

Consider the two packed decimal numbers defined as follows:
N1 DC P‘1234’ Stored as X‘01234C’
N2 DC P‘567’ Stored as X‘567C’

From the viewpoint of assembler language, each of these labels is simply a reference to data
in packed decimal format. There is more to the definition than what is stated above. One
must view each declaration in terms of a data type, which is a concept taken from a HLL. In
particular, the data are defined completely only if the number of decimal places is specified.

So, we must ask if the numbers represented by the labels N1 and N2 are of compatible data
type. Again, this cannot be determined from the simple definition. If both values are to be
interpreted with the same number of decimal points, the types are compatible.

Suppose that N1 represents the number 12.34.
Suppose that N2 represents the number 5.67.
The two definitions can be viewed as belonging to a single data type.

Suppose, however that N1 represents the number 1.234, while N2 represents 5.67. Then the
definitions belong to what might be called similar, but incompatible, data types. One of the
two must be modified by a SRP instruction before they are added, or the results will be silly.
One possible redefinition would be as follows:
N1A DC P‘1234’ Stored as X‘01234C’ for 1.234
N2A DC P‘5670’ Stored as X‘05670C’ for 5.670

In the above definition, each constant is defined with three implicit decimal places, and the
two can be said to be of a common data type. We must emphasize that the idea of a data type
is derived from the theory of high–level compiled languages and is somewhat foreign to
assembler language. However, it is very helpful in understanding fixed point arithmetic.



S/370 Assembler Floating Point Data

Page 256 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The basic idea of floating point arithmetic is the explicit storage of a representation of the
position of the decimal point in each data item. That way, the CPU can automatically adjust
the two to the same basic representation, if that is necessary. As we shall see, this adjustment
is required for addition and subtraction, but not multiplication and division.

Consider the above two numbers at labels N1 and N2. Suppose that these are to be
interpreted as 1.234 and 56.7 respectively. In floating–point notation, these would be
represented as 1.234100 and 5.67101, respectively.

Addition might proceed by converting these to 1.234100 and 56.7100, then adding to get
57.934100, which might be converted to either 5.7934101 or 5.793101. Multiplication will
proceed without adjusting either value: 1.234100  5.67101 = 6.99678101, which might be
rounded to 7.00101 , 6.997101 , or some other value.

As noted before, the floating point format has an advantage, which is simultaneously its
disadvantage. The advantage is that the format handles the position of the decimal point
explicitly. The disadvantage is that it might round and thereby lose precision.

At this point, the reader should review the material on floating point formats that is found in
Chapter 4 (Data Representation) of this textbook. The topics for review should be:

1. Conversion between decimal format and hexadecimal representations,
2. Excess–64 representation of integers,
3. normalized and denormalized floating point numbers, and
4. the IBM Mainframe floating point formats.

For the readers convenience, the last topic will be summarized below.

The IBM Mainframe Floating–Point Formats
In this discussion, we shall adopt the bit numbering scheme used in the IBM documentation,
with the leftmost (sign) bit being number 0. The IBM Mainframe supports three formats;
those representations with more bits can be seen to afford more precision.

Single precision 32 bits numbered 0 through 31,
Double precision 64 bits numbered 0 through 63, and
Extended precision 128 bits numbered 0 through 127.

As in the IEEE–754 standard, each floating point number in this standard is specified by
three fields: the sign bit, the exponent, and the fraction. Unlike the IEEE–754 standard, the
IBM standard allocates the same number of bits for the exponent of each of its formats. The
bit numbers for each of the fields are shown below.

Format Sign bit Bits for exponent Bits for fraction
Single precision 0 1 – 7 8 – 31
Double precision 0 1 – 7 8 – 63
Extended precision 0 1 – 7 8 – 127

Note that each of the three formats uses eight bits to represent the exponent, in what is called
the characteristic field, and the sign bit. These two fields together will be represented by
two hexadecimal digits in a one–byte field. The size of the fraction field does depend on the
format. Single precision 24 bits 6 hexadecimal digits,

Double precision 56 bits 14 hexadecimal digits, and
Extended precision 120 bits 30 hexadecimal digits.



