Chapter 12: Handling Binary Integer Data

This chapter covers binary data, which refersto integer data that are stored in the form of
two’ s—complement numbers of either 2 bytes (16 bits) or 4 bytes (32 bits). Later versions of
the IBM mainframe, certainly the zSeries, also include 8 byte (64 bit) integers.

Whileit istruethat all datain a stored—program computer are stored in binary form, it isthe
interpretation of those data by the CPU that determines the format to be used. Consider the
following ambiguous declaration.

DATA DC X 81 6C
If thisfield is processed as a character string, say using MVC, it will be interpreted as the two

printable characters “a%”. If thefield is processed as a packed decimal, say using ZAP, it
will be interpreted as the three—digit positive number with value equal to +816.

Thisfield contains four hexadecimal digits, or 16-bits. It can be viewed as a 16-hit signed
integer in two’' s—complement format. A bit of reflection will show that, interpreted in this
format, the field represents a negative number. We now convert it to the decimal value.

ThevalueitselfisX* 81 6C or binary 1000 0001 0110 1100.

Take the one’s complement to get 0111 1110 1001 0011.
Add oneto get 0111 1110 1001 0100.
Convert this back to hexadecimal X 7E 94’ .

The decimal value for the last is 32,404. The datafield, interpreted as an 8-bit integer
stored in two’ s—-complement form is an integer with the negative value —32,404.

The two standard binary formats are as follows.
F Thefullword format isa 32-bit integer, requiring four bytes of storage.
H Thehafword format is a 16-bit integer, requiring two bytes of storage.

The ranges are what would be expected for standard two’ s—complement arithmetic.

Type Bits Minimum Maximum Minimum Maximum
Half-word 16 -(2®) (%) -1 -32,768 32,767
Full-word 32 (2% (2*-1 2147483648 2,147,483,647

Those of ustrained on computers other than IBM mainframes will unconsciously equate
integer data with one of the standard two’ s-complement formats. The 16-bit and 32—bit
forms were rather popular when the System/360 was first designed. These two formats
were continued into the System/370 and later models. As noted above, newer models
include a 64-hit integer format.

Those programmers trained primarily on IBM mainframes might consider the packed
decimal format as an equally good way to handle integers. Recall that the packed format can
handle integers of lengths up to 31 digits, as opposed to the 11 digit maximum on the 32-bit
two’ s—=complement format. In thisview, binary arithmetic is done only in the registers and
usually is applied only for address computations. Y our author’s opinion is that each integer
representation has its strengths; pay your money and take your choice.

Page 220 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Declaring Binary Storage
There are many ways to declare binary storage. The four most useful are

1. B Ordinary binary,

2. F Full-word (32-bit binary two’ s-complement integer),

3. H Half-word (16-bit) binary two’ s—complement integer), and
4. X Hexadecimal.

Each of the B and X declarations may declare a storage area with length from 1 through 256
bytes. The lengths of the F and H declarations are fixed at 4 and 2 bytes respectively.
Apparently, it is possible to assign alength in bytesto either type, but thisis strange.

Note that the two declarations below have an identical effect. Each defines a 32-bit binary
integer with value equal to 14,336 in decimal.

F1 DC F* 14336’ DEFAULT SIZE IS FOUR BYTES.

X1 DC XL4' 00003800 S| ZE SPEC FI ED AS FOUR BYTES.
While the second declaration is unusual for afull-word, it makes some examples easier.
More On DC (Define Constant)

The general format of the DC statement is as follows.

Name DC dTLn ‘ constant’

The nameis an optional entry, but required if the program isto refer to the field by name.
The standard column positions apply here.

The declarative, DC, comes next in its standard position.
Theentry “dTLn” isread as follows.
d isthe optional duplication factor. If not specified, it defaultsto 1.

T istherequired type specification. Thetypesfor binary are B, F, H, and X.
Note that the data actually stored at the location does not need to be
of thistype, but it isagood ideato restrict it to that type.

L isanoptiona length of the datafield in bytes.

The ‘constant’ entry isrequired and is used to specify avalue. If thelength attributeis
omitted, the length is specified implicitly by thisentry. Again, itisrarely desirable
to specify alength for the F and H data types.

Alignment and Value Ranges

Remember that the System/360 is a byte—addressable machine. The type F declares afull-
word, which is afour-byte field aligned on a full-word boundary; i.e., itsaddressis a
multiple of four. Thetype H declares a haf-word, which is atwo-byte field aligned on a
half-word boundary; i.e., its address is a multiple of two.

If the value declared in either atype F or type H constant is greater than that
allowed by the data type, the assembler merely truncates the leftmost digits.

Page 221 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Consider the following example
BAD DC H 73728 | N HEXADECI MAL, X' 12000’

Thisistruncated to avalue of 8,192, which is X*2000’. Theleading 1 is dropped
from the hexadecimal representation, because only the last four digitsfit into the
half-word storage allocation; 4 hexadecimal digits = 2 bytes = 1 half-word.

Sequential Memory
Consider the following two declarations which are sequential. Each is a half-word,
which is declared using the hexadecimal construct to make the example clear.

H1 DC XL2* 0102’ DECI MAL 258
H2 DC XL2* 0304’ DECI MAL 772 At address H1+2

The half-word value stored at address H1 is hexadecimal 0102 or decimal 258.
The full-word value stored at address H1 is hexadecimal 01020304, or
16, 909, 060 indecima. Thisfact can present problems for the incautious coder.

To load the value of the half-word at address H1 into aregister, one uses the Load
Half-word instruction; e.g., LH R4, H1. Register R4 gets 258. But if | accidentally write a
full-word load instruction, asinL R4, H1, then register R4 will get the decimal value

16, 909, 060. Thisisdueto the fact that the four bytes beginning at address H1 have the
value X' 0102 0304’ . Thefact that H1 and H2 are defined separately matters not at all.

Similarly, suppose | declare a full-word as follows.

F1 DC XL4 ‘11121314 DECI MAL 17, 899, 828

If the code saysLH R4, F1, then F1 gets hexadecimal X‘1112" or decimal 4370.
Binary Constants and Hexadecimal Constants

The type B declaration uses binary numbers (0 or 1) to define a string of bits. The type X
declaration uses hexadecimal digits to define what is aso just astring of bits.

Consider the following pairs of declarations.

Bl DC B 10101110°

X1 DC XL1" AE’ READ AS 1010 1110

B2 DC B 0001001000010011’

X2 DC XL2 1213 READ AS 0001 0010 0001 0011

B1 and X1 each declare the same bit pattern.
B2 and X2 each declare the same bit pattern.

Personally, | find the hexadecimal constants much easier to read, and would suggest not
using the B declaration. The most common use for the binary declaration would be to set bit
patterns to be sent to registers that control Input/Output devices. In standard programming,
we do not have access to those registers on a System/360 or later mainframe..

Page 222 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Input and Output of Binary Data
All data areinput originally as EBCDIC characters.

All data printed must be output as EBCDIC characters.

The standard input process for binary datais atwo-step one, in which the character
data arefirst packed to form decimal data and then converted to binary.

The standard process to output binary datafrom aregister is also atwo-step one.
First convert the binary to decimal data and then use unpack or the edit instruction
to produce the printable EBCDIC characters.

Input Output

EBCDIC PACK—UNPK ED

Packed

Decimal -
CVEB CVD

Binary T

-

Values stored in registers

Conversion between Packed Decimal and Binary
These two conversion instructions are each atype RX instruction.

CVB (Convert to Binary) converts packed decimal datafrom storage into binary formina
general—purpose register. Thisisatype RX instruction with opcode X 4F .

CVD (Convert to Decimal) converts binary datain a general—purpose register into packed
decimal formin storage. Thisisatype RX instruction with opcode X' 4E’ .

Theformat of eachisOP R1, D2(X2, B2) .
Template for the instructions: CVB Regi ster, Storage_Locati on
CVD Regi ster, Storage_Locati on

For the CVB instruction, the Storage Location contains the packed decimal value that
isto be converted to binary and placed in the register.

For the CVD instruction, the Storage Location is the field that will receive the packed
decimal vaue resulting from the conversion of the value in the register.

It is standard practice to use the floating point data type D (double word) to
declare the storage location.

Page 223 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Why A Floating Point Type Here?

The D data type declares a double precision floating point value, which occupies eight bytes
(64 bits) and is automatically aligned on a double-word boundary. In other words, its
addressisamultiple of 8. The true requirement for the operand is that it be exactly eight
bytes long and begin on a double-word boundary. The D declaration fills the bill.

