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Chapter 5: Introduction to Computer Architecture

We now begin an overview of the architecture of a typical stored program computer. It
should be noted that this architecture is common to almost all computers running today, from
the smallest industrial controller to the largest supercomputer. What sets the larger
computers, such as the IBM ASCII Blue (a supercomputer capable of 1015 floating point
operations per second), apart from the typical PC is that many larger computers are built
from a large number of processor and memory modules that communicate and work
cooperatively on a problem. The basic architecture is the same.

Stored program computers have four major components: the CPU (Central Processing Unit),
the memory, I/O devices, and one or more bus structures to allow the other three components
to communicate. The figure below illustrates a typical architecture.

Figure: Top-Level Structure of a Computer

The functions of the three top-level components of a computer seem to be obvious. The I/O
devices allow for communication of data to other devices and the users. The memory stores
both program data and executable code in the form of binary machine language. The CPU
comprises components that execute the machine language of the computer. Within the CPU,
it is the function of the control unit to interpret the machine language and cause the CPU to
execute the instructions as written. The Arithmetic Logic Unit (ALU) is that component of
the CPU that does the arithmetic operations and the logical comparisons that are necessary
for program execution. The ALU uses a number of local storage units, called registers, to
hold results of its operations. The set of registers is sometimes called the register file.
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Fetch-Execute Cycle
As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program
computer. The CPU fetches each instruction from the memory unit, then executes that
instruction, and fetches the next instruction. An exception to the “fetch next instruction” rule
comes when the equivalent of a Jump or Go To instruction is executed, in which case the
instruction at the indicated address is fetched and executed.

Registers vs. Memory
Registers and memory are similar in that both store data. The difference between the two is
somewhat an artifact of the history of computation, which has become solidified in all
current architectures. The basic difference between devices used as registers and devices
used for memory storage is that registers are faster and more expensive.

In modern computers, the CPU is usually implemented on a single chip. Within this context,
the difference between registers and memory is that the registers are on the CPU chip while
most memory is on a different chip. As a result of this, the registers are not addressed in the
same way as memory – memory is accessed through an address in the MAR (more on this
later), while registers are directly addressed. Admittedly the introduction of cache memory
has somewhat blurred the difference between registers and memory – but the addressing
mechanism remains the primary difference.

The CPU contains two types of registers, called special purpose registers and general
purpose registers. The general purpose registers contain data used in computations and can
be accessed directly by the computer program. The special purpose registers are used by the
control unit to hold temporary results, access memory, and sequence the program execution.
Normally, with one now-obsolete exception, these registers cannot be accessed by the
program.

The program status register (PSR), also called “program status word (PSW)”, is one of
the special purpose registers found on most computers. The PSR contains a number of bits to
reflect the state of the CPU as well as the result of the most recent computation. Some of the
common bits are

C the carry-out from the last arithmetic computation
V Set to 1 if the last arithmetic operation resulted in an overflow
N Set to 1 if the last arithmetic operation resulted in a negative number
Z Set to 1 if the last arithmetic operation resulted in a zero
I Interrupts enabled (Interrupts are discussed later)

The CPU (Central Processing Unit)
The CPU is that part of the computer that “does the work”. It fetches and executes the
machine language that represents the program under execution. It responds to the interrupts
(defined later) that usually signal Input/Output events, but which can signal issues with the
memory as well as exceptions in the program execution. As indicated above, the CPU has
three major components:

1) the ALU
2) the Control Unit
3) the register set

a) the general purpose register file
b) a number of special purpose registers used by the control unit.
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The ALU (Arithmetic–Logic Unit)
This unit is the part of the CPU that carries out the arithmetic and logical operations of the
CPU, hence its name. The ALU acts in response to control signals issued by the Control
Unit. Quite often there is an attached floating–point unit that handles all real–number
arithmetic, so it is not completely accurate to say that the ALU handles all arithmetic.

The Control Unit
This unit interprets the machine language representing the computer program under
execution and issues the control signals that are necessary to achieve the effect that should be
associated with the program. This is often the most complex part of the CPU.

