Chapter 11: Handling Decimal Data

This chapter covers decimal data, which refers to numeric datathat are handled one digit a a
time as opposed to binary integer arithmetic or floating point arithmetic. Aswill be soon
noticed, the decimal format is particularly well adapted to the accounting and other business
computation that predominates in the companies which represent IBM’s primary markets.

In the IBM S/370 architecture, there are two primary types of decimal data: zoned decimal
data and packed decimal data. Asfar asyour author can determine, the zoned format serves
mostly as an intermediate form between digital character datain EBCDIC form and the
packed decimal format that is used for many computations.

Zoned Decimal Data

The zoned decimal for mat is a modification of the EBCDIC format. It seems not to be used
in any numeric processing and might best be viewed as an intermediate form in the process
of trandating digitsin EBCDIC form into the interna representation of a number. The
format seems to be a modification to facilitate processing decimal strings of variable length.

The length of zoned data may be from 1 to 16 digits, stored in 1 to 16 bytes. Note that, asin
the character representation, this format calls for one byte per digit.

We have the address of the first byte for the decimal data, but need some “tag” to denote the
last (rightmost) byte, as the format is not fixed length. The assembler places a*“sign zone”
for the rightmost byte of the zoned data.
The common standard is X' C for non-negative numbers, and
X' D for negative numbers.

Other than the placing of a hexadecimal digit X' C' or X' D' for the zone part of the last
digit, the zoned decimal format is rather similar to the EBCDIC format.

Consider the negative number —12345, and its various representations in which the spaces
areinserted for readability only. Notethat X' 60’ isthe EBCDIC representation of the “-".

Asastring of EBCDIC charactersit is hexadecimal 60 F1 F2 F3 F4 F5.
In the zoned decimal representation it is hexadecimal F1 F2 F3 F4 Db.
As packed decimal format (to be discussed soon) it isstoredas12 34 5D.

There are afew more things that might be said about the zoned format, such as how to
declare a zoned decimal constant (the format typeisZ). Asyour author views the zoned
format as an intermediate format, we shall discuss it further only in the context of conversion
between EBCDIC characters and packed decimal digits.

Packed Decimal Data

The preferred use of packed decimal data format was introduced in Chapter 4, where it was
shown not to have the round—off problem that is commonly found in all floating—point
formats. The standard floating—point formats can guarantee either seven digits of accuracy or
fifteen digits of accuracy. People in business want all digitsto be accurate. If asalestotal
takes 17 digitsto represent, all 17 digits in the number must be correct.

Page 191 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Packed Decimal For mat
Here, we discuss the packed decimal format, beginning with packed decimal constants.

A packed decimal constant isasigned integer, with between 1 and 31 digits (inclusive).
The number of digitsisaways odd, with a0 being prefixed to a constant of even length.

A sign “half byte” or hexadecimal digit is appended to the representation. The common
sign-representing hexadecimal digits are as follows:

C non-negative

D negative

F non—negative, seen in the results of a PACK instruction.

If aDC (Define Constant) declarative is used to initialize storage with a packed decimal
value, one may use the length attribute. Possibly the only good use for this would be to
produce a right—adjusted value with a number of leading zeroes.

For example DC PL6’ 1234’ becomes
00 00 00 01 23 4C

Remember that each of these bytes holds two hexadecimal digits, not the value
indicated in decimal, so 23 isstored as0010 0011 and4C as0100 1100.

Some Examples and Cautions
Here are some examples of numbers being represented in packed decimal format.

DC P +370’ becomes 370C
DC P' —500’ becomes 500D
DC P +92’ becomes 092C

Here are some uses that, while completely logical, might best be avoided. The problem with
the first exampleisthat the length in bytesis not sufficient to store the packed decimal
number, so that the five leftmost digits are truncated. The second example shows the use of a
DC declarative to define three constants in a manner that is difficult to read.

P1 DC PL2‘ 12345678’ is truncated to become 678C.
Why give avalue only to remove most of it?

PCON DC PL2' 123" ,*‘-456’,"' 789’
This creates three constants, stored as 123C, 456D, and 789C.
Only the first constant can be addressed directly.
| would prefer the following sequence, with the labels P2 and P3 being optional.
P1 DC PL2' 123
P2 DC PL2' —456’
P3 DC PL2‘ 789’

Page 192 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Mor e Examples

The packed decimal format is normally considered as a fixed point format, with

a specified number of digits to theright of the decimal point. It isimportant to note that
decimal points are ignored when declaring a packed value. When such are found in a
constant, they are treated by the assembler as comments.

Consider the following examples and the assembly of each. Note that spaces have been
inserted between the bytes for readability only. They do not occur in the object code.

Statement Object Code Comments

P1 DC P 1234 01 23 4C Standard expansion to 5 digits

P2 DC P 12. 34’ 01 23 4C The decimal isignored.

P3 DC PL4'-12.34" 00 01 23 4D Negative and lengthened to 4
bytes. Leading zeroes added.

P4 DC PL5 12. 34’ 00 00 01 23 4C Five bytesin length. Thisgives
2 bytes of leading zeroes.

P5 DC 3PL2'0Q’ 00 0C 00 0C 00 OC Threevalues, each 2 bytes.

Explicit Base Addressing for Packed Decimal I nstructions
We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 273 & 274]. Consider the following source code,
taken from Abel. Thisisbased on aconversion of aweight expressed in kilogramsto its
equivalent in pounds; assuming 1kg. = 2.2 Ib. Physics students will please ignore the fact
that the kilogram measures mass and not weight.

ZAP POUNDS, KGS MOVE KGS TO POUNDS

MP POUNDS, FACTOR MJLTI PLY BY THE FACTOR
SRP POUNDS, 63, 5 ROUND TO ONE DECI MAL PLACE

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2.2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
POUNDS DS PL5 LENGTH 5 BYTES, AT ADDRESS KGS+5

The value produced is 12.53¢2.2 = 27.566, which is rounded to 27.57.

The instructions we want to examine in some detail are the MP and ZAP, each of which
isatype SSinstruction with source code format OP D1(L1, B1), D2(L2, B2) . Each of
the two operands in these instructions has a length specifier. In thefirst example of the use
of explicit base registers, we assign a base register to represent the address of each of the
arguments. The above code becomes the following:

LA R6, KGS ADDRESS OF LABEL KGS
LA R7, FACTOR ADDRESS
LA R8, POUNDS

ZAP 0(5, 8), 0(3, 6)
MP 0(5,8),0(2,7)
SRP 0(5, 8), 63,5

Page 193 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Each of the arguments in the MP and ZAP have the following form:

0({5,3) 0{3,6) 02,7}

+ + +
fosetTtBase fosetTtBase fosetTtBase

Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 0(5,8),0(3,6) Destination is at offset 0 fromthe address
stored in R8. The destination has Iength 5 bytes.

Source is at offset 0 fromthe address stored
in R6. The source has |ength 3 bytes.

MP 0(5,8),0(2,7) Destination is at offset 0 fromthe address
stored in R8. The destination has Iength 5 bytes.

Source is at offset O fromthe address stored
in R7. The source has length 2 bytes.

But recall the order in which the labels are declared. The implicit assumption that the labels
are in consecutive memory locations will here be made explicit.

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2.2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
POUNDS DS PL5 LENGIH 5 BYTES, AT ADDRESS KGS+5

In this version of the code, we use the label KGS as the base address and reference all other
addresses by displacement from that one. Hereis the code.

LA R6, KGS ADDRESS OF LABEL KGS

ZAP 5(5,6), 0(3, 6)

MP 5(5,6),3(2,6)

SRP 5(5,6), 63,5

Each of the arguments in the MP and ZAP have the following form:

5(5,6) 0{3,6) 3(2,6)

+ + +
fosetTtBase fosetTtBase fosetTtBase

Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 5(5,6),0(3,6) Destination is at offset 5 fromthe address
stored in R6. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R6. The source has length 3 bytes.