Consider the following code, which is rather standard.

CvVB R6,D1

D1 DS D DOUBLE WORD OR 8 BYTES
One might also write the following, if oneis careful.

CVB R6, D2

D2 DS PL8 El GHT BYTES FOR UP TO 15 DIA TS

The difficulty hereisinsuring that D2 is properly aligned on a double—word boundary.
While this can be done, it is less error—prone to use the D type and have the assembler
automatically do the alignment for you.

Example and Comments

How many digitsdo | really need? The biggest value storable as a 32-bit binary number is
2,147,483,647. Thisnumber has 10 digits, which will be converted to 11 digits for storagein
Packed Decimal format. A 4-byte full-word will store only seven digits. It takes a six—byte
packed decimal field to store 11 digits. Thereisno data size that automatically takes 6 bytes
and no provision for aligning an address on amultiple of six. The obvious choice for the
packed decimal intermediary form is storage as a double-word.

I nput example
ZAP D1, AMTPACK TRANSFER TO THE DOUBLE WORD
CVB R5,D1 CONVERT TO Bl NARY
D1 DS D TH S RESERVES ElI GHT BYTES
Output example
CVD R5, D2 PLACE | NTO A DOUBLE WORD
ZAP AMIPACK, D2 TRANSFER TO THE PACKED WORD
D2 DS D TH S ALSO RESERVES ElI GHT BYTES

Each of these examples assumes that afield, AMITPACK in each, has been properly declared
with the proper length. Recall that each exampleis apart of alarger process.

Theinput process has severa steps:
1. Readinthe sequence of digits as EBCDIC characters.
2. Usethe PACK command to place the result in the field AMIPACK.
3. Usethe above sequence to convert the number to binary form in the register.

The output process has severa steps:
1. Usethe above sequence to convert the binary number in the register to
apacked formin the field AMTPACK.
2. UseUNPK or ED, preferably the latter, to generate the EBCDIC characters
that form the printable output.

Page 224 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

RX (Register—Indexed Storage): Explicit Base Register Usage
Thisis afour-byte instruction of the form OP R1,D2(X2,B2).

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP Ri X, | BoDy | D2D2

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. The
first hexadecimal digit, denoted R, identifies the register to be used as either the source or
destination for the data. The second hexadecimal digit, denoted X, identifies the register to
be used astheindex. If thevalueisO, indexed addressing is not used.

The third and fourth bytes contain a standard address in base/di splacement format.

As an examples of thistype, we consider the two following instructions:
L Load Fullword Opcodeis X' 58’
A Add Fullword Opcodeis X' 5A

We consider a number of examples based on the following data declarations. Note that the
data are defined in consecutive fullwords in memory, so that fixed offset addressing can be
employed. Each fullword has alength of four bytes.

DAT1 DC F 1111’
DAT2 DC F* 2222’ AT ADDRESS (DAT1 + 4)
DAT3 DC F* 3333’ AT ADDRESS (DAT2 + 4) OR (DAT1 + 8)
A standard code block might appear as follows.
L R5, DAT1
A R5, DAT2
A R5, DAT3 NOW HAVE THE SUM
One variant of this code might be the following. See page 92 of R_17.
LA R3, DAT1 GET ADDRESS | NTO R3
L R5,0(,3) LOAD DAT1 I NTO R5
A R5,4(,3) ADD DAT2, AT ADDRESS DAT1+4.
A R5,8(,3) ADD DAT3, AT ADDRESS DAT1+8.

Note the leading comma in the construct (, 3) , which is of the form (Index, Base). This
indicates that no index register is being used, but that R3 is being used as a base register. Itis
equivalent to the construct (0, 3) , which might be preferred.

Hereis another variant of the above code.

LA R3, DAT1 GET ADDRESS | NTO R3
LA R8, 4 VALUE 4 | NTO REG STER 8
LA R9, 8 VALUE 8 | NTO REG STER 9

L R5,0(0,3) LCAD DAT1 | NTO R5
A R5,0(8,3) ADD DATZ2, AT ADDRESS DAT1+4.
A R5,0(9,3) ADD DAT3, AT ADDRESS DAT1+8.

Page 225 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Loading Values. L, LH,LR,and LCR
The general—purpose registers are designed to store and manipulate binary data that are
stored in the form of 32-hit two’s—complement integers. As an aside, remember two facts
about such numbers.
1. ThelBM standard isto number the bits from left to right as O through 31.
Thesign bitiscalled “Bit 0” and the units bit on the right “Bit 31".
2. IBM will often call this“31 bit data’, as the value has a 31-bit magnitude
(stored in bits 1 — 31) and asign bit.

We first discuss three of the standard instructions used to load values into aregister.

L Load afull-word value into the register.
LH Load a half-word value into the register.
The 16-bit value is sign extended into 32-bits for the register.
LR Copy avalue from one register to another register.
LCR Load thefirst register with the two’ s-complement of the value in the second.
Note: None of these instructions will set a condition code.

Do not load aregister and expect a condition code to reflect the value loaded.

L (Load 32-bit Full-word)
Theinstructionisatype RX, withformat L R1, D2(X2, B2) . The opcodeis X' 58’ . The
object code format is as follows.

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X 58’ Ri X, | BoDy | DoD2

Thefirst operand specifies any general—purpose register. Thisisindicated by the first
hexadecimal digit in the second byte of the object code.

The second operand references a full-word in storage, usualy aligned on a full-word
boundary. If the second operand isaliteral, the assembler will align it properly. The address
of this second word is computed from the standard base/displacement form (B, D, D, D2 in
bytes 3 and 4) with an index register (the second hexadecimal digit in byte 2).

Hereisatemplate for theinstruction: L Reg, Ful | _Wérd
Here are some examples of common usage. Other examples will be discussed later.

L1 L R2, =F 4000° R2 GETS DECI VAL 4000

L2 L R3, F1 R3 ALSO GETS DECI MAL 4000
L3 L R4, H1 THIS | S PROBABLY A M STAKE.
L4 L R5, =A(H1) LOAD THE ADDRESS | NTO R5.
F1 DC F 4000’

H1 DC H 2000’ Stored as X 07 DO’

H2 DC H 3000’ Stored as X 0B B8’

Note again, it is usually a mistake to attempt to use a full-word load to place a half-word
valueinto aregister. What will happen when the instruction at address L3 is executed is that
register R4 will be loaded with thevalue X 07 DO OB B8’ , or decimal 131, 075, 000.

Page 226 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

The execution of the instruction at address L4 causes the address of the halfword H1, not its
value, to be loaded into register R5. For the System/370, the address is a 24—bit unsigned
integer that is extended to a 32-bit value for storage in the register.

LH (Load 16-bit Half-word)
Theinstruction is atype RX, with format LH R1, D2(X2, B2) . The opcodeis X' 48’ .
The object code format is as follows.

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X 48’ Ri X, | BoDy | DoD2

Thefirst operand specifies any general—purpose register. Thisisindicated by the first
hexadecimal digit in the second byte of the object code.

The second operand references a full-word in storage, usually aligned on a half-word
boundary. If the second operand isaliteral, the assembler will align it properly. The address
of this second word is computed from the standard base/displacement form (B, D, D, D2 in
bytes 3 and 4) with an index register (the second hexadecimal digit in byte 2).

The assembl er |oads the half-word into the rightmost 16 bits of the register (16 — 31)
and then propagates the half-word’ s sign bit through the left 16 bits of the register.

Hereis atemplate for theinstruction: LH Reg, Hal f _Wbrd
Here are some examples of common usage. Other examples will be discussed later.

L1 LH R2, =H 4000° R2 GETS DECI MAL 4000

L2 LH R3, H1 R3 GETS DECI MAL 2000

L3 LH R4, F1 TH S I'S PROBABLY A M STAKE.
F1 DC F 4000’ Stored as X 00 00 OF A0’

H1 DC H 2000’

The difficulty with the instruction at address L3 isthat it will access the two bytes at the
addresses F1 and F1+1. The halfword stored there hasvaue X* 00 00’ , or just O.

Sign Extension for LH

Consider two 16-bit integers that are stored as half-words in two’ s—=complement form.
The positive number + 100 is stored as 0000 0000 0110 0100, or X' 0064’ .

The negative number —100 is stored as 1111 1111 1001 1100 or X* FF9C

The LH sign extends the halfword datainto fullword data with the proper sign. Thisit does
by copying bits O through 15 of the halfword into bits 16 through 31 of the register and then
copying the sign bit (now in register bit 16) into bits O through 15 of the register.