S/370 Assembler Floating Point Data

Page 257 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Characteristic Field
In IBM terminology, the field used to store the representation of the exponent is called the
“characteristic”. This is a 7–bit field, used to store the exponent in excess–64 format; if the
exponent is E, then the value (E + 64) is stored as an unsigned 7–bit number.

Recalling that the range for integers stored in 7–bit unsigned format is 0  N  127, we have
0  (E + 64)  127, or –64  E  63.

Range for the Standard
We now consider the range and precision associated with the IBM floating point formats.
The reader should remember that the range is identical for all of the three formats; only the
precision differs. The range is usually specified as that for positive numbers, from a very
small positive number to a large positive number. There is an equivalent range for negative
numbers. Recall that 0 is not a positive number, so that it is not included in either range.

Given that the base of the exponent is 16, the range for these IBM formats is impressive. It is
from somewhat less than 16–64 to a bit less than 1663. Note that 1663 = (24)63 = 2252, and
16–64 = (24)–64 = 2–256 = 1.0 / (2256) and recall that log10(2) = 0.30103. Using this, we compute
the maximum number storable at about (100.30103)252 = 1075.86  91075. We may approximate
the smallest positive number at 1.0 / (361075) or about 3.010–77. In summary, the following
real numbers can be represented in this standard: X = 0.0 and 3.010–77 < X < 91075.

One would not expect numbers outside of this range to appear in any realistic calculation.

Precision for the Standard
Unlike the range, which depends weakly on the format, the precision is very dependent on
the format used. More specifically, the precision is a direct function of the number of bits
used for the fraction. If the fraction uses F bits, the precision is 1 part in 2F.

We can summarize the precision for each format as follows.
Single precision F = 24 1 part in 224.
Double precision F = 56 1 part in 256.
Extended precision F = 120 1 part in 2120.

The first power of 2 is easily computed; we use logarithms to approximate the others.
224 = 16,777,216
256  (100.30103)56 = 1016.85  91016.
2120  (100.30103)120 = 1036.12  1.21036.

The argument for precision is quite simple. Consider the single precision format, which is
more precise than 1 part in 10,000,000 and less precise than 1 part in 100,000,000. In other
words it is better than 1 part in 107, but not as good as 1 in 108; hence we say 7 digits.

Range and Precision
We now summarize the range and precision for the three IBM Mainframe formats.

Format Type Positive Range Precision
Single Precision E 3.010–77 < X < 91075 7 digits

Double Precision D 3.010–77 < X < 91075 16 digits

Extended Precision L 3.010–77 < X < 91075 36 digits



S/370 Assembler Floating Point Data

Page 258 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Representation of Floating Point Numbers
As with the case of integers, we shall most commonly use hexadecimal notation to represent
the values of floating–point numbers stored in the memory. From this point, we shall focus
on the two more commonly used formats: Single Precision and Double Precision.

The single precision format uses a 32–bit number, represented by 8 hexadecimal digits.
The double precision format uses a 64–bit number, represented by 16 hexadecimal digits.

Due to the fact that the two formats use the same field length for the characteristic,
conversion between the two is quite simple. To convert a single precision value to a double
precision value, just add eight hexadecimal zeroes.

Consider the positive number 128.0.
As a single precision number, the value is stored as 4280 0000.
As a double precision number, the value is stored as 4280 0000 0000 0000.

Conversions from double precision to single precision format will involve some rounding.
For example, consider the representation of the positive decimal number 123.45. In a few
pages, we shall show that it is represented as follows.

As a double precision number, the value is stored as 427B 7333 3333 3333.
As a single precision number, the value is stored as 427B 7333.

The Sign Bit and Characteristic Field
We now discuss the first two hexadecimal digits in the representation of a floating–point
number in these two IBM formats. In IBM nomenclature, the bits are allocated as follows.