MP 5(5,6),3(2,6) Destination is at offset 5 fromthe address
stored in R6. The destination has Iength 5 bytes.

Source is at offset 3 fromthe address stored
in R6. The source has length 2 bytes.

Page 194 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

In other words, the base/displacement 6000 refersto a displacement of O from the address
stored in register 6, which is being used as an explicit base register for this operation. As
the addressin R6 isthat of KGS, this value represents the address KGS. Thisis the object
code address generated in response to the source code fragment 0(3, 6) .

The base/displacement 6003 refersto a displacement of 3 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+3, which is the address FACTOR. Thisis
the object code address generated in response to the source code fragment 3(2, 6) .

The base/displacement 6005 refers to a displacement of 5 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+5, which is the address POUNDS. Thisis
the object code address generated in response to the source code fragment 5(5, 6) .

It isworth notice, even at this point, that the use of a single register as the base from which to
reference a block of data declarations is quite suggestive of what is done with a DSECT, aso
called a“Dummy Section”.

Packed Decimal: Moving Data
There are two instructions that might be used to move packed decimal data from one memory
location to another. The preferred instruction is ZAP (Zero and Add Packed).

MVC S1,S2 Copy characters from location S2 to location S1
ZAP S1,S2 Copy the numeric value from location S2 to location S1.

Each of the two instructions can lead to truncation if the length of the receiving area, S1, is
less than the source memory area, S2. If the lengths of the receiving field and the sending
field are equal, either instruction can be used and produce correct results.

The real reason for preferring the ZAP instruction for moving packed decimal data comes
when the length of the receiving field islarger than that of the sending field. The ZAP
instruction copies the contents of the sending field right to left and then pads the receiving
field with zeroes, producing a correct result.

The MVC instruction will copy extrabytesif the receiving field is longer than the sending
field. The MV C instruction makes a left-to-right copy and will copy the required number of
bytes, probably copying garbage. Consider the following example.

F1 DC P 0000000" stored as 0000 000C, this takes 4 bytes,
F2 DC P 123 stored as 12 3C, this takes 2 bytes.
F3 DC P 4567 stored as 04 56 7C, this takes 3 bytes.
Executing ZAP F1, F2 will cause F1to besetto 0000 123C, which iscorrect.

Executing WC F1, F2 will set F1to123C 0456, which not only isthe wrong answer,
but also fails to be in any recognizable packed decimal format.

Bottom line: Usethe ZAP instruction to move packed decimal data.

Page 195 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Packed Decimal Data; ZAP, AP, CP, and SP
We have four instructions with similar format.

ZAP S1,S2 Zero S1 and add packed S2 (Thisisthe move discussed above)
AP S1, S2 Add packed S2 to S1

cP S1,82 Compare S1 to S2, assuming the packed decimal format.

SP S1,82 Subtract packed S2 from S1.

These are of theform OP D1(L1, B1), D2(L2, B2) , which provide a4-bit number
representing the length for each of the two operands. The object code format is as follows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 | D1(L1BI1),D2(L2B2) | OP | L.L, |B.D;| DiD; | B,D, | D.D,

Thefirst byte contains the operation code, which is X' F8’ for ZAP, X' F9’ for CP,
X FA' for AP, X' FB' for SP.

The second byte contains two hexadecimal digits, each representing an operand length.

Each of L; and L, encodes one less than the length of the associated operand. This
allows 4 bits to encode the numbers 1 through 16, but disallows arguments of Iength O.

The next four bytes contain two addresses in base register/displacement format.

Packed Decimal Data: Additional Considerations

For all four instructions, the second operand must be avalid packed field terminated with a
valid sign. Theusua vauesare‘'C, ‘D', and occasionally ‘F’, though the hexadecimal digits
‘A','B’,and ‘'E’ arelegal. Asnoted above, thesign digit ‘D' is standard for negative
numbers, while the sign digit ‘C’ is standard for non-negative numbers. Thesign digit ‘F’
will be seen in data converted from Zoned Decimal by the PACK instruction.

For AP, CP, and SP, the first operand must be avalid packed field terminated with avalid
sign. For ZAP, the only consideration is that the destination field be large enough.

If either the sending field or the destination field (AP and SP) have just been created by a
PACK instruction, the sign half-byte may be represented by the sign digit ‘F’.

Thisis changed by the processingto ‘C’ or ‘D’ as necessary.

Some textbook hint that using ZAP to transfer a packed decima number with ‘F’ asthe sign
half-byte will convert that to ‘C'. This seems reasonable.

Any packed decimal value with asign half-byte of D (for negative) is considered to sort less
than any packed decimal value with asign half-byte of C or F (positive). Thisfollowsthe
standard arithmetic in which any negative number is less than any positive number.

The number 0 is always represented as 0C (possibly with more leading zeroes), but
isnever validly represented as OD. Thereis no negative zero.

Page 196 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Example of Packed Decimal I nstructions
TheformisOP D1(L1, B1), D2(L2, B2). Theobject code format is as follows:

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DL(LLBIL),D2(L2B2)| OP | LiL, | B.D; | DiD; |B,D,| D.D,

Consider the assembly language statement below, which adds AMOUNT to TOTAL.
AP TOTAL, AMOUNT
Assume: 1. TOTAL is4 byteslong, so it can hold at most 7 digits.
2. AMOUNT is 3 byteslong, so it can hold at most 5 digits.

3. Thelabel TOTAL isat an address specified by a displacement
of X' 50A’ from the valuein register R3, used as a base register.

4. Thelabel AMOUNT is at an address specified by a displacement
of X 52C fromthevalueinregister R3, used as a base register.

The object code looks like this: FA 32 35 0A 35 2C

The Disassembly of the Above Example
Consider FA 32 35 OA 35 2C. Theoperation code X' FA' isthat for the
Add Packed (Add Decimal) instruction, which isatype SS(2). The above format applies.

Thefidd 32 isof theform L, Lo.
Thefirst valueis X' 3’ , or 3decimal. Thefirst operand is 4 bytes long.
The second valueis X' 2’ , or 2 decimal. The second operand is 3 bytes long.

Thetwo-byte field 35 OA indicates that register 3 is used as the base register
for the first operand, which is at displacement X' 50A" .

The two-byte field 35 2C indicates that register 3 is used as the base register
for the second operand, which is at displacement X' 52C .

It is quite common for both operands to use the same base register.

Condition Codes
Each of the ZAP, AP, and SP instructions will set the condition codes. Asaresult,
one may execute conditional branches based on these operations. The branches are:

BZ Branch Zero BNZ Branch Not Zero

BM Branch if negative BNM Branch if not negative

BP Brach if positive BNP Branch if not positive

BO Branch on overflow BNO Branch if overflow has not occurred.

An overflow will occur if the receiving field is not large enough to accept the result.

My guessis that leading zeroes are not considered in this; so that the seven—digit packed
decimal number 0000123 can be moved to afield accepting four digit packed numbers.

Page 197 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Additional Rulesfor ZAP, AP, and SP
These rules are as follows:

1. The maximum length for each field is 16 bytes, allowing for a maximum of
31 digits. Either field, or both, may have an explicit length operand with
amaximum value of 16. Remember that this operand is a byte length.

2. If the operand 1 (destination) field is shorter than the operand 2 (source) field,
aprogram interrupt may occur. The length of the first field should be sized for
the expected result of the operation and not just based on the length associated
with thefirst value. For addition, the operand 1 field should be one digit larger
than the lengths of either of the values to be added.