Structure of a Typical Bus
A typical computer contains a number of bus structures. We have already mentioned the
system bus and a bus internal to the CPU. Some computer designs include high-speed point-
to-point busses, used for such tasks as communication to the graphics card. In this section,
we consider the structure of the system bus. The system bus is a multi-point bus that allows
communication between a number of devices that are attached to the bus. There are two
classes of devices that can be connected to the bus.

Master Device a device that can initiate action on the bus.
The CPU is always a bus master.

Slave Device a device that responds to requests by a bus master.
Memory is an excellent example of a slave device.

Devices connected to a bus are often accessed by address. System memory is a primary
example of an addressable device; in a byte-addressable machine (more later on this),
memory can be considered as an array of bytes, accessed in the same way as an array as seen
in a typical programming language. I/O devices are often accessed by address; it is up to the
operating system to know the address used to access each such device.

Memory Organization and Addressing
We now give an overview of RAM – Random Access Memory. This is the memory called
“primary memory” or “core memory”. The term “core” is a reference to an earlier memory
technology in which magnetic cores were used for the computer’s memory. This discussion
will pull material from a number of chapters in the textbook.

Primary computer memory is best considered as an array of addressable units. Such a unit is
the smallest unit of memory that can have an independent address. In a byte–addressable
memory unit, each byte (8 bits) has an independent address, although the computer often
groups the bytes into larger units (words, long words, etc.) and retrieves that group. Most
modern computers manipulate integers as 32–bit (4–byte) entities, but 64–bit integers are
becoming common. Many modern designs retrieve multiple bytes at a time.
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In this author’s opinion, byte addressing in computers became important as the result of the
use of 8-bit character codes. Many applications involve the movement of large numbers of
characters (coded as ASCII or EBCDIC) and thus profit from the ability to address single
characters. Some computers, such as the CDC-6400, CDC-7600, and all Cray models, use
word addressing. This is a result of a design decision made when considering the main goal
of such computers – large computations involving floating point numbers. The word size in
these computers is 60 bits (why not 64? – I don’t know), yielding good precision for numeric
simulations such as fluid flow and weather prediction.

Memory as a Linear Array
Consider a byte-addressable memory with N bytes of memory. As stated above, such a
memory can be considered to be the logical equivalent of a C++ array, declared as

byte memory [N] ; // Address ranges from 0 through (N – 1)

The computer on which these notes were written has 384 MB of main memory, now only an
average size but once unimaginably large. 384 MB = 384220 bytes and the memory is byte-
addressable, so N = 3841048576 = 402,653,184. Quite often the memory size will either be
a power of two or the sum of two powers of two; 384 MB = (256 + 128)220 = 228 + 227.

Early versions of the IBM S/360 provided addressability of up to 224 = 16,777,216 bytes of
memory, or 4,194,304 32–bit words. All addresses in the S/360 series are byte addresses.

The term “random access” used when discussing computer memory implies that memory
can be accessed at random with no performance penalty. While this may not be exactly true
in these days of virtual memory, the key idea is simple – that the time to access an item in
memory does not depend on the address given. In this regard, it is similar to an array in
which the time to access an entry does not depend on the index. A magnetic tape is a typical
sequential access device – in order to get to an entry one must read over all pervious entries.

There are two major types of random-access computer memory. These are:
RAM Read-Write Memory
ROM Read-Only Memory

The usage of the term “RAM” for the type of random access memory that might well be
called “RWM” has a long history and will be continued in this course. The basic reason is
probably that the terms “RAM” and “ROM” can easily be pronounced; try pronouncing
“RWM”. Keep in mind that both RAM and ROM are random access memory.

Of course, there is no such thing as a pure Read–Only memory; at some time it must be
possible to put data in the memory by writing to it, otherwise there will be no data in the
memory to be read. The term “Read-Only” usually refers to the method for access by the
CPU. All variants of ROM share the feature that their contents cannot be changed by normal
CPU write operations. All variants of RAM (really Read-Write Memory) share the feature
that their contents can be changed by normal CPU write operations. Some forms of ROM
have their contents set at time of manufacture, other types called PROM (Programmable
ROM), can have contents changed by special devices called PROM Programmers.
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The Idea of Address Space
We now must distinguish between the idea of address space and physical memory. The
address space defines the range of addresses (indices into the memory array) that can be
generated. The size of the physical memory is usually somewhat smaller, this may be by
design (see the discussion of memory-mapped I/O below) or just by accident.