Bit 0 the sign bit
Bits 1 – 7 the seven–bit number storing the characteristic.

Bit Number 0 1 2 3 4 5 6 7
Hex digit 0 1
Use Sign bit Characteristic (Exponent + 64)

Consider the four bits that comprise hexadecimal digit 0. The sign bit in the floating–point
representation is the “8 bit” in that hexadecimal digit. This leads to a simple rule.

If the number is not negative, bit 0 is 0, and hex digit 0 is one of 0, 1, 2, 3, 4, 5, 6, or 7.
If the number is negative, bit 0 is 1, and hex digit 0 is one of 8, 9, A, B, C, D, E, or F.

Some Single Precision Examples
We now examine a number of examples, using the IBM single–precision floating–point
format. The reader will note that the methods for conversion from decimal to hexadecimal
formats are somewhat informal, and should check previous notes for a more formal method.
Note that the first step in each conversion is to represent the magnitude of the number in the
required form X16E, after which we determine the sign and build the first two hex digits.

Example 1: True 0
The number 0.0, called “true 0” by IBM, is stored as all zeroes [R_15, page 41].
In single precision it would be 0000 0000.
In double precision it would be 0000 0000 0000 0000.



S/370 Assembler Floating Point Data

Page 259 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Example 2: Positive exponent and positive fraction.
The decimal number is 128.50. The format demands a representation in the form X16E,
with 0.625  X < 1.0. As 128  X < 256, the number is converted to the form X162.
Note that 128 = (1/2)162 = (8/16)162 , and 0.5 = (1/512)162 = (8/4096)162.
Hence, the value is 128.50 = (8/16 + 0/256 + 8/4096)162; it is 1620x0.808.

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010. The first
two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 1 0
Hex value 4 2

The fractional part comprises six hexadecimal digits, the first three of which are 808.
The number 128.50 is represented as 4280 8000.

Example 3: Positive exponent and negative fraction.
The decimal number is the negative number –128.50. At this point, we would normally
convert the magnitude of the number to hexadecimal representation. This number has the
same magnitude as the previous example, so we just copy the answer; it is 1620x0.808.

We now build the first two hexadecimal digits, noting that the sign bit is 1.

Field Sign Characteristic
Value 1 1 0 0 0 0 1 0
Hex value C 2

The number 128.50 is represented as C280 8000.
Note that we could have obtained this value just by adding 8 to the first hex digit.

Example 4: Negative exponent and positive fraction.
The decimal number is 0.375. As a fraction, this is 3/8 = 6/16. Put another way, it is
1600.375 = 160(6/16). This is in the required format X16E, with 0.625  X < 1.0.

The exponent value is 0, so the characteristic value is either 64 or 0x40 = 100 0000. The first
two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 0 0
Hex value 4 0

The fractional part comprises six hexadecimal digits, the first of which is a 6.
The number 0.375 is represented in single precision as 4060 0000.
The number 0.375 is represented in double precision as 4060 0000 0000 0000.



S/370 Assembler Floating Point Data

Page 260 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Example 5: A Full Conversion
The number to be converted is 123.45. As we have hinted, this is a non–terminator.

Convert the integer part.
123 / 16 = 7 with remainder 11 this is hexadecimal digit B.

7 / 16 = 0 with remainder 7 this is hexadecimal digit 7.
Reading bottom to top, the integer part converts as 0x7B.

Convert the fractional part.

0.45  16 = 7.20 Extract the 7,

0.20  16 = 3.20 Extract the 3,

0.20  16 = 3.20 Extract the 3,

0.20  16 = 3.20 Extract the 3, and so on.

In the standard format, this number is 1620x0.7B33333333…...

The exponent value is 2, so the characteristic value is either 66 or 0x42 = 100 0010. The first
two hexadecimal digits in the eight digit representation are formed as follows.

Field Sign Characteristic
Value 0 1 0 0 0 0 1 0
Hex value 4 2

The number 123.45 is represented in single precision as 427B 3333.
The number 0.375 is represented in double precision as 427B 3333 3333 3333.