Page 227 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Consider the code fragment below.

LH R7, =H 100’
After this, register R7 contains the full-word value +100, as shown below.
Left half-word Right half-word
0-3 4-7 8-11 | 12-15 16-19 20-23 24 - 27 28-31
0000 0000 0000 0000 0000 0000 0110 0100

Now consider the code fragment.
LH R8, =H - 100’
After this, register R8 contains the full-word value —100, as shown below.

Left half-word Right half-word
0-3 4-7 8-11 |12-15| 16-19 20-23 24-27| 28-31
1111 1111 1111 1111 1111 1111 1001 1100

LR (Load Register) and LCR (Load Complement Register)
Each instruction isatype RR, with format LR R1, R2. The opcode for LRis X' 18’ .
The opcode for LCRis X' 13’ . The object code format for each is asfollows.

Type Bytes | Operands

RR 2 R1,R2 oP R1 R>
Each operand specifies any general—purpose register. The contents of the register specified
as the second operand are copied into the register specified as the first operand.

Consider the code fragment below.
L R9,=H 200° REG STER 9 GETS DECI MAL 200

LR R7, RO REG STER 7 ALSO CGETS 200
THIS TIME IT IS COPI ED FROM R9
LCR RS, R9 REG STER 8 GETS DECI MAL -200, STORED

IN PROPER 2’ S- COVPLEMENT FORMAT.

LM (Load Multiple Registers)

The LM instruction loads data from main storage into more than one register.
Theinstruction is atype RSwith format LM R1, R3, D2(B2) . The opcodeis X' 98’ .
This is afour—byte instruction with object code format as follows:

Type | Bytes Operands 1 2 3 4
RS 4 |R1L,R3D2(B2)| X 98 R1 R3 B, D, D,D,

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. These
two bytes specify the range of registers to be loaded.

The third and fourth bytes together contain a 4-bit register number and 12-bit displacement
used to specify the memory address of the operand in storage. This operand is considered as
thefirst fullword ablock of fullwords; the size of the block is determined by the number of
registers specified in byte 2. Thisisatype RS instruction; indexed addressing is not used.

Page 228 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Recall that each label in the assembly language program references an address,
which must be expressed in the form of a base register with displacement.

Any addressin the format of base register and displacement will appear in the form.
| BD: | DDz |
B isthe hexadecimal digit representing the base register.

The register numbers “wrap around”, so that 15, 1 specifiesthe threeregisters 15, 0, 1.
Example code:

LM R6, R8, F1 LOAD R6, R7, R8 FROM F1, F2, F3

LM R15, R2, F1 LOAD R15, RO, Rl, R2 FROM F1 TO F4
F1 DC F 111717

F2 DC F* 2222’
F3 DC F* 3333
F4 DC F 4444’

LM and the Standard Closing Code
Look again at part of the standard closing code for our programs.

kkkhkhkkhkhkhkkikhkkhkikkhkik*k END me ROR IR R b I S S b b b b S R Sk
L R13, SAVEAREA+4 PO NT AT OLD SAVE AREA
LM R14, R12, 12(R13) RESTORE THE REG STERS
LA R15, 0 RETURN CCDE = 0O
BR R14 RETURN TO OPERATI NG SYSTEM

The label SAVEAREA references a sequence of full words used to save information
used when returning to the operating system.

The second full-word in this area, at address SAVEAREA+4, holds the address of
the block of memory used to save the register information.

Theinstruction LM R14, R12, 12(R13) loadsthe 15 registers R14 through R12, omitting
only R13, with the 15 full-word values beginning at the specified address. More
specificaly, the old register values are saved in a block beginning with the fourth full-word
(at offset 12) in the block with addressnow in R13. The address12(R13) isspecifiedin
base/displacement format and references the start address of the 60—byte part of the save area
that is used to store the values of the registers.

Theinstruction LA R15, 0 isause of aLoad Addressinstruction that we shall discuss
very shortly. | would prefer something likeLH R15, =H 0’ , which appearsto be
equivalent, but can lead to addressability issues. The LA format is safer.

Page 229 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

L oading Addresses

Up to now, we have discussed “value loaders’, such as the following example.
L R3, FW

This finds the full-word at address FW 1 and loads its value into register R3.

At times, we shall need not the value stored at an address but the address itself.
One possibility would be to store areturn address to be used by a subroutine.

There are two common ways to access the address and store it into aregister.
1. Usethel (Load full-word) instruction and use an address literal
2. UsetheLA (Load Address) instruction and use the label.

The following two statements are equivalent. Each loads R1 with the address FWL.
L R1, =A(FW)
LA R1, FW
In the System/360 and System/370 the address is treated as a 24-bit unsigned integer,
which can be represented by six hexadecimal digits.
If the address of FW1is X' 112233’ , register R1 gets X' 00112233’ .

LA (Load Address)
Theinstruction is atype RX, with format LA R1, D2(X2, B2) . Theopcodeis X' 41’ .
The object code format is as follows.

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X 41 Ri X, | BoDy | DoD2

Hereisatemplate for theinstruction: LA Reg, Addr ess

Thefirst operand specifies any general—purpose register. Thisisindicated in the
object code by the first hexadecimal digit in the second byte.

The second operand references a storage addressin the form D2(X2, B2) . The index
register is specified by the second hexadecimal digit in the second byte. Bytes 3 and 4
together contain an address in base/displacement form, to which the index value is added.

Consider the following fragment of code, which indicates one use of the instruction.

LA R9, A10
Al0 DC F 100’

Suppose that label A10 is subject to base register 3 containing value X' 9800’
with adisplacement of X' 260’ . The object code for the LA instruction is as follows.
41 90 32 60

The code for the LA instructionis X' 41’ . The second byte*® 90” is of the form R1X2,
where R1 isthe target register and X2 isthe index register. Asisstandard, avalue of 0
indicates that indexing is not used in this address; it is pure base/displacement form.

The LA instruction causes register R9 to be get value X' 9800° + X 260’ = X 9A60’ .

Page 230 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

LA: A Second L ook
Theinstruction is atype RX, with format LA R1, D2(X2, B2) .

Consider the example above, coded asLA R9, X' 260’ (0, 3) .
Again, the object code for thisis41 90 32 60.
Let’ s analyze this object code. What it saysis the following:

1) Takethe contents of register 3 X 9800’
2) Addthevaue of the offset X 260’
3) Add the contents of the index X 000’
(here no index register is used)
4) Getthevaue X' 9A60’
5) Placethat valueinto register R9, which now contains X' 0000 9A60’ .
But note: While we call this an address, it isreally just an unsigned binary number.

This givesrise to acommon use of the LA instruction to load a constant
value into a general—purpose register.

LA: Load Register with Explicit Value
Consider theinstruction LA R8, 4(0, 0) .
The object code for thisis41 80 00 04.

The code is executed assuming no base register and no index register.
The number 4 is computed and |oaded into register 8.

Thefollowing instruction is considered identical: LA R8, 4.

Note that the second operand in this form of the instruction is a non-negative
integer that is treated by the assembler as a displacement.

Thisimpliesthat the value must be in aform that can be represented as a 12-bit unsigned
integer, specifically that it must be a non-negative integer not larger than 4,095 (decimal).

Consider now the line from the standard ending code of our programs.
LA R15, 0 RETURN CCDE = 0
This places the value 0 into the destination register.
Instructions: Surface M eaning and Uses
In the previous example, we see atrick that is commonly used by assembly language

programmers: find what the instruction really does and exploit it. The surface meaning of the
LA instruction is smple: load the address of alabel or symbolic address into a given register.

The usage to load aregister with a small non—negative constant value is an immediate and
logical result of the way the object code is executed. The goals of such tricks seem to be:
1) Togan coding efficiency, and
2) Toavoid addressing problems that sometimes arisein the use of literas.

Page 231 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Storing Register Values: ST, STH, and STM
ST (Store Full Word) isatype RX ingtruction, with format ST R1, D2(X2, B2) .

STH (Store Half Word) is atype RX instruction, with format STH R1, D2(X2, B2) .
STM (Store Multiple) isatype RS instruction, with format STM R1, R3, D2(B2) .

The ST instruction stores the full-word contents of the register, specified in the
first operand, into the full word at the address specified by the second operand.

The STH instruction stores the rightmost 16 bits of the register specified by the
first operand into the half word at the address specified by the second operand.