3. The CPU extends the shorter field (presumably that associated with the second
operand) to that of the longer field by left padding with zeroes. Thisis necessary
for the results to be in accordance with standard arithmetic.

Examplesof ZAP, AP, and SP

Here are afew examples of the use of the three instructions AP, SP, and ZAP. The examples
are to be viewed as independent executions of code, so that the values associated with the
data labels are always the same at the beginning of each.

Suppose that we start with definitions as follows.

PO DC P 666’ Stored as 66 6C

P1 DC P 222’ Stored as 22 2C

P2 DC P 1234’ Stored as 01 23 4C
P3 DC P* 1234567° Stored as 12 34 56 7C

For these exampl es, we assume that the data stored represent integer values, and that none
has an implied decimal or “digits to the right of the decimal”.

CASE1 ZAP P3, P1 RESULTS IN P3 = 00 00 22 2C
CASE2 ZAP P2, P1 RESULTS IN P2 = 00 22 2C
CASE3 AP P2, P1 RESULTS IN P2 = 01 45 6C.
Recall this starts with P2 = 01 23 4C
CASE4 SP P2,P1 RESULTS IN P2 = 01 01 2C
CASES SP P3,P1 RESULTS IN P3 = 12 34 34 5C.

In other words, the arithmetic is not blindly done left to right, but with the digits “lined up”
as one would expect in standard arithmetic.

CASE6 AP P1, P1 RESULTS IN P1 = 44 4C.
CASE7 AP PO, PO Thi s causes an overfl ow.

Here we see the importance of design so that the first argument can store not just itsinitial
value, but also the result of any reasonably contemplated arithmetic operation.

CASES SP PO, PO RESULT IS 0, PRESUMABLY STORED AS 0C.

Page 198 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Comparing Packed Decimal Values
Therules for the CP instruction are the same as those for the AP and SP instructions.

1. Both operands must contain valid packed data, with maximum length of 16 bytes.
Either operand or both may contain an explicit length indicator.

2. If thefields are not of the same length, the CPU extends the shorter field by padding
with left zeroes to the length of the longer field. The comparison remains valid.

3. All comparisons are asin standard algebra. +0 is considered equal to -0, but
otherwise any positive value islarger than any negative value.

The CP (Compare Packed) instruction is used to compare packed decimal values. This sets
the condition codes that can be used in a conditional branch instruction, asjust discussed. Is
there any reason to compare and not then have a conditional branch?

In some sense, the CL C (Compare Character) instruction is similar and may be used to
compare packed decimal data. However, this use is dangerous, as the CLC does not alow
for many of the standards of standard algebra.

Consider the two values 123C (representing +123) and 123D (representing —123).
CP will correctly state that 123D < 123C; indeed —123 isless than +123.
CLC will statethat 123D > 123C, as 12 = 12, but 3D > 3C. Remember that
these are being compared as sequences of characters without numeric values.

Consider the two values 123C (representing +123) and 123F (also representing +123).
CP will correctly state that 123C = 123F; as 123 = 123.
CLC will statethat 123F > 123C, as 12 = 12, but 3F > 3C.

Consider the two values 125C (representing +123) and 12345C (representing +12345).
CP will work correctly, noting that 12345 > 00125. CLC will compare
character by character. As'5C’ > ‘34, it will conclude that 125 > 12345

The best way to understand the results of this last comparison isto line up the two constants,
and note that the comparison is |eft to right.

12 5C

12 34 5C

Examples of CP
Here are some examples. Consider the following data definitions.

P1 DC P 6’ STORED AS 6C

P2 DC P 42’ STORED AS 04 2C

P3 DC P 122’ STORED AS 12 2C

P4 DC P - 56’ STORED AS 05 6D

Here are some comparisons.
CP P1, P2 P1 < P2. Conpared as 00 6C to 04 2C
CP P1, P3 P1 < P3 BRANCH ON LOW (BL or BM
CP P1, P4 P1 > P4 BRANCH ON HI GH (BH or BP)
CP P2, P3 P2 < P3
CP P2, P4 P2 > P4
CP P4, P4 P4 = P4 BRANCH ON EQUAL (BE or B2)

Page 199 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Handling Decimal Precision
Thereis asmall problem that arises dueto the fact that the decimal point is not explicitly
stored in the packed decimal format. Consider the following addition.

The positive number 234.12, represented as 23 41 2C
is added to the positive number 4.5678, represented as 45 67 8C.
The sum might be represented as 69 09 0C, which

is not correct. We must keep better track of the decimal.

It seems that the best approach isto store all values to be used in a given computation in the
same format, with the same number of implied decimal digits. Assume that the above values
are used in computations in which the most precise data have five decimal digits. Then we
would be required to have the following.

The value 234.12 would be treated as 234.12000, and stored as 02 34 12 00 OC.
The value 4.5678 would be treated as 4.56780, and stored as 04 56 78 OC.
The sum will then be correctly stored as 02 38 68 78 OC.
MP: Multiply Packed

Thisis of theform OP D1(L1, B1), D2(L2, B2), which provide a4-bit number
representing the length for each of the two operands. The object code format is as follows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DLLLBL),D2L2B2)|X ‘FC | L,L, |B.D;| D:D; | B,D, | D,D,

A typical source code examplewould be MP S1, S2. Beforethe multiplication, field
S1 holds the multiplicand and field S2 holds the multiplier. After the multiplication, field
S1 holdsthe product. The rulesfor the MP instruction are as follows.

1. Bothfields must contain valid packed data.

2. The maximum length of the first operand is 16 bytes, or 31 digits. However, this
is the maximum length of the product, not of the multiplicand. See below.

3. The maximum length of the second operand is 8 bytes, or 15 digits.
Either operand or both may contain an explicit length specifier.

5. Thestandard rules of algebraapply: Like signs yield a positive product and
unlike signs yield a negative product.

6. Thenumber of digitsin the product is usually equal to the sum of the count of
digitsin the multiplicand and the count of digitsin the multiplier.

Put another way, prior to multiplication, for each byte in the multiplier, the field to hold the
product must contain one byte of zero digitsto the left of the significant digits that represent
the multiplicand. One preferred use would be to use the ZAP instruction to move a smaller

multiplicand into the product field, as shown in the illustration below.

Page 200 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Consider the following sequence, which might be typical of the use.

ZAP PAY, HOURS
MP PAY, RATE

PAY DC PL7°0000000° STANDARD IS 980.00 OR 98 00 0OC
HOURS DC PL3* 400’ 40. 0 HOURS PER WEEK
RATE DC PL3‘ 245’ PAY RATE $24.50 PER HOUR

Handling Decimal Precision

Recall that the assembler does not track the position of the decimal point in any packed
decimal representation. That isthe responsibility of the programmer, who must write
assembly language instructions specifically to correct the product. Consider the example
above. A simplistic product might be expressed as09 80 00 OC. Isthisread as
$9,800.00 (a bonus for the worker) or $980.000 (too many decimal places).

In general, the number of decimal positionsin the product is equal to the sum of the number
of decimal places in the multiplier and the number of decimal placesin the multiplicand. If
either of theseis zero (or both are zero), no adjustment is required. Otherwise, the number of
decimal placesin the product must be adjusted.

The reason that this adjustment is required is that the number of decimal placesis never
tracked, but is always explicit. The only way to be able to assume the number of decimal
places in anumeric representation that does not indicate that number is to have every
arithmetic operation adjust the result to the correct count.

As an aside, one could write code to track the decimal position explicitly. One might store
the above results as pairs of numbers, such as (1, 400) for hours, (2, 2450) for the rate, etc.
However, thisis not the standard approach. What is needed isaway to truncate a product to
the correct number of decimal places; the SRP instruction does exactly that.