Example 5: One in “Reverse”
We are given the single precision representation of the number. It is 4110 0000.
What is the value of the number stored? We begin by examination of the first two hex digits.

Field Sign Characteristic
Value 0 1 0 0 0 0 0 1
Hex value 4 1

The sign bit is 0, so the number is positive. The characteristic is 0x41, so the exponent is

1 and the value may be represented by X161. The fraction field is 100 000, so the value is

161(1/16) = 1.0.

Example 6: Another in “Reverse”
We are given the single precision representation of the number. It is BEC8 0000.
What is the value of the number stored? We begin by examination of the first two hex digits.

Field Sign Characteristic
Value 1 0 1 1 1 1 1 0
Hex value B E

The characteristic has value 0x3E or decimal 316 + 14 = 62. The exponent has value
62 – 64 = –2. The number is then 16-20x0.C8 = 16-2(12/16 + 8/256), which can be
converted to decimal in any number of ways. I prefer the following conversion.
16-2(12/16 + 8/256) = 16-2(3/4 + 1/32) = 16-2(24/32 + 1/32) = 16-2(25/32)

= 25 / (32256) = 25 / 8192  3.051757810–3.
The answer is approximately the negative number –3.051757810–3.



S/370 Assembler Floating Point Data

Page 261 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Why Excess–64 Notation for the Exponent?
We have introduced two methods to be used for storing signed integers: two’s–complement
notation and excess–64 notation. One might well ask why two’s-complement notation is not
used to store the exponent in the characteristic field.

The answer for integer notation is simple. Consider some of examples.
128.50 is represented as 4280 8000. Viewed as a 32–bit integer, this is positive.
–128.50 is represented as C280 8000. Viewed as a 32–bit integer, this is negative.

1.00 is represented as 4110 0000. Viewed as a 32–bit integer, this is positive.

–3.0510–3 is represented as BEC8 0000. Viewed as a 32–bit integer, this is negative

It turns out that the excess–64 notation allows the use of the integer compare unit to compare
floating point numbers. Consider two floating point numbers X and Y. Pretend that they are
integers and compare their bit patterns as integer bit patterns. It viewed as an integer, X is
less than Y, then the floating point number X is less than the floating point Y. Note that we
are not converting the numbers to integer form, just looking at the bit patterns and pretending
that they are integers. For example, the above examples would yield the following order.

4280 8000 for 128.50. This is the largest.
4110 0000 for 1.00.

BEC8 0000 for –3.0510–3.
C280 8000 for –128.50. This is the most smallest (most negative).

Examples of Floating–Point Declaratives
Floating point storage and constants are defined with the standard DS and DC declaratives.
There are three possible formats: E (Single Precision), D (Double Precision) and
L (Extended Precision). Standard programs use the E (Single Precision) format, with
occasional use of the D (Double Precision) format. The L format is probably unusual.

Here are some examples of floating–point declaratives.

FL1 DS E This defines a 4–byte storage area, aligned
on a fullword boundary. Presumably, it
will store Single Precision Data.

DL1 DS D An 8-byte storage area, aligned on a double
word boundary. It could store data in
Double Precision format.

FL2 DS E‘12.34’ Define a single precision value.
FL3 DS E‘-12.34’ The negative of the above value.
DL2 DS D‘0.0’ The constant 0.0, in double precision.

The reader may recall that we have used statements, such as the DL1 declarative, to reserve
an 8–byte storage area aligned on a double–word boundary, for use in the CVB and CVD
instructions associated with packed decimal arithmetic. This emphasizes the fact that the
declaratives do not really determine a data type, but just set aside storage. In assembler
language, it is the instructions that determine the data type.



S/370 Assembler Floating Point Data

Page 262 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Before proceeding, we must give a disclaimer. There are a few features of floating–point
arithmetic, such as the exponent modifier and scale modifier, that will not be covered in this
discussion. This discussion will also be limited to normalized floating–point numbers and
totally ignore the unnormalized instructions which handle data not in normalized format.