For STM (Store Multiple Registers), the first two operands specify arange of
registersto be stored. Remember that the register numbers “wrap around”

STM R7, R10, X2 STORE THE FOUR REG STERS R7, R8, R9, AND R10
| NTO FOUR FULL- WORDS BEG NNI NG AT X2

STM R10, R7, X4 STORE THE 14 REG STERS R10 THROUGH R7
(ALL BUT R8 AND R9) | NTO 14 FULL-WORDS

While each of these instructionsis quite similar to its load register partner, we shall
spend a bit of time discussing the instructions. After al, thisis atextbook.

ST: Store Fullword
The ST (Store Full Word) isatype RX instruction, with format ST R1, D2(X2, B2)
and opcode X' 50’ . The object code format is as follows:

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X 50 Ri X, | BoDy | DoD2

Thefirst operand specifies any general—purpose register. Thisisindicated by the first
hexadecimal digit in the second byte of the object code.

The second operand references a full-word in storage, usualy aligned on a full-word
boundary. The address of this second word is computed from the standard base/displacement
form (B, D, D, D, in bytes 3 and 4) with an index register (the second hexadecimal digit in
byte 2). Hereisatemplate for theinstruction: ST Reg, Ful | _Wor d

Here are some examples of common usage. Other examples will be discussed later.
Suppose that R3 contains the decimal value 163840, whichis X' 0002 8000’ .

ST1 ST R3,F1

ST2 ST R3,H1 NOTE THE TYPE M SMATCH.
F1 DC X' 0000 0000’

H1 DC X' 0000’

H2 DC X' 0000’

Theinstruction at address ST1 works as advertised, storing the register value into the
fullword at the given address. The instruction at address ST2 isamost certainly a mistake.
Theregister valueis stored into the four bytes beginning at address HL. Halfword H1 is set
to thevalue X' 0002’ and halfword H2 is set to the value X* 8000’ .

Page 232 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

STH: Store Halfword

The STH (Store Half Word) isatype RX instruction, with format ST R1, D2(X2, B2)

and opcode X' 40’ . Thisinstruction stores the rightmost 16 bits (bits 16 — 31) of the source
register into the halfword at the given address. The object code format is as follows:

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) X 40’ Ri X, | BoDy | DoDy

Thefirst operand specifies any general—purpose register. Thisisindicated by the first
hexadecimal digit in the second byte of the object code.

The second operand references a half-word in storage, usually aligned on a half-word
boundary. The address of this second word is computed from the standard base/di splacement
form (B, D, D, D, in bytes 3 and 4) with an index register (the second hexadecimal digit in
byte 2). Hereisatemplate for theinstruction: ST Reg, Hal f _Wor d

Here are some examples of common usage. Other examples will be discussed later.
Suppose that R3 contains the decimal value 163840, whichis X' 0002 8000’ .

ST1 STH R3, F1 NOTE THE TYPE M SMATCH.
ST2 STH R3, H1

F1 DC X 0000 0000’

H1 DC X 0000’

H2 DC X 0000’

Theinstruction at address ST2 works as advertised, though perhaps not as intended. The
rightmost 16 bits of register R3 contain a value represented in hexadecimal as X' 8000 .
Thisvalueis copied into the halfword at address H1, correctly setting its value.

Theinstruction at address ST1 isamost certainly amistake. It loads the halfword at address
F1 with the hexadecimal value X' 8000’ . Notethat it does not matter that the assembly
listing defines F1 as afullword. The halfword at address F1 comprises the two bytes, the
first at address F1 and the second at address F1+1. After this instruction is executed, F1
containsthe value X* 8000 0000’ ; the rightmost 16 bits have been copied into the two
leftmost bytes associated with the address F1.

STM: Store Multiple Registers

The STM instruction stores data from one or more registers into main memory.
Theinstruction is atype RSwith format STM R1, R3, D2(B2) . The opcodeis X' 98’ .
This is afour-byte instruction with object code format as follows:

Type | Bytes Operands 1 2 3 4
RS 4 | R1LR3D2(B2)| X 98 R: Rs B, D, D.D,

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number. These
two bytes specify the range of registers to be loaded.

Page 233 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Thethird and fourth bytes together contain a 4-bit register number and 12-bit displacement
used to specify the memory address of the operand in storage. This operand is considered as
the first fullword a block of fullwords; the size of the block is determined by the number of
registers specified in byte 2. Thisisatype RS instruction; indexed addressing is not used.

Sincethisisatype RSinstruction, indexed addressing is not used.

Recall that each label in the assembly language program references an address,
which must be expressed in the form of a base register with displacement.

Any addressin the format of base register and displacement will appear in the form.
| BD:; | D;Dg |
B isthe hexadecimal digit representing the base register.

The register numbers “wrap around”, so that 15, 1 specifiesthe threeregisters 15, O, 1.

Example code:
STM R6, R8, F1 STORE R6, R7, R8 INTC F1, F2, F3
STM R15, R2, F1 STORE R15, RO, R1l, R2 INTC
F1, F2, F3, F4
F1 DC F 11171
F2 DC F* 2222’
F3 DC F* 3333
F4 DC F' 4444

Standard Boiler plate Code
Once again, we examine some of the standard code used in all of our programs.

The standard startup code includes the following fragment.
SAVE (14, 12) SAVE THE CALLER S REQ STERS
This macro generates the following code.

STM 14, 12,12(13) STORE REQ STERS 14 THROUGH 12
(15 I'N ALL) I NTO THE ADDRESS
12 OFFSET FROM BASE REG STER 13.

We might have concluded our code with the macro
RETURN (14, 12)

This expands into the code we actually use in our programs.
LM 14,12, 12(13)

LA R15, 0 RETURN CODE = 0
BR R14 RETURN TO OPERATI NG SYSTEM
Page 234 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Binary Arithmetic: Addition and Subtraction
There are six instructions for addition and subtraction.

Mnemonic Description Type Format
A Add full-word to register RX A R1, D2(X2, B2)
S Subtract full-word from register RX S R1, D2(X2, B2)
AH Add half-word to register RX AH R1, D2(X2, B2)
SH Subtract half-word from register RX SH R1, D2(X2, B2)
AR Add register to register RR AR R1, R2
SR Subtract register from register RR SR R1, R2

In each of these, the first operand isaregister. Itisthisregister that hasits
value changed by the addition or subtraction.

For the half-word instructions (AH and SH), the second operand references a half-word
storage location. The 16-bit contents of this location are sign extended to afull 32-bit word
before the arithmetic is performed.

Binary Arithmetic: Half-word arithmetic
Examples of the instructions

L R7, FWL LOAD REG STER FROM FW
A R7, F\W2 ADD FW2 TO REG STER 7
S R7, =F"' 2’ SUBTRACT 2 FROM R7
ST R7,FW8 STORE VALUE IN R7 | NTO FWB
AR R7,R8 ADD CONTENTS OF R8 TO RY
SR R7,R9 SUBTRACT RO FROM R7
SR R8,R8 SET R8 TO ZERC

FWL DC F 2

F\W2 DC F &4

FWB DC F O

As noted indirectly above, one has two options for operating on one register.
AR R7,R7 DOUBLE THE CONTENTS OF R7

(ADD R7 TO | TSELF)

SR R9,R9 SET RO TO ZERO.

Page 235 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Comparing Binary Data: C, CH, and CR
There are three instructions for binary comparison with the value in aregister.

Mnemonic Description Type Format
C Compare full-word RX C R1, D2(X2, B2)
CH Compare half-word RX CH R1, D2(X2, B2)
CR Compare register to register RR CR R1, R2
Each comparison sets the expected condition code.
Condition Condition Code Branch Taken
Operand 1 = Operand 2 0 (Equal/Zero) BE, BZ
Operand 1 < Operand 2 1 (Low/Minus) BL, BM
Operand 1 > Operand 2 2 (High/Plus) BH, BP

Don't forget that literal arguments can be used with either C or CH, asin this example.
C RO, =FC(O COWARE THE REQ STER TO ZERC
BH | SPOS I T 1S POSITIVE
BL | SNEG NO, I T I'S NEGATI VE.
If this line is reached, R9 contains the val ue 0.
An Extended Example

This example takes the value in HW1, makes it non-negative, and then sums
backwardsN+ (N-1)+ ... +2+1+0.

SR R6, R6 SET R6 TC ZERC

LH R5, HM GET THE VALUE | NTO R5

SR R6, R5 SUBTRACT TO CHANGE THE SI GN

C R6,=F0 ISR6 POSITIVE? (IF SOR5 IS NEGATI VE)

BH PGS YES R6 IS PCSI TI VE.