The memory address is specified by a binary number placed in the Memory Address Register
(MAR). The number of bits in the MAR determines the range of addresses that can be
generated. N address lines can be used to specify 2N distinct addresses, numbered 0 through
2N – 1. This is called the address space of the computer. The early IBM S/360 had a 24–bit
MAR, corresponding to an address space of 0 through 224 – 1, or 0 through 4,194,303.

For example, we show some MAR sizes.

The PDP-11/20 was an elegant small
machine made by the now defunct
Digital Equipment Corporation. As
soon as it was built, people realized
that its address range was too small.

In general, the address space is much
larger than the physical memory
available. For example, my personal

computer has an address space of 232 (as do all Pentiums), but only 384MB = 228 + 227 bytes.
Until recently the 32–bit address space would have been much larger than any possible
amount of physical memory. At present one can go to a number of companies and order a
computer with a fully populated address space; i.e., 4 GB of physical memory. Most high-
end personal computers are shipped with 1GB of memory.

Word Addresses in a Byte-Addressable Machine
Most computers today, including all of those in the IBM S/360 series, have memories that
are byte-addressable; thus each byte in the memory has a unique address that can be used to
address it. Under this addressing scheme, a word corresponds to a number of addresses.

A 16-bit word at address Z contains bytes at addresses Z and Z + 1.
A 32-bit word at address Z contains bytes at addresses Z, Z + 1, Z + 2, and Z + 3.

In many computers with byte addressing, there are constraints on word addresses.
A 16-bit word must have an even address
A 32-bit word must have an address that is a multiple of 4.

This is true of the IBM S/360 series in which 16–bit words are called “halfwords”,
32–bit words are called “words”, and 64–bit words are called “double words”. A halfword
must have an even address, a word must have an address that is a multiple of 4 and a double
word (64 bits) an address that is a multiple of 8.

Even in computers that do not enforce this requirement, it is a good idea to observe these
word boundaries. Most compilers will do so automatically.

Computer MAR bits Address Range

PDP-11/20 16 0 to 65,535

Intel 8086 20 0 to 1,048,575

IBM 360 24 0 to 4,194,303

S/370–XA 31 0 to 2,147,483,647

Pentium 32 0 to 4,294,967,295

z/Series 64 A very big number.
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Suppose a byte-addressable computer with a 24–bit address space. The highest byte address
is 224 – 1. From this fact and the address allocation to multi-byte words, we conclude

the highest address for a 16-bit word is (224 – 2), and
the highest address for a 32-bit word is (224 – 4), because the 32–bit word addressed at
(224 – 4) comprises bytes at addresses (224 – 4), (224 – 3), (224 – 2), and (224 – 1).

Byte Addressing vs. Word Addressing
We have noted above that N address lines can be used to specify 2N distinct addresses,
numbered 0 through 2N – 1. We now ask about the size of the addressable items. As a
simple example, consider a computer with a 24–bit address space. The machine would have
16,777,216 (16M) addressable entities. In a byte–addressable machine, such as the
IBM S/360, this would correspond to:

16 M Bytes 16,777,216 bytes, or
8 M halfwords 8,388,608 16-bit halfwords, or
4 M words 4,194,304 32–bit fullwords.

The advantages of byte-addressability are clear when we consider applications that process
data one byte at a time. Access of a single byte in a byte-addressable system requires only
the issuing of a single address. In a 16–bit word addressable system, it is necessary first to
compute the address of the word containing the byte, fetch that word, and then extract the
byte from the two–byte word. Although the processes for byte extraction are well
understood, they are less efficient than directly accessing the byte. For this reason, many
modern machines are byte addressable.

Big–Endian and Little–Endian
The reference here is to a story in Gulliver’s Travels written by Jonathan Swift in which two
groups went to war over which end of a boiled egg should be broken – the big end or the
little end. The student should be aware that Swift did not write pretty stories for children but
focused on biting satire; his work A Modest Proposal is an excellent example.