The Floating–Point Registers
In addition to the sixteen general–purpose registers (used for binary integer arithmetic), the
S/360 architecture provides four registers dedicated for floating–point arithmetic. These
registers are numbered 0, 2, 4, and 6(*). Each is a 64–bit register. It is possible that the use
of even numbers to denote these registers is to emphasize that they are not 32–bit registers.

The use of the registers by the floating–point operations depends on the precision.
Single precision formats use the leftmost 32 bits of a floating–point register.
Double precision formats use all 64 bits of the register.
Extended precision formats use two adjacent registers for a 128 bit number.

In order to understand why it is the leftmost 32 bits of the register that are used for the
32–bit single precision floating–point format, we must consider what is involved in
extending the single precision format to a double precision format.

Consider the single–precision constant 123.45, which would be represented by the
32–bit (8 hexadecimal digit) constant 427B 3333. Were this to be extended to double
precision, it would be stored as the 64–bit constant 427B 3333 0000 0000. In other
words, each floating point register stores a value as if it were a double–precision value; the
single–precision values being stored as values with limited precision.

As we saw above, a conversion of 123.45 directly to the double–precision floating–point
format would yield the value 427B 3333 3333 3333, rather than the truncated value
427B 3333 0000 0000 seen above. Put another way, single–precision values stored as
double precision are not as precise as true double–precision constants.

To make this point completely obvious, suppose that a 64–bit floating–point register contains
the following value, expressed as 16 hexadecimal digits.

Byte 0 1 2 3 4 5 6 7

Value 42 7B 33 33 33 33 33 33

An E format (Single Precision) floating–point reference to this register would access only the
leftmost four bytes and use the value 427B 3333. A D format (Double Precision) floating–
point reference would access all eight bytes and use the value 427B 3333 3333 3333.
Each reference should correspond to the decimal value 123.45, just with different precision.

As a side note, some early versions of FORTRAN might print the above number at
something like 123.449999, due to the fact that 123.45 cannot be represented exactly as a
floating–point number. The FORMAT statement provided by the FORTRAN run–time
system was modified to round this value to 123.45.

* Modern System/z architecture supports 16 floating–point registers, numbered 0 – 15. The
additional registers (1, 3, 5, and 7 – 15) are useable if the AFPR option has been selected in
the ACONTROL instruction for the code. [R-17, page 100]



S/370 Assembler Floating Point Data

Page 263 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Floating–Point Instructions
The floating–point instruction set is less extensive than the binary integer instruction set, but
bears some similarities. The instructions are in two formats: RR (Register to Register) and
RX (Register and Indexed Storage). Obviously the register reference in these instructions are
the floating–point registers. The mnemonics for the instructions are structured into three
parts: a one or two character code for the operation, followed by a character indicating the
precision, then either a blank for type RX or an ‘R’ for type RR.

The Load Instructions
The load instructions load a 64–bit floating point register from either storage or another
floating–point register. The valid register numbers are 0, 2, 4, or 6.

LE R1,D2(X2,B2) Load R1 single precision from memory
Operand 2 is an aligned fullword;
its address is a multiple of 4.

LD R1,D2(X2,B2) Load R1 double precision from memory
Operand 2 is an aligned double word;
its address is a multiple of 8.

LER R1,R2 Load the leftmost 32 bits of R1
from the leftmost 32 bits of R2.

LDR R1,R2 Load the 64-bit register R1 from
the 64-bit register R2.

Neither LE or LER change the rightmost 32 bits of the target floating–point register.

The opcodes for the two type RR instructions are as follows:
LER X‘38’ LDR X‘28’

The object code format for these type RR instructions follows the standard. Each is a
two–byte instruction of the form OP R1,R2.

Type Bytes Operands
RR 2 R1,R2 OP R1 R2

The first byte contains the 8–bit instruction code.
The second byte contains two 4–bit fields, each of which encodes a register number.
This instruction format is used to process data between registers.