LR R6, R5 R5 I'S NOT' NEGATI VE. COPY R5 | NTO R6
* NOW R6 CONTAI NS THE ABSOLUTE VALUE OF THE HALF- WORD
PCS SR R5,R5 R5 WLL HOLD THE TOTAL. SET TO ZERO.
LOOP AR R5, R6 ADD R6 TO R5

S R6,=F1 DECREMENT R5 BY 1

C R6,=F0 1S THE VALUE STILL PCSITI VE?

BH LOOP YES, GO BACK AND ADD AGAI N.
* THE SUM | S FOUND I N RS.

Page 236 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Register Shift Operations
We now discuss a number of shift operations performed on registers.

Mnemonic Description Type Format
SLA Shift left algebraic RS SLA R1, D2(B2)
SRA Shift right algebraic RS SRA R1, D2(B2)
SLL Shift left logical RS SLL R1, D2(B2)
SRL Shift right logical RS SRL R1, D2(B2)
SLDA Shift left double algebraic RS SLDA R1, D2(B2)
SRDA Shift left double algebraic RS SRDA R1, D2(B2)
SLDL Shift left double logical RS SLDL R1, D2(B2)
SRDL Shift right double logical RS SRDL R1, D2(B2)

The agebraic shifts preserve the sign bit in aregister, and thus are useful for arithmetic.
Thelogical shifts do not preserve the sign bit.

The shift operations set the standard condition codes, for use by BC and BCR.

The register numbers for the double shift instructions must be an even number,
referencing the first of an even—odd register pair (see below).

Shift Instructions: Object Code For mat
All shift instructions are four-byte instructions of theform OP R1, R3, D2(B2) .

Type Bytes 1 2 3 4

RS 4 R1,R3,D2(B2) OF RiR; B, D, D.D,

Thefirst byte contains the 8-bit instruction code.

The second byte contains two 4-bit fields, each of which encodes a register number.
Thefirst register number (R;) isthe register to be shifted. The second register number
(R3) isnot used and conventionally set to O.

The third and fourth bytes contain a 4-bit register number and 12—bit value. In many
type RS instructions, these would indicate a base register and a displacement to be
used to specify the memory address for the operand in storage.

For the shift instructions, thisfield is considered as a value to indicate the shift count.
Thevaueisintheform below. B isthe number of the register to be used as a base
for the value. The next three hexadecimal digits are added to the value in that register.

B D, D, Ds

Page 237 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

The sum is used as a shift count, not as an address. The two conventional uses are to specify
aconstant shift count and to use aregister to contain the shift count. Consider the following
two examples, each of which uses the SRA instruction with opcode X* 8A’ .

hj ect Code Sour ce Code

8A 90 00 OA SRA 9,10 BASE REG STER = 0, DI SPLACEMENT
= 10; THE SHI FT COUNT IS 10.

8A 90 BO 00 SRA 9,0(11) HERE REG STER 11 (X B') CONTAINS
THE SH FT COUNT.

Example Object Code Analysis. SLL
Shift Left Logica Operation code = X' 89’

Thisisalso atype RS instruction, though the appearance of atypical use seems to deny
this. Consider the following instruction which shifts R6 left by 12 bits,

SLL R6, 12 Again, | assune we have set R6 EQU 6
The above would be assembled as89 60 00 0C, asdecimal 12isX' C .

The deceptive part concerns the value 12, used for the shift count. Where isthat stored?
The answer isthat it is not stored, but is used as a value for the shift count.

The object code 00 OC literally indicates the computation of avalue that is an sum of
decimal 12 from the value in base register 0. But “0” indicates that no base register is
used, hence the value for the shift isdecimal 12.

Here are three lines from aworking program | wrote on 2/23/2009.

000014 5840 C302 00308 47 L R4, =F 1
000018 8940 0001 00001 48 SLL R4, 1
00001C 8940 0002 00002 49 SLL R4, 2

Note that the load instruction makes use of aliteral. The assembler will create an entry in the
literal pool and populate it with the value 1. Here, my code callsfor register 12 (X C) to
serve asthe base register. Thelitera isstored at offset X 302’ from the address stored

in that base register.

While it might seem plausible that the SLL instructions similarly generate literals, thisis not
the case. In each, as noted above, the value is stored as a count in the base/di splacement
format, which is here pressed into duty to store a value and not an address.

Page 238 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Single Shifts: Algebraic and L ogical
Here are some diagrams describing shiftsin asingle register. These examples will
assume an 8-hit register with the IBM bit numbering scheme; 32 bits are hard to draw.

Thisfigureillustrates logical shiftsby 1 for these imaginary 8-bit registers.

Logical [Ry[R,JR,[R;[R,[Rs[Rs[R;] Logical [Ry| Ry |R,[R3[R,|Rs|Rs| Ry
Left Right
Shift / Shift

Lost (R,|R;|R;|Ry|Rs|Rs[R; | O 0 [Ry| Ry Ry Rs| R, | Rs| Rg| Lost

Thisfigureillustrates a gebraic shifts by 1 for these imaginary 8-bit registers.

M CEEEERERER guivl RIRRERERER
R, (sign bit) R, (sign bit)
is preserved. is preserved.
Lost |_Rﬂ R,| R R, R:;[R¢[R; [0 [Re]Re[R R] RS R,J R Ry] Lost

The actual IBM assembler shift instructions operate on 32-bit registers and can shift by
any number of bit positions. For single register shifts, the shift count should be a
non—negative integer less than 32. For double register shifts, the upper limit is 63.

Double Register Shifts

Each of these four instructions operates on an even—odd register pair.

The agebraic shifts preserve the sign bit of the even register; the logical shifts do not.
Hereisadiagram illustrating a double algebraic right shift.

Even Register Odd Register
Arithmeti
R:éhtlg(la‘ulfi [Ro|R1|R;[R3|Rs|Rs|R; [Ry |[Rg[Ri[Rz[Rs[Ry[Rs[Rs [R

R INAANAMANNNNNNAN N

:-se[g):'sg:é-rved [Ro[Ro[Ri[R2[Rs[R, [Rs[Re|[Ry[Ro] Ry[R,[Rs[Rs[Rs[Ry| -0t

A

If the above example were alogical double right shift, a0 would have been
inserted into the leftmost bit of the even register.

Remember to consider the shiftsin register pairs, preferably even—odd pairs.
Consider the following code: SR R9, R9 ThisclearsR9
SRDL R8, 32

The double-register right shift moves the contents of R8 into R9 and clears RS,
asitisalogica shift.

Page 239 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Single Register Left Shifts: Another View
First consider the left shifts. There are two single-register variants: SLL and SLA.

SLL__N Bits—, SLA_ N Bits
] 0000 |«0 [SLZ7711 0000 |«0
L_NO's J L.NO's J
Discarded Discarded
(Bit Bucket) (Bit Bucket)

For an N-bit logical left shift, bits O through (N — 1) are shifted out of the register
and discarded. Bits 31 through (32 — N) arefilled with O.

Bit Oisnot considered asasign bit in alogica shift; it may change values.

For an N-bit arithmetic | eft shift, bits 1 through N are shifted out of the register
and discarded. Bits 31 through (32 — N) arefilled with 0. Bit O (the sign bit)
is not changed.

The overflow bit can be set by an arithmetic left shift. Thiswill occur if
the bit shifted out does not match the sign bit that is retained in bit O.

We shall seelater that setting the overflow bit indicates that the result of the
shift cannot be viewed as avalid result of an arithmetic operation.

Single Register Right Shifts: Another View
Now consider the left shifts. There are two single-register variants: SRL and SRA.

SRL N Bitso, SRA N Bits—,
o—[0J0 00 | [s[" " "~
L g - .
NO's Discar}ed N Sign Bits Discar}ed
(Bit Bucket) (Bit Bucket)

For either of these shift types, ashift by N bit will cause the N least significant bits
to be shifted out of the register and discarded.

For an N-bit logical right shift, the value O is shifted into the N most significant bits,
bits O through (N — 1) of the register. Bit Oisnot considered asign bitand is
shifted into bit N of theregister. The sign of the number may change.

For an N-bit arithmetic right shift, bit O is considered asa sign bit. Bit O is not changed,
but is shifted into bits 1 through N of theregister. At the end, the (N + 1) most
significant bits of the register contain what used to be bit O (the sign bit).

For an arithmetic right shift, the sign of the shifted result is the same as that of the
original. If thesign bit originally is0, the SRL and SRA produce identical results.

Page 240 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Double Register Shifts: Another View
The double register shifts are just generalizations of the single register shifts.