Consider the 32-bit number represented by the eight–digit hexadecimal number 0x01020304,
stored at location Z in memory. In all byte–addressable memory locations, this number will
be stored in the four consecutive addresses Z, (Z + 1), (Z + 2), and (Z + 3). The difference
between big-endian and little-endian addresses is where each of the four bytes is stored.

In our example 0x01 represents bits 31 – 24,
0x02 represents bits 23 – 16,
0x03 represents bits 15 – 8, and
0x04 represents bits 7 – 0.

As a 32-bit signed integer, the number represents 01(256)3 + 02(256)2 + 03(256) + 04
or 0167 + 1166 + 0165 + 2164 + 0163 + 3162 + 0161 + 4160, which evaluates to
116777216 + 265536 + 3256 + 41 = 16777216 + 131072 + 768 + 4 = 16909060. Note
that the number can be viewed as having a “big end” and a “little end”, as in the next figure.
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The “big end” contains the most significant digits of the number and the “little end” contains
the least significant digits of the number. We now consider how these bytes are stored in a
byte-addressable memory. Recall that each byte, comprising two hexadecimal digits, has a
unique address in a byte-addressable memory, and that a 32-bit (four-byte) entry at address Z
occupies the bytes at addresses Z, (Z + 1), (Z + 2), and (Z + 3). The hexadecimal values
stored in these four byte addresses are shown below.

Address Big-Endian Little-Endian
Z 01 04

Z + 1 02 03
Z + 2 03 02
Z + 3 04 01

The figure below shows a graphical way to view these two options for ordering the bytes
copied from a register into memory. We suppose a 32-bit register with bits numbered from
31 through 0. Which end is placed first in the memory – at address Z? For big-endian, the
“big end” or most significant byte is first written. For little-endian, the “little end” or least
significant byte is written first.

Just to be complete, consider the 16-bit number represented by the four hex digits 0A0B,
with decimal value 10256 + 11 = 2571. Suppose that the 16-bit word is at location W; i.e.,
its bytes are at locations W and (W + 1). The most significant byte is 0x0A and the least
significant byte is 0x0B. The values in the two addresses are shown below.

Address Big-Endian Little-Endian
W 0A 0B

W + 1 0B 0A

Here we should note that the IBM S/360 is a “Big Endean” machine.

As an example of a typical problem, let’s examine the following memory map, with byte
addresses centered on address W. Note the contents are listed as hexadecimal numbers.
Each byte is an 8-bit entry, so that it can store unsigned numbers between 0 and 255,
inclusive. These are written in hexadecimal as 0x00 through 0xFF inclusive.

Address (W – 2) (W – 1) W (W + 1) (W + 2) (W + 3) (W + 4)

Contents 0B AD 12 AB 34 CD EF
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We first ask what 32-bit integers are stored at address W. Recalling that the value of the
number stored depends on whether the format is big-endian or little-endian, we draw the
memory map in a form that is more useful.

This figure should illustrate one obvious point: the entries (W – 2), (W – 1), and (W + 4) are
“red herrings”, data that have nothing to do with the problem at hand. We now consider the
conversion of the number in big-endian format. As a decimal number, this evaluates to

1167 + 2166 + A165 + B164 + 3163 + 4162 + C161 + D, or
1167 + 2166 + 10165 + 11164 + 3163 + 4162 + 12161 + 13, or
1268435456 + 216777216 + 101048576 + 1165536 + 34096 + 4256 + 1216 + 13, or
268435456 + 33554432 + 10485760 + 720896 + 12288 + 1024 + 192 + 13, or
313210061.

The evaluation of the number as a little–endian quantity is complicated by the fact that the
number is negative. In order to maintain continuity, we convert to binary (recalling that
A = 1010, B = 1011, C = 1100, and D = 1101) and take the two’s-complement.

Hexadecimal CD 34 AB 12
Binary 11001101 00110100 10101011 00010010
One’s Comp 00110010 11001011 01010100 11101101
Two’s Comp 00110010 11001011 01010100 11101110
Hexadecimal 32 AB 54 EE

Converting this to decimal, we have the following
3167 + 2166 + A165 + B164 + 5163 + 4162 + E161 + E, or
3167 + 2166 + 10165 + 11164 + 5163 + 4162 + 14161 + 14, or
3268435456 + 216777216 + 101048576 + 1165536 + 54096 + 4256 + 1416 + 14, or
805306368 + 33554432 + 10485760 + 720896 + 20480 + 1024 + 224 + 14, or
850089198

The number represented in little-endian form is – 850,089,198.