SRP: Shift and Round Packed

The SRP instruction was designed to shift packed datato the left or right, effectively dividing
or multiplying by a power of ten, and then rounding the number so produced. The standard
use seems to be away to round decimal datain the usual fashion; the value 2.416 is rounded
to either 2.42 or 2.4 depending on the number of decimalsrequired. Theinstruction seems to
support the other option, possibly called “un-rounding’, of extending 2.416 to 2.4160, etc.

While the SRP instruction can be used with the results of AP, SP, and ZAP; we discuss it
here within the more natural context of MP (multiplication of packed decimal data). The
reason for this choice should be obvious. The addition of two numbers with equal counts of
decimal places produces asimilar result; thus 2.32 + 4.56 = 6.88. On the other hand, if we
multiply 2.32 by 4.56, theresult is 10.5792. Depending on the application, it is common to
round the result to something like 10.58, preserving the count of decimal places.

While on the subject of addition and subtraction, we do not want to overlook an obvious
application of SRP. Consider the sum 2.416 + 7.32. Whilethisisnot likely to beseenin a
standard assembly language program, as the programmer surely will have been careful to
keep al decimal points consistent, it isatheoretical possibility. In thiscase, it would be
necessary to use the SRP instruction to convert this to one of the two equivalent forms: either
2416 + 7.320=9.736 or 2.42 + 7.32 = 9.74.

Page 201 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The SRP instruction is a storage-to—storage (type SS) instruction, with opcode X' FO’ .
Although the SRP is atype SSinstruction, it has three operands. The source codeis
commonly written in the form SRP PACKVAL, SHI FTCNT, ROUNDVAL.

Operand 1, here PACKVAL, denotes a packed field to shifted and possibly rounded.

Operand 2, here SHI FTCNT, indicates the count of digits to shift. The maximum
shift count is 31, which is the maximum size of a packed decimal field.

Operand 3, here ROUNDVAL, contains asingle digit (0 — 9) which isto be added to
the original value before shifting. This converts a shift operation into a rounding.
Normally, the values are O for | eft shifts and 5 for right shifts.

The use of the rounding value can be seen by an attempt to round the number 2.416 by
shifting right one place. A pure shift would change 2.416 to 2.41, which does have one less
decimal place. Use of SRP with arounding value of 5would first convert 2.416 to 2.421 and
then shift right to obtain the value 2.42, considered as a proper rounding of 2.416.

The SRP operation sets the condition codes to indicate zero, minus, or plus.

The SRP instruction was not a part of the original $/360 architecture, but was added with the
introduction of the §370 to replace the MV O (Move with Offset) instruction. We shall not
discuss the MV O instruction here; the reader is directed to reference R_02 for details.

The format of the instructionisSRP D1(L, B1), D2(B2), I 3.
The object code format for the SRP instruction is represented in the figure below.

Type | Bytes Form 1 2 3 4 5 6

SS(1) 6 Di(L,B1),D2(B2),I3 | X*FO" | LI |B;D;| D;D; |B,D,| D,D,

L isthe length indicator for the field to be shifted, denoted by PACKVAL in the example
above. Remember that the length is a byte count that is one more than the value stored.
Thus, the single hexadecimal digit can represent a value between 0 and 15 inclusive, to
represent afield length between 1 and 16 inclusive.

I3 isthe decimal digit to be added before shifting.

The two bytes B; D; D; D, represent the address of the field to be shifted (PACKVAL),
denoted in the standard base/displacement form.

The two bytes B, D, D, D, represent the shift count, using the standard base/di splacement
format to represent a count and not an address. The normal use would be either to use a
register to hold the count, or to set the register field to O (indicating no base register) and use
the displacement field to hold the constant value of the shift count.

Thereis an interesting feature of this part of the instruction that arises from the inability of
the assembler to process a negative displacement. Recall that the amount shifted is given by
acount in the range O through 31. Left shifts are denoted by positive numbers. It should be
obvious that these shift counts can be represented by a five-bit binary number.

Conceptually, the right shifts used as a part of rounding are represented by negative numbers
in the range from —1 through —31 inclusive. The actua format of the shift count is dictated
by the need to find another way to represent these negative numbers.

Page 202 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The best way to view this shift count is as a six—bit two’ s—complement signed integer.
Such aformat can represent integers in the range from —32 to +31 inclusive. Some of the
more common shift values would then be stored as follows.

Shift Description Hexadecimal Value Decimal Value
1 left 01 1
2 left 02 2
3 left 03 3
4 |eft 04 4
1right 3F 63
2right 3E 62
3right 3D 61
4 right 3C 60

Each of the values for right shifts can be obtained by calculating the representation as a
six-hit two’ s—complement integer. Consider the value for “3 right”.

The value +3 as a six—bit binary number 00 0011 or X' 03’ .
The one' s complement of this number 11 1100 or X 3C'.
Add oneto this vaue to get 11 1101 or X 3D .

The default format for the source code is based on decimal values and not hexadecimal.
Hexadecimal values can be specifically indicated; e.g., X' 3D’ . Theeasier way isto usea
formula N digits left encode with the decimal number N.

N digitsright encode with the decimal number (64 — N).

Examples of the SRP Instruction
In each of the following examples the valuein AMNT2 is being rounded by adding the value
5 and shifting right two places. The field AMNT2 is assumed to be at an address specified by

the offset 0B2 from the value in base register 12 (X* C). The first example, showing the use

of register 10 (X' A’) to specify the shift count, uses an instruction that will be defined later.

48E030 C2 SHI FTO1 LH 10,=H -2 R14 GETS NEGATI VE 2
F045 C0OB2 AO000 SRP AWNT2, 0(10),5
F045 COB2 003E SHI FT02 SRP AMNT2, X' 3E’, 5
FO045 COB2 003E SHI FTO3 SRP AWNT2, 62, 5
AINT2 DS PL5 LENGTH I S FI VE BYTES

Disassembly of the above

In each of the above instructions (except the first, which is aload register from halfword), the

opcodeis X' FO' , indicating a SRP instruction. The second byte is to be viewed as two
independent hexadecimal digits. Thefirst digit, with value 4, indicates that the length of the
field to be shifted (AMNT2) isfive bytes. The second digit, with value 5, is the value to be
added to thefield before it is shifted. The next two bytes (C0 B2) specify the address of the
field to be shifted. The last two bytes specify the count for the shift.

In the first example, the count is specified by adding O to the value stored in aregister. Inthe

other two, the count is specified by a constant with no base register. One might use a
combination of the two (asin A0 04), but this usage seems a bit strange.

Page 203 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

DP: Divide Packed

The DP (Divide Packed) instruction divides one packed field (the dividend) by another (the
divisor), producing a quotient and aremainder. The DP instruction is a storage-to—storage
instruction, with opcode X' FD' . TheformisOP D1(L1, B1), D2(L2, B2), which
provide a 4-bit number for the length for operand. The object code format is as follows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DLLLBL),D2L2B2)|X ‘FC' | L,L, |B.D;| D:D; | B,D, | D,D,

The lengths and address calculations are just as in the other packed decimal instructions. The
rules for the DP instruction are as follows.

1. Each operand must contain datain valid packed decimal format.

2. Themaximum length of the first operand (the dividend) is 16 bytes (31 digits).
The maximum length of the second operand (the divisor) is 8 bytes (15 digits).

3. Either operand may specify an explicit length.
A zero divisor will cause a program interrupt.

5. DPusesthenormal rules of algebra. Like signsin the dividend and divisor
produce a positive quotient; unlike signs produce a negative quotient.

6. After thedivision, thefield that first contained the dividend now contains
the quotient and remainder, each with asign half-byte.