SLDL SLLDA

__N Bits—, Even Qdd . N Bits Even Odd
[4T 0000 |«0 E)rarranll 4 | 0000 |+0
L_Nos L_NO's J
Discarded Discarded
(Bit Bucket) (Bit Bucket)
SRDL
Even Odd SRDA - Even Odd
0—>!£|000J 5] | Er 357 I
L - -
NO's Discar}ed N Sign Bits Discar}ed
(Bit Bucket) (Bit Bucket)

In these double register shifts, apair of registersis viewed as a single 64-bit value.

The IBM coding convention (and possibly the CPU hardware) calls for this pair to be
what is called an even—odd pair, in which the odd number is one more than the even.

Examples of even—odd register pairsare: 4and 5, 6 and 7, 8and 9, 10 and 11.

Consider the two registers R5 and R6. Whileit istrue that 5 is an odd number
and 6 is an even number; these two registers do not form an even—odd pair.

Each of theseis amember of adistinct even—odd pair.

Shift Examples
Here are sometypical shift examples, with comments.

SRA R9, 2 Algebraic right shift by 2 bit positions, equivalent to division
by 4. SRA by N bit positionsis equivalent to division by 2",

SLA R8, 3 Algebraic left shift by 3 bit positions, equivalent to multiplication
by 8. SLA by N hit positions is equivalent to multiply by 2".

NOTE: Multiplication using the M, MH, or MR instructionsisrather dow, asis
division with either D or DR. It isamost universal practice to use
arithmetic left shiftsto replace multiplication by a power of 2 and
arithmetic right shiftsto replace division by a power of 2.

Example: Consider the following three lines of code.
L R5, AVAL ASSUME AVAL | S THE LABEL FOR A FULL-WORD
LR R6, R5 COPY VALUE | NTO R6
SRA R6, 3 SAME AS MULTI PLY BY 8
AR R6, R5 R6 NOWHAS 9 TI MES THE VALUE I N R5.
Page 241 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

More on Shifting and Arithmetic
The association of arithmetic left shifting with multiplication, and arithmetic right
shifting with division is useful. However, there are limits to this interpretation.

To illustrate this for multiplication, | select an integer that is a simple power of 2,
4096 = 2'2. Asa16-hit integer, this would be stored in memory as follows.

s‘ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 of0(12,0}0}j0}j0}]0}0|]0|]0|]0]0]O0]O0

Taking the two’s complement of the above, we find that —4096 is stored as follows.

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 j141}1|0,0}]0|]O0O|O0O|O]|]O0O]j]OJ0]O0]|O0]|O

We shall use each of these two integer valuesto illustrate the limits of the arithmetic
left shift. We shall then consider the following pair as subject to an arithmetic right shift.

+32 = 2°is stored as follows.

S’ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

o oj0oy,0(0}]0j0|j0}]0|]O0O|1]0|]0|0|0]O0

—-32 is stored as follows.

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1/1,1y2}1|1(1}1|14,1}0]0,0(0]O0

Arithmetic L eft Shiftsas Multiplication
We first consider some |eft shifts that can vaidly be interpreted as multiplication.
For each of these integers, consider a SLA 2 (Arithmetic Left Shift by 2 bit positions).

According to our interpretation, a SLA 2 should be equivalent to multiplication by 2% = 4.
The 4096 = 2'? becomes 16384 = 214, Thisisasit should be.
40964 = 16384 and 222 = 214,

S-gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

o (10,0, 0|]0|]O0O|O0O}]O|J0O|O}]0O0]O|0]O0]O0

The —4096 = —(2"%) becomes —-16384 = —(2'%). Thisisasit should be.
(—4096)e4 = —16384 and —(2'%)e2% = (2%,

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1,000, 0}]0|]O0OC|J0O0O|0O]O0C]|]0OJ0]O0]O0/|O0

Page 242 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Overflow on Shifting Left (Multiplication)
Consider again 4096 = 2'2, stored as a 16-bit integer.

Sgn |28 [2R [22220 [P [B[2 [P |2 |2 [F 2 [D
0 o020} 0|(0O, 0|]0O0O}]O0O|0O0]O]O|O0O]|O0]O0

Consider theresult of SLA 3 (Arithmetic Left Shift by 3 bit positions).

According to our interpretation, a SLA 3 should be equivalent to multiplication by 2° = 8.
We note that 40968 = 32768 and 2'%2° = 2'> = 32768,

But, the 4096 = 2* becomes -32768 = —(2'). The sign has “gone bad”, as a result of
arithmetic overflow.

S‘ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 0,00, ,0/0}]0|j]0O0O|O]|]O0OC]|]O|J0O0O]O0|O0O|0]O

But consider the same operation on —4096 = —(2*9).

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1,110,000 0|0O0O}]O0C|]0OJ0]O0]|O0/|O0

After the shift, we have the proper result; —4096e8 = —32768.

S‘ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 0,00, 00}]0|j]0O|O0O}]O0C]|]0OJ0O]O0|0O0|0]O

More on Overflow While Shifting L eft
In thisillustration we continue to focus on 16-bit two’s complement integers.
A 32-hit representation would show the same problem, only at larger values.

Suppose we have the valid integer —32,768 = —(2°). Thisis stored as follows.

S-gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 000, ,0/0]0|jO0O|lO]|]O0OC]O|J0O0O]O0|O0O|0]O

Suppose we attempt a SLA (Shift Left Arithmetic) by any positive bit count.
The result will remain the same. The sign bit is always preserved in an arithmetic shift.

In attempting a SLA as a substitute for multiplication by a power of two, we find that.
(-32,768)e2 = —32,768.
(—32,768)e4 = —32,768.
(-32,768)e8 = —32,768.

In other words, once overflow has been hit, SLA ceases to serve as multiplication.

Page 243 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Arithmetic Right Sifting as Division
Here the results are a bit less strange. First consider our positive number, +32.

Si gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

o 0j0oy,0(0}]0j0|j0}]0|]0O|1}]0|]0|0|0]O0

A SRA 4 (Arithmetic Right Shift by 4) should yield 32/16 = 2. It does.

Si gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

o 0j0,0(0}0|j0j0}]0|0OJ0}]0|]O0O|0|1]0O0

Further shifting this result by 1 bit position will give the value 1 (as expected).

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

o o0j0,00}0|]0j0}]0|]0|J0}]0|]O0|0|0]1

However, any more SRA (Arithmetic Right Shifts) will give the value 0.

S‘ gn 214 213 212 211 210 29 28 27 2() 25 24 23 22 21 20

o 0j0,00}0|]0j0}]0|]0|J0}]0|]0O0|0|0]O0

Thisis as expected for integer division, and is not surprising.

Moreon Arithmetic Right Sifting as Division
Here the results are a bit less strange. Now consider our negative number, —32.

S‘ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1/1,1}1}1|1{12}1|14,1}0]0,0]0]O0

A SRA 3 (Arithmetic Right Shift by 3) should yield (-32)/8 = (-4). It does.

s‘ gn 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1/1,1}1}1|1{212}1|141}1|1,1}0]0

A SRA 2 (Arithmetic Right Shift by 2) should yield (~4)/4 = (=1). It does.

Sign 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1,121,112 }1}1;1,1|1}1(1|1|1)1

But note that further Arithmetic Right Shifts continue to produce the result —1.

What we are sayingisthat (-1) / 2 =-1. If the above is acceptable, then the SRA works well
as asubstitution for division by a power of two.

Page 244 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Register Pairs: Multiplication and Division
We now discuss two instructions that, in their full-word variants, demand the use of a
64-bit “double word”. Rather than use the type, we use apair of registers.

The assembly language definition calls for “even—odd register pairs”.

Each pair of registersis referenced by its (lower numbered) even register.

The standard pairs from the general—purpose registers that are not reserved for other use are
shown in the following list.

R4 and R5 R8 and R9
R6 and R7 R10 and R11

When such a pair isreferenced by a multiply or divide instruction, it istreated as
a 64-bit two’ s-complement integer with the signin bit O of the even register.

Remember that the bits of aregister are numbered |eft to right, so that bit O is
the sign bit and bit 31 is the rightmost (least significant) bit.

Examples: M R4, F2 MITIPLY VALUE IN R5 BY VALUE IN
FULL- WORD F2. RESULTS IN (R4, RS)

D R6,F3 DIVIDE 64-BIT NUMBER IN (R6, R7) BY F3
Full-Word Multiplication

This slide will cover the two multiplication instructions based on full words.
The half-word multiplication instruction will be discussed later.