We now consider the next question: what 16-bit integer is stored at address W? We begin
our answer by producing the drawing for the 16-bit big-endian and little-endian numbers.
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The evaluation of the number as a 16-bit big-endian number is again the simpler choice. The
decimal value is 1163 + 2162 + 1016 + 11 = 4096 + 512 + 160 + 11 = 4779.

The evaluation of the number as a little–endian quantity is complicated by the fact that the
number is negative. We again take the two’s-complement to convert this to positive.
Hexadecimal AB 12
Binary 10101011 00010010
One’s Comp 01010100 11101101
Two’s Comp 01010100 11101110
Hexadecimal 54 EE

The magnitude of this number is 5163 + 4162 + 1416 + 14 = 20480 + 1024 + 224 + 14, or
21742. The original number is thus the negative number – 21742.

One might ask similar questions about real numbers and strings of characters stored at
specific locations. For a string constant, the value depends on the format used to store strings
and might include such things as /0 termination for C and C++ strings. A typical question on
real number storage would be to consider the following:

A real number is stored in byte-addressable memory in little-endian form.
The real number is stored in IEEE-754 single-precision format.

Address W (W + 1) (W + 2) (W + 3)

Contents 00 00 E8 42

The trick here is to notice that the number written in its proper form, with the “big end” on
the left hand side is 0x42E80000, which we have seen represents the number 116.00. Were
the number stored in big-endian form, it would be a denormalized number, about 8.3210-41.

There seems to be no advantage of one system over the other. Big-endian seems more
natural to most people and facilitates reading hex dumps (listings of a sequence of memory
locations), although a good debugger will remove that burden from all but the unlucky.

Big-endian computers include the IBM 360 series, Motorola 68xxx, and SPARC by Sun.

Little-endian computers include the Intel Pentium and related computers.
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The big-endian vs. little-endian debate is one that does not concern most of us directly. Let
the computer handle its bytes in any order desired as long as it produces good results. The
only direct impact on most of us will come when trying to port data from one computer to a
computer of another type. Transfer over computer networks is facilitated by the fact that the
network interfaces for computers will translate to and from the network standard, which is
big-endian. The major difficulty will come when trying to read different file types.

The big-endian vs. little-endian debate shows in file structures when computer data are
“serialized” – that is written out a byte at a time. This causes different byte orders for the
same data in the same way as the ordering stored in memory. The orientation of the file
structure often depends on the machine upon which the software was first developed.

Any student who is interested in the literary antecedents of the terms “big-endian” and “little-
endian” should read the quotation at the end of this chapter.

The Control Unit
“Time is nature’s way of keeping everything from happening at once”

Woody Allen

We now turn our attention to a discussion of the control unit, which is that part of the Central
Processing Unit that causes the machine language to take effect. It does this by reacting to
the machine language instruction in the Instruction Register, the status flags in the Program
Status Register, and the interrupts in order to produce control signals that direct the
functioning of the computer.

The main strategy for the control unit is to break the execution of a machine language
instruction into a number of discrete steps, and then cause these primitive steps to be
executed sequentially in the order appropriate to achieve the affect of the instruction.

The System Clock
The main tool for generating a sequence of basic execution steps is the system clock, which
generates a periodic signal used to generate time steps. In some designs the execution of an
instruction is broken into major phases (e.g., Fetch and Execute), each of which is broken
into a fixed number of minor phases that corresponds to a time signal. In other systems, the
idea of major and minor phases is not much used. This figure shows a typical representation
of a system clock; the CPU “speed” is just the number of clock cycles per second.

The student should not be mislead into believing that the above is an actual representation of
the physical clock signal. A true electrical signal can never rise instantaneously or fall
instantaneously. This is a logical representation of the clock signal, showing that it changes
periodically between logic 0 and logic 1. Although the time at logic 1 is commonly the same
as the time at logic 0, this is not a requirement.
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Two Types of Control Units
The function of the control unit is to emit control signals. We now ask how the control unit
works. A detailed study of the control unit should be the topic for another course, but we
may make a few general remarks at this time.