Before division Dividend
After division Quotient | Remainder

The remainder field has a size equal to that of the divisor. Together, the quotient and
remainder occupy the entire dividend field. The address of the quotient is the same as that
for the dividend. The address of the remainder must be computed.

In the original operands, the dividend had length (L1 + 1) and the divisor alength (L, + 1).
In the results of the operation, the length of the remainder isaso (L, + 1), the same as that
for the divisor. Thus, the length of the quotientis(L; + 1) — (L, + 1) = (L; - Lp), and its
length code would be oneless: (L1 — L, —1). Asaresult, the address of the remainder is
given by A(Quotient) + (L1 — L>).

Asisthe case with packed decimal multiplication, the program should use the SRP
instruction to adjust the number of decimal places in both the quotient and remainder. Asa
general rule the number of decima placesin the remainder is the same as the number in the
divisor, and the number of decimal placesin the quotient is the difference between the count
in the dividend and that in the divisor. If the dividend does not already contain a sufficient
number of decimal places, it is necessary to use the SRP instruction to generate additional
positions by left shifting the dividend. In this case, the value for rounding would be 0.

This brief discussion of the DP instruction concludes our list of instructions for decimal
arithmetic operations.

Page 204 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Conversion between EBCDIC and Packed Decimal

We have now examined a number of packed decimal arithmetic instructions. It isnow time
to face the problem of conversion of digits between EBCDIC format and packed decimal
format. At alater time we shall address the problem of conversion between packed decimal
format and two’ s—complement fullword format.

When a number is read from input, it is presented as a sequence of EBCDIC characters.
Arithmetic based on this input must be done in one of the standard numeric formats, unless
one wants to write an extraordinary amount of support code. The results must then be
converted back to EBCDIC and formatted for output. We now present a number of
instructions used for this purpose.

Along the way, we shall note the inability of the standard instructions to handle signed data
asinput. Thedigits'0" through ‘9" can be processed, but the signs‘+’ and ‘-’ cannot be.

We shall comment on anumber of standard tricks that older assembly language programs use
to get around this problem and then write some procedures to handle the issue.

The main issue in the conversion between EBCDIC and packed decimal format is suggested
by the names of the operations that can be used for those conversions PACK and UNPACK.
In the EBCDIC and zoned decimal format, each decimal digit requires an 8-bit byte for its
representation. In the packed decimal format, each digit requires a4-hbit hexadecimal digit.
This representation introduces an amusing, but totally unimportant, ambiguity. Inavalue
such as represented by X' 789D, are the numeric values decimal or hexadecimal? The
answer isthat it does not matter, each digit requires four bits for encoding.

One of the key ideas in understanding the zoned decimal format is the division of the byte
into two “half bytes’ or hexadecima digits. The most significant is called the zone part and
the least significant is called the numeric part. The figure below illustrates this division.

Portion Zone Numeric
Bit 0 1 2 3 4 5 6 7

There are two instructions specifically designed to process these half-byte fields. These are:
MVZ Move the zone half byte, and
MVN Move the numeric half byte.

Each of theseinstructionsis atype SSinstruction, more properly classified as character
instructions than packed decimal instructions. The two are included here because their sole
use seems to involve tranglation to and from packed decimal format.

The format of each instruction is OP Di(L,B1),D2(B2). Thisformat reflectsthe
fact that each of the source and destination addresses is specified by a base register (often the
default base register) and a displacement. Hereisthe format of the object code.

Type Bytes Form 1 2 3 4 5 6
SS(1) 6 D1(L,B1),D2(B2) oP L B, D, D;D, B, D, D.D,
Page 205 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The opcode for MVZ is X' D3’ , that for MVN is X' D1’ . Theinstruction is commonly
written in source code in theform OP S1, S2. Characteristics of the two instructions include
the following.

1. Each moves half bytes from the address specified by the second operand
to an address specified by the first operand.

2. Each may move from 1 to 256 half-bytes, as specified by the length byte
in the object code representation.

3. Neither move affects the contents of the second operand.

All of the addressing conventions used by the character instruction MVC
may be used with either of these instructions.

5. Eachinstruction moves the half—byte associated with it and does
not affect the other half byte.

6. TheMVZ (Move Zones) moves the zone portion of each source byte to
the zone portion of the corresponding destination byte. It does not
change the numeric portion of the destination byte.

The MVN (Move Numeric) moves the numeric portion of each source byte to
the numeric portion of the corresponding destination byte. It does not
change the zone portion of the destination byte.

Aswe shall soon see, the MV Z instruction is of more immediate interest to this course,
which nevertheless covers both as important. As always, we shall illustrate the operation of
the instructions by considering two fields defined by the DC directives,

Assume that we have the following two data fields defined with initialized storage.
S1 DC C 123 Stored as F1 F2 F3
S2 DC X 45 67 C8 Stored as 45 67 C8
Execute the instruction MVN S2, S1. This moves the numeric portion of each bytein
S1 to the numeric portion of the corresponding bytein S2.

F1 F2 F3 becones F1 F2 F3

45 67 C8 41 62 C3
Independently, execute the instruction MVZ S2, S1. This moves the zone portion of each
byte in S1 to the zone portion of the corresponding bytein S2.

F1 F2 F3 becones F1 F2 F3

45 67 C8 F5 F7 F8

We shall jump ahead to mention one good use of the MV Z instruction, asit applies to the
process of unpacking data using the UNPK instruction. The goal of the unpacking processis
to turn packed decimal datainto EBCDIC format suitable for printing. However, the UNPK
instruction converts from packed decimal format to zoned decimal format.

Consider the positive decimal number 1234, represented in packed decimal format as
01 23 4C. Theresult of an unpack instruction will be represented in zoned decimal format
asFO F1 F2 F3 C4, whichwill print asthestring 123D, as X' C4’ isEBCDICfor* D .

Page 206 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The use of the MV Z instruction isillustrated by the following. Consider the following
declaration, given in hexadecimal just to make it easier to read.

S3 DC X FOF1F2F3C4’ Stored as FO F1 F2 F3 ¢4
Thebyte X' C4’ isat location S3 + 4. The following instruction is executed.
MWZ S3+4(1),=X FO’

In the above instruction, the source operand is specified asaliteral. Note that the second
hexadecimal digit is unimportant. It isthe hexadecimal digit F that occupies the zone part of
the byte, and it isonly that part that is moved.

The address associated with the destination is given by the relative address S3+4; it is four
bytes offset from the address S3. In other words, it isthe fifth byte of the five-byte string.

The (1) part of the instruction indicates that only one zone in the destination isto be
changed. Hereit isthe zone part of the byte at the address S3+4.

The zoned decimal datastoredas FO F1 F2 F3 4
is changed to data stored as FO F1 F2 F3 F4
which isthe proper EBCDIC for the digit string” 01234 .

PACK

The pack instruction is designed to convert datain zoned decimal format, one digit per byte,
to packed decimal format, with approximately two digits per byte. Due to the similarity of
EBCDIC format to zoned decimal format, the instruction is commonly used to convert from
EBCDIC format into packed decimal format.

The PACK instruction is a storage-to—storage (type SS) instruction, with opcode X' F2’ .
The instruction may be written in source code as PACK PACKED, ZONED. The affect of this
instruction isto take the zoned data in the field represented by the second operand, translate

it to packed format, and place the data into the field represented by the first operand.

Theinstruction is of theform PACK D1(L1, B1), D2(L2, B2) , which uses the standard
base/displacement addressing form for each of the two operands. Note that the length of
each operand (in bytes) is also encoded. The object code format is as follows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DLLLBL),D2L2B2)|X ‘F2° | L,L, |B.D;| D:D; | B,D, | D,D,

The following are the rules for PACK:

1. Operand 2 must hold data representing digits or blanks, and the rightmost byte must
hold the code for adigit. The coding may be EBCDIC or zoned decimal.