The two instructions of interest here are:

M nemonic Description Type Format
M Multiply full-word RX M R1, D2(X2, B2)
MR Multiply register RR MR R1, R2

For each of these, one uses a selected even—odd pair to hold the 64-bit product.
Here is the status of the registersin the selected pair; think (4, 5) or (8, 9), etc.

Even Register Odd Register

Before multiplication | Not used: contents areignored | Multiplicand

After multiplication Product: high-order 32 bits Product: low—order 32 bits

If the product can be represented as a 32—-bit number, the even register will contain
the extended sign bit, so that the 64—bit number in the register pair has the right sign.

Note that the multiplication overwrites the value of the multiplicand in the odd register.

Page 245 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Full-Word Multiplication: Examples
In the first fragment, the starting value in R4 isirrelevant, asit isignored.

Each example assumes two full-words: MULTCAND and MULTPLER.
L R5, MULTCAND LOAD THE MULTI PLI CAND | NTO RS.
SR R4, R4 CLEAR R4. THI S | S REALY USELESS.
M R4, MULTPLER MULTI PLY BY A FULLWORD

* R4 NOWHAS BITS 0 - 31 OF THE 64-BI T PRODUCT

* R5 NOWHAS BITS 32 — 63 OF THE 64-BI T PRODUCT

Another code fragment:

L R9, MULTCAND LGAD THE MULTI PLI CAND | NTO RO.
L R5, MULTPLER LOAD MULTI PLI ER I NTO R5
MR R8, R5 MULTI PLY BY FULL-WORD VALUE I N R5

* R8 NOWHAS BITS 0 - 31 OF THE 64-BI T PRODUCT
* RO NOWHAS BITS 32 — 63 OF THE 64-BI T PRODUCT
Half-Word Multiplication
M nemonic Description Type Format
MH Multiply haf-word RX MH R1, D2(X2, B2)

This instruction requires only one register. It isloaded with the multiplicand before the
multiplication, and receives the product.

Note that thisis the product of a 32-bit number (in the register) and a 16—-bit number
in the half-word in memory. Thiswill result in a48-bit product.

Of bits 0 — 47 of the product, only bits 16 — 47 are retained and kept in the 32-bit
register as the product. |f the absolute value of the product is greater than 2%, the sign
bit of the result (as found in the register) might not be the actual sign of the product.

Hereis an example of a proper use of the instruction, which will give correct results.
LH R3, MULTCAND Each of these two argumentsis a half-word
MH R3, MULTPLER withvalueintherange: -2 <N < (2" - 1).

MULTCAND DC H 222’

MULTPLER DC H 44’

The magnitude of the product will not exceed (2'°)e(2"°) = 2*°, an easy fit for aregister.

Page 246 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Full-Word Division
This dlide will cover the two division instructions based on full words.
The half-word division instruction will be discussed | ater.

The two instructions of interest here are:

M nemonic Description Type Format
D Divide full-word RX D R1, D2(X2, B2)
DR Divide register RR DR R1, R2

For each of these, one uses a selected even—odd pair to hold the 64-bit dividend.
Hereis the status of the registersin the selected pair; think (4, 5) or (8, 9), etc.

Even Register Odd Register
Beforedivison | Dividend: high—order 32 bits Dividend: low—order 32 bits
After division Remainder from division Quotient from division

In each of the full-word division operations, it isimportant to initialize the even register
of the pair correctly. There are two casesto consider.

1. Thedividendisafull 64-bit number, possibly loaded with a LM instruction.
2. Thedividend is a32-bit number. Inthat case, we need to initialize both registers.
Full-Word Division: Example 1

In this example, | am assuming a full 64-bit dividend that is stored in two adjacent
full wordsin memory. | usethis memory structure to avoid adding anything new.

LM R10, R11, D VHI LOAD TWO FULLWORDS

D R10, DI VSR NOW DI VI DE
* R10 CONTAI NS THE REMAI NDER
* R11 CONTAINS THE QUOTI ENT
Dl VHI DC F 11171° ARBI TRARY NUMBER THAT IS NOT TOO BI C
DIVLO DC F' 0003’ ANOTHER ARBI TRARY NUMBER
DVSR DC F 19’ THE DI VI SOR

Important Note: This process of assembling a 64-bit dividend from two full words
might run into problems if DIVL O is seen as negative.

Here, | choose to ignore that point.

Page 247 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Full-Word Division: Example 2
In this example, | am assuming a 32-bit dividend and using a more standard
approach. Please note that it works only for positive dividends.

SR R10, R10 SET R10 TO O
L R11, DI VI DEND LOAD FULL-WORD DI VI DEND
D R10, D VI SOR DO THE DI VI DI NC
* R10 CONTAI NS THE REMAI NDER
* R11 CONTAINS THE QUOTI ENT
Dl VI DEND DC F* 812303 JUST SOVE NUMBER
DI VISOR DC F 16384’ A PONER OF TWO, SEE NOTE BELOW

NOTES. 1. Thisworks only for apositive dividend. The reason isthat, by clearing
the even register of the even—odd pair, | have declared the 64-bit dividend
to be a positive number, even if R11 isloaded with a negative number.

2. Thereis amuch faster way to divide any number by a power of two.
This method, using a shift instruction, will be discussed |ater.

Full-Word Division: Example 3

In this example, | am assuming a 32-hbit dividend and using the standard approach
that will work correctly for all dividends. The dividend isfirst loaded into the even
register of the even—odd pair and then shifted into the odd register.

This shifting causes the sign bit of the 64-bit dividend to be set correctly.
L R10, DI VI DEND LOAD | NTO THE EVEN REQ STER

SRDA R10, 32 SHI FTI NG BY 32 BI TS PLACES
* THE DI VI DEND | NTO R11.
* R10 RETAINS THE SIGN BIT D
R10, DI VI SCR DO THE DI VI DI NC
* R10 CONTAI NS THE REMAI NDER
* R11 CONTAINS THE QUOTI ENT
DI VI DEND DC F* 812303 JUST SOVE NUMBER
DI VISOR DC F 16384’ A PONER OF TWO, SEE NOTE BELOW

We shall discuss this abit more after we have discussed the shift operations.

Page 248 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Full-Word Division: Example 4
Hereis amore realistic example of the use of afull 64-bit dividend.

Code fragment 1: Create the 64-bit product and store in adjacent full words.
L R5, MCAND LOAD THE MULTI PLI CAND | NTO R5.
M R4, MPLER MULTI PLY BY A FULLWORD

* R4 NOWHAS BITS 0 - 31 OF THE 64-BI T PRODUCT
* R5 NOWHAS BITS 32 — 63 OF THE 64-BI T PRODUCT STM
R4, R5, PRODHI STORE THE 64-BI T PRODUCT

Code fragment 2: Some time later use the 64-bit product as a dividend for division.
LM R10, R11, PRODHI LOAD TWO FULLWORDS
D R10, Dl VSR NOwW DI VI DE
* R10 CONTAI NS THE RENAI NDER
* R11 CONTAI NS THE QUOTI ENT
PRCDH DC F' 0O’ TWO FULL WORDS SET ASI DE
PRODLO DC F' 0O’ 64 BI TS (8 BYTES) OF STORAGE
Diversion: Shifting the Dividend into Place
Consider two possible dividends: + 100 and — 100.
Consider the code fragment below.
LH R6, =H 100’
SRDA R6, 32

After the first instruction is executed, register R6 contains the full-word value +100, as
shown below.

0-3 4-7 8-11 | 12-15 | 16-19 | 20-23 | 24-27 | 28-31

0000 0000 0000 0000 0000 0000 0110 0100

After the shift in the second instruction, the contents of R6 have been shifted to R7,
leaving only the sign bit in R6.

R6
0-3 4-7 | 8-11 | 12-15 | 16-19 | 20-23 | 24-27 | 28-31
0000 0000 0000 0000 0000 0000 0000 0000

R7
0-3 4-7 | 8-11 | 12-15 | 16-19 | 20-23 | 24-27 | 28-31
0000 0000 0000 0000 0000 0000 0110 0100

Page 249 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language

Shifting the Dividend I nto Place (Part 2)

Now consider the code fragment.
LH R8, =H - 100’

SRDA R8, 32

Binary Integer Data

After the first instruction is executed, register R8 contains the full-word value —100,
as shown below.

0-3

4-7

8-11

12-15

16-19

20-23

24-27

28-31

1111

1111

1111

1111

1111

1111

1001

1100

After the shift in the second instruction, the contents of R8 have been shifted to R9,

leaving only the sign bit in R8.