The opcodes for the two type RX instructions are as follows:
LE X‘78’ LD X‘68’

Each is a four–byte instruction of the form OP R1,D2(X2,B2).

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code. The second byte contains two 4–bit fields,
each of which encodes a register number. The third and fourth bytes contain an address in
the standard base/displacement with index register format. The load instructions do not set
any condition code.



S/370 Assembler Floating Point Data

Page 264 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Store Instructions
There are two store instructions for storing either the leftmost 32 bits or all 64 bits
of the 64 bit floating–point registers. Again, the valid register numbers are 0, 2, 4, or 6.

STE R1,D2(X2,B2) Store the 32 leftmost bits of register R1
as a single precision result into the
aligned fullword address.

STD R1,D2(X2,B2) Store the 64 bits of register R1 as a
double precision result into the aligned
double word address.

The opcodes for these two instructions are as follows:
STE X‘70’ STD X‘60’.

Each is a four–byte instruction of the form OP R1,D2(X2,B2).

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code. The second byte contains two 4–bit fields,
each of which encodes a register number. The third and fourth bytes contain an address in
the standard base/displacement with index register format.

The rules for forming the address of operand 2 in each of the above instructions follow
the standard for type RX instructions. Again, the only new feature is that the address of the
operand must be properly aligned. In practice that means using the proper declarative for
specifying the storage.

Single precision Use DS E or DC E, to insure that the address is a multiple of 4.

Double precision Use DS D or DC D, to insure that the address is a multiple of 8.

Sample Code
LOAD1 LE 0,FL1 LOAD FP REG 0 FROM ADDRESS FL1
LOAD2 LD 2,FL2 LOAD DOUBLE PRECISION
LOAD3 LER 4,0 COPY SINGLE PRECISION INTO FP REG 4
LOAD4 LDR 6,2 COPY DOUBLE PRECISION INTO FP REG 6
STORE1 STE 6,FL3 STORE THE SINGLE PRECISION INTO FL3
STORE2 STD 6,FL4 STORE DOUBLE PRECISION INTO FL4

FL1 DC E‘123.45’ A SINGLE PRECISION FLOATING POINT
CONSTANT. ADDRESS IS A MULTIPLE OF 4.

FL2 DC D‘45678.90’ A DOUBLE PRECISION FLOATING POINT
CONSTANT. ADDRESS IS A MULTIPLE OF 8.

FL3 DS E JUST RESERVE AN ALIGNED FULLWORD
FL4 DS D RESERVE AN ALIGNED DOUBLE WORD.

Note that the contents of register 6 are first stored as a single precision result, then
as a double precision result.



S/370 Assembler Floating Point Data

Page 265 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Addition and Subtraction
There are four distinct addition instructions and four distinct subtraction instructions for
normalized floating–point numbers. These instructions are as follows:

Mnemonic Operation Opcode Operand Format
AE Add single precision 7A R1,D2(X2,B2)
AD Add double precision 6A R1,D2(X2,B2)

AER Add register single precision 3A R1,R2
ADR Add register double precision 2A R1,R2
SE Subtract single precision 7B R1,D2(X2,B2)
SD Subtract double precision 6B R1,D2(X2,B2)

SER Subtract register single precision 3B R1,R2
SDR Subtract register double precision 2B R1,R2

Subtraction functions by changing the sign of the second operand and then performing an
addition. The first step in each is ensuring that the characteristics of both operands are equal.
If unequal, the field with the smaller characteristic is adjusted by shifting the fraction to the
right and incrementing the characteristic by 1 until the characteristics are equal.

Each of these operations sets the proper condition code for conditional branching.

Recall that the standard floating point format is as follows:

Leftmost 8 bits Other bits
Sign bit 7–bit characteristic The fraction

Here is an example of adjusting the characteristic.