2. The maximum length for each operand is 16 bytes.
3. Bytesreferenced by operand 2 are packed one byte at atime from right to |l eft.

4. other than the rightmost byte, al zones are ignored and only the numeric part of the
codeis copied. For the rightmost byte, the half bytes are reversed. The zone part of
the last byte in zoned decimal becomes the sign half byte in packed decimal.

Page 207 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Consider the following two representations of the positive number 123.
Asastring of EBCDIC characters, it is the three bytes F1 F2 F3.
As stored in zoned decimal format, it is the three bytes F1 F2 C3.

When executed according to its original design, the PACK instruction operates on
datain the zoned decimal format. Its action on this example is shown below.

F1|F2|C3

I

12| 3¢
When the instruction operates on digital datain EBCDIC form, it functionsidentically.
F1|F2| F3

12 |3F

Note that the zone part of the |ast byte has become the sign half-byte in the packed decimal
format. Itisfor thisreasonthat X' F’ isrecognized asavalid sign indicator.

We now focus on conversions of decimal data between the two formats that may
be used to represent them:

1. The EBCDIC character encoding used for input and output.
2. The packed decimal format used for decimal arithmetic.

Packing Blanks

While the PACK instruction can handle leading blanks, a serious problem can ariseif the
field to be packed contains al blanks (EBCDIC code 0x40). Consider first an acceptable
input. Suppose that the five character string “ 2" or EBCDIC40 40 40 40 F2
isinput. What happens here? Note that the numeric part of the EBCDIC code for the blank
is the same as the numeric part of the EBCDIC code for the digit “0”. Thisworks, producing
the packed string “00002F”, asillustrated below.

40 40 40 40 F2

00 00 2F

Now consider the five character input “ " or EBCDIC40 40 40 40 40. This
will pack to the string “ 000004” , which lacks avalid sign, as shown below. Thisinvalid
packed input cannot be processed by any packed decimal instruction.

40 40 40 40 40

00 00 04

Page 208 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Some authors suggest checking al input fields and replacing those that are blank
with all zeroes. This suggests avery common meaning of blanks as equivalent to O.

Hereis the code, directly from Abel’ stextbook. Theinput field, RATEI N, is
supposed to contain one to five digits, but no more than five.

CLC RATEIN, =CL5" ' Is this a field of five bl anks

BNE D50 No, it is not all blanks

MVC RATEI N, =CL5' 00000’ Repl ace 5 blanks with 5 zeroes
D50 PACK RATEPK, RATEI N St ore packed val ue i n RATEPK

More on Input of Digitsto be Formatted as Packed Data
Recall that the input of packed datais atwo-step procedure.

1. Input the digits as a string of EBCDIC characters.
2. Convert the digits to packed format.
The format of the input is dictated by the appropriate data declarations.

In this example, we consider the following declaration of the form of the input, which is best
viewed as an 80-column card. Hereisapart of aprogram to read numbers, one per line.

RECORDI N DS 0CL80 80 CHARACTER CARD | MAGE
DATS DS CL5 FI RST FI VE COLUWNS ARE | NPUT
FILLER DS CL75 THE OTHER 75 ARE | GNORED
Hereis aproperly formatted input sequence.

1 Four bl anks before the “1”.

13 Three bl anks before the “13”.

In order to see that thisis the proper format for the digits, we look at a representation that
emphasi zes the column placement of the digits.

=2 | | =

Reading fromright to left: Column 5 is the units column
Column 4 is the tens column
Column 3 isthe hundreds column, etc.

Note that each digit is properly placed; thefirst lineisreally 00001.

Page 209 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

OneError: Assuming Free—Formatted I nput
Hereis some input from the same program. Recall that it was designed to read numbers, one
per line, and to output the sum.. It did not work.

1
3
13
17

The student expected free—form input and assumed that this would be interpreted as the sum
1+ 3+ 13+ 17 = 34. But free—form input is an artifact of awell-written run time system,
with particular attention to the user interface.

Here is the way that the input was interpreted.

Input

Y [Py
]| L2

To methislooks like 10000 + 30000 + 13000 + 17000. | had expected the above input
to give asum of 70000. It did not. Hereisthe code loop for the processing routine.

B10DO T MWC DATAPR, RECORDI N FI LL THE PRI NT AREA
PUT PRI NTER, PRI NT START THE PRI NT
PACK PACKIN, DIG TSIN CONVERT | NPUT TO DECI MAL
AP PACKSUM PACKI N ADD I T UP
BR R8 RETURN FROM SUBROUTI NE

Hereisthe actual output. All we get isthe header line and a print echo of the first line inpui.
The header line had been printed by an earlier part of the program.

% PROGRAM FOUR CSU SPRI NG 2009 * * % * %% % & %

1

A Diagnostic
Hereisthe code that isolated the problem. Note the one line commented out.
B1ODAO T MWWC DATAPR, RECORDI N FI LL THE PRI NT AREA

PUT PRI NTER, PRI NT START THE PRI NT

PACK PACKI N, DI A TSI N CONVERT | NPUT TO DECI MAL
el AP PACKSUM PACKI N ADD I T UP

BR R8 RETURN FROM SUBROUTI NE
Page 210 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The program ran to completion. Hereisthe output for the code fragment above.

kkhkkkkhkhkkkhhkkkhkk*k T(P O: DATA R R Ik b S b S S R R I O O I

*** PROGRAM FOUR CSU SPRI NG 2009 **** %k xxx
1
3
13
17
THE SUM = 000000
kkkkkikkikkikkikkk*k BO‘I’TO\A O: DATA kkhkkkhkhkkhkkhhkhhkkhkhkhkkkhkhkhkkhkkhkhkhkihkikkhk*k

The Diagnosis
Look again at the input.

Input

Y [Py
]| L2

Thefirst line, as EBCDIC charactersisread asfollows. F1 40 40 40 40

The PACK command processesright to left. It will process any kind of data, even data that
do not make sense as digits. Thisinput will pack to X' 10004’ , an invalid packed format.

With no valid sign indicator, the AP instruction fails and the program terminates.

Printing Packed Data

In order to print packed decimal data, it must be converted back to a string of EBCDIC
characters. The UNPK command isapart of thisconversion. It convertsdigital datafrom
the packed decimal form to the zoned decimal form, which must be processed further.

The UNPK instruction is a storage—to—storage (type SS) instruction, with opcode X' F3’ .
The instruction may be written in source code as UNPK ZONED, PACKED. The affect of this
instruction isto take the packed datain the field represented by the second operand, transate
it to zoned decimal format, and place the datainto the field represented by the first operand.

Theinstruction is of theform UNPK D1(L1, B1), D2(L2, B2) , which usesthe standard
base/displacement addressing form for each of the two operands. Note that the length of
each operand (in bytes) is aso encoded. The object code format isasfollows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DL(LLB1)D2L2B2) |X F3 | L,L, |B.D.| DiD; | B,D, | D.D;

Page 211 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Thefollowing are the rules for PACK:

1. The maximum length for each field is 16 bytes, which implies a maximum length
of 8 bytes for the field holding the packed data. Suppose that the packed datais
stored in 9 bytes, which would represent 17 digits. Thiswould unpack to 17 bytes.

2. Bytesreferenced by operand 2 are unpacked right to left, one byte at atime.

3. For al but the rightmost byte of the packed data, each hexadecimal digit is handled
separately, being inserted into the numeric zone of the zoned data format.