R8
0-3 4-7 8-11 | 12-15 | 16-19 | 20-23 | 24-27 | 28-31
1111 1111 1111 1111 1111 1111 1111 1111
R9
0-3 4-7 8-11 | 12-15 | 16-19 | 20-23 | 24-27 | 28-31
1111 1111 1111 1111 1111 1111 1001 1100

Boolean Operators: AND, OR, XOR

We now conclude our investigation of binary integer data by examining the Boolean
operators, which treat binary data one bit at atime. We shall repeat the basic definitions,
discuss the implementation by IBM, and close by repeating a natural application. Thethree
Boolean operators directly supported by IBM arethe logical AND, OR, and NOT.

Each of these operates on binary data, one bit at atime according to the following tables.

AND 0e0=0 OR 0+0=0 XOR 0©0=0
Oel=0 0+1=1 0el=1
1e0=0 1+0=1 1©0=1
lel=1 1+1=1 1©1=0

To show the bitwise nature of these operations, we consider afew examples as
applied to four-bit integers.

1010 1010 0101 0101 0101
e 0111 e« 1101 + 0000 + 1111 ® 1111
0010 1010 0101 1111 1010

Note that the XOR function can be used to generate the Boolean not function. The Boolean

NOT, denoted by X and defined by 0= 1and 1 = 0. As seen above, this can be extended
bitwise, so that the rightmost exampl e takes the logical NOT of the digits0101.

Page 250 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

One of the more natura uses of the Boolean operatorsis to do bitwise operations on data
represented in 8-bit bytes and denoted by two 4-bit hexadecima digits. There arethree
operations that will commonly be seen in assembly language programs.

1. Select abit position in a byte and force that bit to have the value 1.

2. Sedect abit position in abyte and force that bit to have the value O.

3. Sdect abit position in abyte and flip the value of that bit.

We shall examine the use of these operations on 4-bit fields, as longer data structures
can be analyzed one hexadecimal digit at atime. We use the IBM bit numbering.

Bit number 0 1 2 3
Bit value 8 4 2 1

Here are the basic masking operations that can be performed on a 4-bit hexadecimal digit.

Bits Affected To set the bit, use OR with To clear the bit, use AND with
None 0000 X 0 1111 X F
0 1000 X 8 0111 X7
1 0100 X 4 1011 X B
2 0010 X 2 1101 X o
3 0001 X v 1110 X E
Oand 1 1100 X c 0011 X3
Oand 2 1010 X A 0101 X5
Oand 3 1001 X9 0110 X 6’
land?2 0110 X 6 1001 X9
land3 0101 X5 1010 XA
2and 3 0011 X3 1100 xXc
0,1,and 2 1110 X E 0001 X1
0,1,and 3 1101 XD 0010 X 2
0,2,and 3 1011 X B 0100 X 4
1,2,and 3 0111 X7 1000 X 8
ALL 1111 X F 0000 X0
System/370 architecture supports three Boolean functions, each in four formats.
Instruction Format | Operands
Logical AND | Logical OR | Logica XOR
NR OR XR RR Two registers
N O X RX Register and storage
NI Ol XI S| Register and immediate
NC oC XC SS Two storage locations

Each of these twelve instructions sets the condition codes used by the conditional branch
instructions in the same way. If every bit in theresult is O, the result is 0 and condition code
Oisset. If any bitintheresult is 1, the result is not negative and condition code 1 is set, asiif
the result were negative. Here are two equivalent ways to test results.

To determine Yes No

All target bitsare 0 UseBZ Use BNZ

Any target bitis1 Use BM Use BNM

Page 251 Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Here are the logical instructions, grouped by type.

TypeRR
Thisisatwo-byteinstruction of theform OP R1, R2.

Type Bytes | Operands
RR 2 R1,R2 OP Ri1 R>

Thefirst byte contains the 8-bit instruction code. The second byte contains two 4-bit fields,
each of which encodes aregister number. Thisinstruction format is used to process data
between registers.

Here are the three Boolean instructions of this type.

NR Logical AND Opcodeis X' 14’
OR Logica OR Opcodeis X' 16’
XR Logica Exclusive OR Opcodeis X' 17’
Type RX
Thisis afour-byte instruction of theform OP R1, D2(X2, B2) .
Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP Ri Xy, | BoDy | DDy

Thefirst byte contains the 8-bit instruction code. The second byte contains two 4-bit fields,
each of which encodes aregister number. The first operand, encoded as R, isthe target
register for the instruction. The second register number, encoded as X», is the optional index
register. Bytes 3 and 4 together contain the address of the second operand in base and
displacement form, which may be modified by indexing if the index register field is not zero.

Here are the three Boolean instructions of this type.

N Logical AND Opcodeis X' 54’
O Logica OR Opcodeis X' 56’
X Logica Exclusive OR Opcodeis X' 57’
Type Sl
Thisisafour-byte instruction of theform OP D1(B1), | 2.
Type | Bytes Operands 1 2 3 4
S| 4 D1(B1), I2 OF 12 B1D; | DiD;

Thefirst byte contains the 8-bit instruction code. The second byte contains the 8-bit value
of the second operand, which is treated as an immediate operand. The instruction contains
the value of the operand, not its address. The first operand is an address, specified in
standard base register and displacement form. Note that thisfirst operand must reference the
address of asingle byte, asthisis a byte—oriented operation.

Here are the three Boolean instructions of this type.
NI Logical AND Opcodeis X' 94’
Ol Logica OR Opcodeis X' 96’
X1 Logica Exclusive OR Opcodeis X' 97’

Page 252 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Binary Integer Data

Type SS
These are of theform OP D1(L, B1), D2(B2) , which provide alength for only operand 1.

The length is specified as an 8-bit byte.

Type Bytes Operands 1 2 3 4 5 6

S(1) 6 D1(L,B1)D2(B2) | OF L |B.,D.| D:D; | B,D, | D.D;

Thefirst byte contains the operation code. The second byte contains a value storing one less
than the length of the first operand, which is the destination for the operation.

Bytes 3 and 4 specify the address of the first operand, using the standard base register and
displacement format. Bytes5 and 6 specify the address of the second operand, using the
standard base register and displacement format.

Here are the three Boolean instructions of this type.
NC Logical AND Opcodeis X' D4’
OC Logica OR Opcodeis X' D6’
XC Logica Exclusive OR Opcodeis X' D7’

Another Look at Case Conversion

In order to investigate the difference between upper case and lower case letters, we here
present aslightly different version of the EBCDIC table. Admittedly, we have covered this
in a previous chapter, but cover it again within the context of the Boolean operators.

Zone 8 C 9 D A E
Numeric

1 “a’ “A” “i” “J

2 “b” “B” “K” “K” ‘g’ “S
3 “c” “Cr “” “L” “t” “T”
4 “d” “D” “m” “M” “u” “u”
5 ‘e “E” “n” “N” “v” VT
6 “f” “F “o” “O" “w” “W”
7 ‘g’ “G” “p’ “P’ “x” “X”
8 “h” “H” “q’ “Q ‘y” Yy
9 “i” “1” “r “R” “z" “zZ"

The structure implicit in the above table will become more obvious when we compare
the binary forms of the hexadecimal digits used for the zone part of the code.

Upper Case C = 1100 D = 1101 E = 1110
LowerCase 8 = 1000 9 = 1001 A = 1010

Note that it isonly one bit in the zone that differentiates upper case from lower case.

In binary, thiswould be noted as0100 or X' 4’ . Asthiswill operate on the zonefield of a
character field, we extend this to the two hexadecimal digits X* 40’ . The student should
verify that the one’ s—=complement of thisvalueis X' BF’' . Consider the following operations.

Page 253 Chapter 12 Last Revised July 6, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language
UPPER CASE
‘A X 1100
OR X *'40 X' 0100
X 1100
Converted to A
Lower case
‘a X 1000
OR X *'40 X' 0100
X 1100
Converted to A

00071’
0000’
00071’

00071’
0000’
00071’

Binary Integer Data

X 1100 0oOO01’
AND X‘BF X'1011 1111
X' 1000 0001’

a

X 1000 OoOO1’
AND X‘BF X'1011 1111
X' 1000 0001’

a

We now have a general method for changing the case of a character, if need be.
Assume that the character isin aone byte field at address LETTER.

Convert acharacter toupper case. O, LETTER, =X 40’
This leaves upper case characters unchanged.

Convert acharacter to lower case.
This leaves lower case characters unchanged.

Change the case of the character.
This changes upper case to lower case and lower case to upper case.

Page 254

NI, LETTER, =X' BF

XI', LETTER, =X' 40’

Chapter 12 Last Revised July 6, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