Characteristic Fraction
41 29000 = 41 29000
40 12000 = 41 01200

41 2A200

Suppose that the fraction overflows. If that happens, the fraction is shifted right by one
hexadecimal digit and the characteristic is incremented by 1. This last operation is called
normalization, in that it returns the result to the expected normal form.

Characteristic Fraction
41 940000
41 760000
41 10A0000 which becomes 42 010A000.

Normalized addition and subtraction perform post–normalization; that is, they normalize the
result after the operation. This is seen in the example above. Precision is maintained by use
of a guard digit, which saves the last digit shifted during normalization prior to addition or
subtraction. This digit may be restored during post–normalization. Here is an example.

Characteristic Fraction
42 0B2584 = 42 0B2584
40 114256 = 42 001142(5) 5 is the guard digit.

42 0B36C6(5)
Normalize the result 41 B36C65.



S/370 Assembler Floating Point Data

Page 266 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Here are some examples of the operation, which appear exactly as expected.

* SINGLE PRECISION FLOATING POINT ADDITION
*
ADDSNG LE 2,FL1 LOAD THE REGISTER

AE 2,FL2 ADD SINGLE PRECISION
LE 4,FL3 LOAD ANOTHER REGISTER
AER 4,2 REGISTER 4 IS CHANGED

*
* SINGLE PRECISION FLOATING POINT SUBTRACTION
*
SUBSNG LE 2,FL1 LOAD THE REGISTER

SE 2,FL2 SUBTRACT FROM THE VALUE IN REG 2
LE 4,FL3 LOAD ANOTHER REGISTER
SER 4,2 SUBTRACT REG 2 FROM REG 4,

CHANGING THE VALUE IN REGISTER 4
*
* DOUBLE PRECISION FLOATING POINT ADDITION
*
ADDDBL LD 2,FL1 LOAD THE REGISTER

AD 2,FL2 ADD DOUBLE PRECISION
LD 4,FL3 LOAD ANOTHER REGISTER
ADR 4,2 REGISTER 4 IS CHANGED

*
* DOUBLE PRECISION FLOATING POINT SUBTRACTION
*
SUBBDL LD 2,FL1 LOAD THE REGISTER

SD 2,FL2 SUBTRACT FROM THE VALUE
LD 4,FL3 LOAD ANOTHER REGISTER
SDR 4,2 REGISTER 4 IS CHANGED

*
* A FEW MIXED OPERATIONS
*
MIXED LD 2,FL1 DOUBLE PRECISION LOAD

AE 2,FL2 SINGLE PRECISION ADDITION
SE 2,FL3 SINGLE PRECISION SUBTRACTION
STD 2,FL1 STORE AS DOUBLE PRECISION, THOUGH THE

RESULT IS NOT QUITE THAT PRECISE
*
FL1 DC D ‘123.4’
FL2 DC D ‘10.0’
FL3 DC D ‘150000.0’

Consider the “mixed precision” operations in which both single precision and double
precision floating point numbers are used. The result is certainly less precise than a true
double precision result, though possibly a bit more precise than a single precision one. This
last claim of precision greater than single would be difficult to justify.



S/370 Assembler Floating Point Data

Page 267 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Multiplication
There are four distinct floating–point multiplication operations.

Mnemonic Action Opcode Operands
ME Multiply single precision 7C R1,D2(X2,B2)
MD Multiply double precision 6C R1,D2(X2,B2)

MER Multiply single (register) 3C R1,R2
MDR Multiply double (register) 2C R1,R2

In each, the first operand specifies a register that stores the multiplicand and,
after the multiplication, stores the product.

The operation normalizes the product, which in all cases is a double–precision result.

Division
There are four distinct floating–point division operations.

Mnemonic Action Opcode Operands
DE Divide single precision 7D R1,D2(X2,B2)
DD Divide double precision 6D R1,D2(X2,B2)

DER Divide single (register) 3D R1,R2
DDR Divide double (register) 2D R1,R2

In each, the first operand specifies a register that stores the dividend and,
after the division, stores the quotient. There is no remainder.