4. Therightmost byte of the packed data hasits half bytes reversed, with its sign
half byte being moved to the zone part of the zoned data and the left half byte
being moved to the numeric part of the zoned data. Consider the number 47,
which would be represented internally as04 7C.

When this is unpacked, we might want it to become FO F4 F7, which would print as the
three—digit string “ 047" or perhaps as the two-digit string “ 47” . However, UNPK just
swaps the sign half byteto produce FO F4 C7.

Thisprintsas” 04C” , because X' C7’ isthe EBCDIC code for the letter ‘G’.

We have to correct the zone part of the last byte. The problem occurs when handling the sign
code, “C” or “D” in the Packed Decimal format. This occurs in the rightmost byte of a
packed decimal value.

Printing Packed Data (Part 2)
Hereisthe code that works for five digit numbers. It iswritten as a subroutine, that is called
asBALR R8, NUMOUT.

NUMOUT CP QTYPACK, =P 0’ |'S THE NUMBER NEGATI VE
BNM NOTNEG NO, IT I'S NOT.
M/ QTYOUT+5, C - YES, IT IS, PLACE SI GN AT QTYOUT+5
NOTNEG ~ UNPK QTYOUT, QTYPACK PRODUCE FORMATTED NUMBER
M/Z QIYOUT+4(1),=X FO' MOVE 1 BYTE TO ADDRESS QTYOUT+4
* TH S SETS THE ZONE PART CORRECTLY
BR 8 RETURN ADDRESS | N REG STER 8
QTYPACK DS PL3 HOLDS FIVE DI Gl TS I N THREE BYTES
QTYOUT DS 0CL6
DIGTS DS CL5 THE FIVE DIG TS
DC CL1 THE SI GN

Again, the expression QTYOUT+4 is an addr ess, not avalue.
If QTYQUT holds C'01234’, then QTYOUT+4 holdsC ‘4’.

Here, we have accidentally introduced the standard simplistic way of representing negative
numbersin the printout of an assembly language program. Thisis done becauseitisfar
simpler than formatting the output in the standard manner, in which the minus sign isto the
left of the most significant digit in the output. The table below will illustrate the two output
options as might be seen for a five-digit number.

Internal Vaue Standard Print Format | Simple Print Format
01 23 4C 1234 01234
01 23 4D -1234 01234-
Page 212 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

Unpacking and Editing Packed Decimal Data

Each of the UNPK (Unpack) and the ED (Edit) instruction will convert packed decimal data
into aform suitable for printing. The ED and EDMK instructions seem to be more useful
than the UNPK. In addition to producing the correct print representation of all digits, each
allows for the standard output formats.

The ED instruction is a storage—to—storage (type SS) instruction, with opcode X' DE’ .
Theinstruction may be written in source code as ED PRNTREP, PACKED.

The EDMK instruction is also a storage-to—storage (type SS) instruction, with opcode
X DF’ . It may be written in source code as EDMK PRNTREP, PACKED.

Each instruction is of theform OP D1(L1, B1), D2(L2, B2) , which uses the standard
base/displacement addressing form for each of the two operands. Note that the length of
each operand (in bytes) isaso encoded. The object code format isasfollows.

Type | Bytes Form 1 2 3 4 5 6

SS(2) | 6 |DL(LLBL),D2L2B2)| OP L.L, |B.D,| DiD; | B,D, | D:D,

The use of the ED instruction is a two—step process.

1. Define an edit pattern to represent the punctuation, sign, and handling of leading
zeroes that isrequired. Usethe MV C instruction to move this into the output
position, which is PRNTREP in the above example.

2. Usethe ED instruction to overwrite the output position with the output string that will
be formatted as specified by the edit pattern. The first character in the edit
pattern is afill character that is not overwritten.

The EDMK instruction isidentical to the ED instruction, except that it “marks” the leftmost
significant digit by returning its address as the contents of general—purpose register 1. Think
of the print output being scanned left to right, towards increasing byte addresses. The most
significant digit isthe leftmost. We shall discuss this more thoroughly in just a bit.

Hereis an example. Note that there are anumber of length constraints, specifically that the
length of the edit pattern match the length of the output area.

WC COUNPR, =X 40202020’ Four bytes of pattern
ED COUNPR, COUNT

More code here

COUNT DC PL'00Y
COUNPR DS CL4

Note the sequence of eventsin these two lines of code.
1. Theedit pattern is moved into the output field. The leading pair of hexadecimal
digits, 0x40, state that ablank, *, will replace al leading zeroes.
2. Thedecima valueis edited into the output field COUNPR, overwriting
the edit pattern.

Theresult is printed as the four character sequence * 1", represented in EBCDIC
as X' 4040 40F1'.

Page 213 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

ED: Basic Rules
The basic form of theinstructionis ED S1, S2

Thefirst operand, S1, references the leftmost byte of the edit word, which has been placed in
the output area. Thisfield will befilled with the formatted output.

The second operand, S2, references a packed field to be edited.

One key concept in the editing for output is called “ significance”. In many uses, leading
zeroes are not treated as significant and are replaced by the fill character.

Thus, the number represented in packed decimal format as001C might printas® 1" or as
“001” depending on whether or not leading zeroes are required.

There are times in which one wants one or more leading zeroes to be printed. Asan
example, consider the real number 0.25, which is stored as025C. It might best be
printed as“ 0. 25" with at least one leading zero. Thisleadsto the concept called
“forcing significance”, in which leading zeroes are printed.

TheFill Character
The leftmost hexadecimal byte in the output area before the execution of the instruction
begins represents the fill character to use when replacing non—significant leading zeroes.
Two standard values are: X' 40’ ablank C

X 5C anasterisk **’ Often used in check printing.

Consider the three digit number 172, stored internally as 172C. For now, assume that
the field from which it will be printed allows for five digits. With afill character of X* 40’
(blank), thiswould normally be printed as 172.

We can force significance to cause either 0172 or 00172 to be printed. For this number,
with afill character of X' 40’ , our options would be one of the three following.

172
0172
00172

With afill character of X' 5C , we might have one of the three following. Note that the
function of theleading “ *” isto prevent other digits from being inserted at the | eft.

**172
*0172
00172

By itself, the leading asterisk is an inadequate security feature. However, when combined
with other printing conventions (noted below), it can prevent many obvious ways of altering
the amount of a check.

An amount on a properly printed check might appear as $** 1, 234. 00.

Page 214 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

The Edit Word: Encountering Significance
Here are some of the commonly used edit characters. Note that it is more convenient
to represent these by their hexadecimal EBCDIC.

One key ideaisthe encounter of significance. The instruction generates digits for possible
printing from left (most significant) to right (least significant). Two events cause this
encounter: 1) anon-zero digit is generated, and 2) adigit is encountered that is associated
with the 0x21 edit pattern. As noted above, the first character in the edit word isthe fill
character. The codes that are used for the digit positions are as follows:

0x20 Digit selector. Thisrepresents adigit to be printed, unless it
happens to be aleading non-significant zero.
In that case, the fill character is printed.

0x21 Digit selector and significance starter. This not only represents a
digit to be printed, but it aso forces significance. Each digit
to the right will be printed, even if aleading zero.

Unless oneis careful, ED might result in an output field that isall blanks. For printing
integer values, one might seriously consider ending the edit pattern with the values 0x2120.
Significanceis forced after the next—to-last digit, forcing at least one digit to be printed.

As noted above, the EDMK instruction will insert the address (not the offset) of the leftmost
significant digit into general—purpose register 1. This address can be decremented by 1 and
then used to place a currency sign or other prefix. Please see the example below.

The Edit Word: Formatting the Output
Part of the function of the ED and EDIVK commands is to allow standard formatting of the
output, including decimal points and commas. Handling of negative numbersis abit strange.

Here are the standard formatting patterns.

0x4B The decimal point. If significance has been encountered, the decimal
point is printed. Otherwise, thefill character is printed.

0x6B The comma. If significance has been encountered, the commais
printed. Otherwise, thefill character is printed.

0x60 Theminussign, “=". Thisisused in an unexpected way.

The standard for use of the minus sign arises from conventions found in commercial use.
Theminussignis placed at the end of the number.

Thus the three digit positive number 172 would be printed as 172
and the three digit negative number —172 would be printed as 172—.

The edit pattern for this output (ignoring the significance issue) would be as follows:

0x4020202060. Thefill character isablank. There arethree digits followed by
asign field, which is printed as either “—" or thefill character.

Page 215 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

ED: An Example with Formatting
In this example, it is desired to print aseven digit number, formatted as follows.

1. Itisafixed point number, with two digits to theright of the decimal.

2. It hasfivedigitsto theleft of the decimal and places acommain the
standard location if significance has been encountered.

3. It will be printed with aterminating “—" if the number is negative.
This situation isillustrated in the following graphic.

1234356

The edit pattern for this example would be as follows:

1 2 3 4 5 6 7

40 20 20 6B 20 21 20 4B 20 20 60

Note: Thesignificance forcer at digit 4 will insure that digit 5is printed,
evenif it isazero.

EDMK: An Example
Here we shall give an example of the use of the Edit and Mark instruction, using the
edit word that we have just discussed. Here isthe sample code:

WC AMIPR, EDPAT MOVE EDI T PATTERN TO PRI NT FI ELD
EDMK AMIPR, AMIPAK FORVAT THE PACKED FCOR PRI NTI NG
*
* HERE REG STER 1 CONTAI NS THE BYTE ADDRESS OF THE MOST
* SIGNIFICANT DIG T. THE ADDRESS | S NOT LESS THAN
* (AMIPR + 1), THE ADDRESS OF “DIG T 1" I N THE PATTERN ABOVE.
*
SH R1, =H 1’ DECREMENT ADDRESS BY 1
Wl 0(1),C¥ PLACE THE DOLLAR SI GN
EDPAT DC X' 4020206B2021204B202060° THE PATTERN ABOVE
AMIPAK DC P* 12345’ THE AMOUNT TO DI SPLAY
AMIPR DS CL11 THE PRI NT REPRESENTATI ON

If thevaluein AMTPAK were formatted with the ED instruction, we would not be able to
use the code aboveto placethe “$” character. Here are the two outputs.

With the ED operator, the output is $ 123.45
With the EDMK ingtruction, the output is $123. 45
Page 216 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

ED: Moreonthe®“*” Fill Character

One option for thefill character isOx5C, the asterisk. Why isthisused? Consider the above
seven—digit example, in which the number is to be viewed as a money amount. We shall use
the dollar sign, “$”, in the amount.

Consider the amount $123. 45. We would like to print it in this fashion, but placing the
dollar sign in thisway presents difficulties. Standard coding practice would have been to
place the dollar sign in a column just prior to that for the digits. The format would have been
asfollows.

Coumn| O | 1 | 2 | 3 4 5 6 7| 8 9 10

$ Digits : Digits : Digits -

If the blank fill character were chosen, this would print as $ 123. 45.
Note the spaces before the first digit. To prevent fraud, weprint $***123. 45

ED: A More Complete Example

We now show the complete code for producing a printable output from the seven digit
packed number considered above. We shall use “*” as afill character. Note that the output
will be eleven EBCDIC characters. Hereisthe code.

PRI NTAMIT WC AMNTPR, EDI TWD
ED AMIPR, AMITPACK
* The fill character is “*”. Also punctuation as foll ows

EDITWD DC X 5C20206B2021204B202060"

*

AMTPACK DS PL4 FOUR BYTES TO STORE SEVEN DI G TS.
AMIPR DS CL11 THE FORVATTED PRI NT OUTPUT

ED: Another Example Using an Edit Pattern
This exampleis adapted from Abel’ s textbook. Suppose that we have the following.

The packed value to be printed is represented by
DC PL3' 7’ Thisisrepresented as00 00 7C.

The edit pattern, when placed in the output area beginning at byte address 90,
is as shown below.

Address 90 91 92 93 94 95 96 97

Code 40 20 21 20 4B 20 20 60

Note the structure here: 3 digitsto the left of the decimal (at least one will be printed),
the decimal point, and
two digits to the right of the decimal.

This might lead one to expect something like “000.07” to be printed.

Page 217 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

At address 90 the contents are 0x40, assumed to be the fill character.
This location is not altered.
Address 90 91 92 93 94 95 96 97
Code 40 20 21 20 | 4B 20 20 60
At address 91 the contents Ox20 isa digit selector. Thefirst digit
of the packed amount is examined. Itisa0. 00007C
ED replaces the 0x20 with the fill character, 0x40.
Address 90 91 92 93 94 95 96 97
Code 40 40 21 20 | 4B 20 20 60
At address 92 the contents Ox21 is a digit selector and a significance forcer
for what follows. The second digit 00007C
of the packed amount is of the packed amount is examined.
Itisa0. ED replacesthe 0x21 with the fill character, 0x40.
Address 90 91 92 93 94 95 96 97
Code 40 40 40 20 | 4B 20 20 60
At address 93 the contents 0x20 isa digit selector. Significance has been
encountered. Thethird digit of the packed 00007C
amount is of the packed amount is examined.
Itisa0. ED replacesthe 0x20 with OxFO, the codefor ‘0’
Address | 90 91 92 93 7 95 96 97
Code 40 40 40 FO | 4B 20 20 60
At address 94 the contents Ox4B indicate that a decimal point isto be printed
if significance has been encountered. It has been, so the pattern
is not changed. Had significance not been encountered, this
would have been replaced by the fill character.
Address | 90 91 92 93 7 95 96 97
Code 40 40 40 FO | 4B 20 20 60
At address 95 the contents Ox20 isa digit selector. Significance has been
encountered. The fourth digit of the packed 00007C
amount is of the packed amount is examined.
Itisa0. ED replacesthe 0x20 with OxFO, the codefor ‘0’.
Address | 90 91 92 93 7 95 96 97
Code 40 40 40 FO | 4B FO 20 60
Page 218 Chapter 11 Last Revised July 1, 2009

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Decimal Data

At address 96 the contents Ox20 isa digit selector. Significance has been
encountered. The fourth digit of the packed 00007C
amount is of the packed amount is examined.

Itisa7. ED replacesthe 0x20 with OxF7, the codefor ‘ 7°.

Address | 90 91 92 93 94 95 96 97
Code 40 40 40 FO | 4B FO Fr7 60

At address 97 the contents Ox60 indicate to place aminus sign if the number
to be printed is found to be negative. It isnot, so the instruction
replaces the negative sign with the fill character.

Address | 90 91 92 93 94 95 96 97
Code 40 40 40 FO 48 FO Fr 40

At this point, the process terminates. We have the EBCDIC representation of
the string to be printed. As characters, this would be “ 0.07 ”. Notethat thereisa
trailing space in this printout; it occupies a column in the listing.

Note that additional code would be required to print something like* $ 0. 07 .
Thiswould involve a scan of the output of the ED instruction and placing the dollar
sign at a place deemed appropriate.

Suppose now that the packed value to be printed is represented by
DC PL3' 7’ Thisisrepresented as00 00 7D.

Suppose that the edit pattern is specified as follows:

Address 90 91 92 93 94 95 96 97

Code 5C 20 21 20 48 20 20 60

The reader should verify that the print representation would be“ ***0. 07- " .

Page 219 Chapter 11 Last Revised July 1, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