The operation normalizes the quotient, which in all cases is a double–precision result.

A divisor containing a zero fraction causes a program interrupt. Recall that the two parts of
any number in IBM floating point format are the characteristic and the fraction. The
characteristic is held in the leftmost byte of the format and represents the sign and exponent.
The fraction is held in the rest of the format: for single precision this is the 24 rightmost bits,
and for double precision this is the 56 rightmost bits.

Comparison
There are four distinct floating–point division comparison operations.

Mnemonic Action Opcode Operands
CE Compare single precision 79 R1,D2(X2,B2)
CD Compare double precision 69 R1,D2(X2,B2)

CER Compare single (register) 39 R1,R2
CDR Compare double (register) 29 R1,R2

In each, the comparison sets the condition codes as would be expected for comparisons in the
other formats. Each operation proceeds as a modified subtraction. The characteristic fields
of the two operands are checked, and the smaller exponent is incremented while right shifting
its fraction (denormalizing the number, but preserving its value) before the comparison.

If both operands have fractions that are zero (all bits in the field are 0), the result is
declared to be equal without consideration of either the exponent or the sign.

The single precision operations compare only the leftmost 32 bits in each value.



S/370 Assembler Floating Point Data

Page 268 Chapter 13 Last revised August 2, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Conversions To and From Floating Point
We now briefly discuss conversion of data between the three main forms that we have
discussed at this time: two’s–complement integer, packed decimal, and floating point. We
begin by considerations related to conversion to and from integer data.

Recall that all floating point formats store data in the form 16EF, where F is a fraction not
less than 1/16 = 0.625 and less than 1.0. Of particular interest here are the values 161 = 16,
and 168 = (24)8 = 232 = 4,294,967,296.

Recall that a 32–bit two’s–complement format can represent integers in a specific range with
the most negative value being –2,147,483,648 and the most positive being 2,147,483,647. In
terms of powers of 2, this range is from –(231) to (231 – 1). We see that 231 = 1681/2.

Consider non–zero integers. The range consistent with the fullword format is as follows.
The smallest magnitude is 1 = 161(1/16); the exponent is 1, stored as 65 = X‘41’.

The largest magnitude is 231 = 1681/2; the exponent is 8, stored as 72 = X‘48’.

Immediately, we see that positive floating point numbers with characteristic fields at least
X‘41’ but not greater than X‘48’ can be converted to integer form. If the characteristic
field is less than X‘41’, the floating–point value will be come an integer 0. If the
characteristic field is greater than X‘48’, the value is too large to be represented.

The primary difficulty with conversions between packed decimal format and floating–point
format is the fact that the position of the decimal point in packed format is not specified.
This difficulty presents itself in different forms, depending on the exact operation.

In translation from packed decimal to floating–point, the position of the decimal point must
be explicitly specified in order to correctly set the exponent.

In translation from floating–point to packed decimal, the computations can be done almost
exactly, but there is no place to store a value representing the position of the decimal point.

We shall explore these conversions again after we have developed a few more tools that can
be used in scanning an array of digits or an array of bytes.

Input and Output of Floating Point Values
At this point in the chapter, the reader should be aware of a glaring omission. There has been
no discussion of conversion from EBCDIC format to any of the floating–point formats or
conversions from those formats back to EBCDIC. In other words, there has been no mention
of methods to write assembly language programs either to read floating point data or to print
those data in some readable format.

The plain fact is that floating–point I/O is not mentioned in any standard source, either the
textbooks [R_02, R_05, R_07, or R_18] or in any of the IBM manuals for the S/370 and
successor systems [R_15, R_16, R_17, R_19, R_20, R_21, R_22, or R_23]. A request to
IBM for any information yielded only a copy of the z/Series Principles of Operation [R_16].

It is likely the case that nobody writes complete floating–point oriented programs in IBM
Assembler Language and has not for quite a few years. If your author finds any additional
information, it will be shared in the next revision of this textbook.