The two major classes of control unit are hardwired and microprogrammed. In a
hardwired control unit, the control signals are the output of combinational logic (AND, OR,
NOT gates, etc.) that has the above as input. The system clock drives a binary counter that
breaks the execution cycle into a number of states. As an example, there will be a fetch state,
during which control signals are emitted to fetch the instruction and an execute state during
which control signals are emitted to execute the instruction just fetched.

In a microprogrammed control unit, the control signals are the output of a register called the
micro-memory buffer register. The control program (or microcode) is just a collection of
words in the micro-memory or CROM (Control Read-Only Memory). The control unit is

sequenced by loading a micro-address into the –MAR, which causes the corresponding

control word to be placed into the –MBR and the control signals to be emitted.

In many ways, the control program appears to be written in a very primitive machine
language, corresponding to a very primitive assembly language. As an example, we show a
small part of the common fetch microcode from a paper design called the Boz–5. Note that
the memory is accessed by address and that each micro–word contains a binary number, here
represented as a hexadecimal number. This just a program that can be changed at will,
though not by the standard CPU write–to–memory instructions.
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Address Contents
0x20 0x0010 2108 2121
0x21 0x0011 1500 2222
0x22 0x0006 4200 2323
0x23 0x0100 0000 0000

Microprogrammed control units are more flexible than hardwired control units because they
can be changed by inserting a new binary control program. As noted in a previous chapter,
this flexibility was quickly recognized by the developers of the System/360 as a significant
marketing advantage. By extending the System/360 micromemory (not a significant cost)
and adding additional control code, the computer could either be run in native mode as a
System/360, or in emulation mode as either an IBM 1401 or an IBM 7094. This ability to
run the IBM 1401 and IBM 7094 executable modules with no modification simplified the
process of upgrading computers and made the System/360 a very popular choice.

It is generally agreed that the microprogrammed units are slower than hardwired units,
although some writers dispute this. The disagreement lies not in the relative timings of the
two control units, but on a critical path timing analysis of a complete CPU. It may be that
some other part of the Fetch/Execute cycle is dominating the delays in running the program.

Interrupts and Interrupt Handling
The standard idea of a stored program computer is that it fetches machine language
instructions sequentially from memory and executes each in order until the program has
terminated. Such a simplistic strategy will not suffice for modern computation.

Consider the case of I/O processing. Let us focus on the arrival of an Ethernet frame at the
Network Interface Card (NIC). The data in the frame must be stored in primary computer
memory for later processing before being overwritten. In order to do this, the program under
execution must be suspended temporarily while the program controlling the NIC starts the
data transfer. The primary mechanism for suspending one program in order to execute
another program is called an interrupt.

The primary rule for processing interrupts is that the execution of the interrupted program
must not be disrupted; only delayed. There is a strategy for handling interrupts that works
for all I/O interrupts. This is a modification of the basic instruction fetch cycle. Here it is:

1) At the beginning of each instruction fetch state, the status of the interrupt line
is tested. In general, this is an active–low signal.

2) If the interrupt signal has been asserted, the CPU saves the current state of the CPU,
which is that set of information required to restart the program as if it had not been
suspended. The CPU then fetches the first instruction of the interrupt handler routine.

3) The interrupt handler identifies the source of the interrupt and calls the handler
associated with the device that raised the interrupt.

4) When the interrupt handler has finished its job, it terminates and the CPU resumes
the execution of the suspended program. Since the complete state of the suspended
program has been saved, it resumes execution as it nothing had happened.
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Virtual Memory and Interrupt Handling
There is one situation under which the above–mentioned interrupt strategy is not adequate.
This occurs in a virtual memory scenario, in which a program can issue addresses that do not
correspond to physical memory. Here are the rules:

1) the program issues logical addresses,
2) the address is converted to a physical address by the operating system,
3) if the physical address is not in physical memory, a page fault is raised. This is an

interrupt that can occur after the instruction fetch phase has completed.

Consider the execution of a memory–to–memory transfer instruction, such as an assembly
language instruction that might correspond to the high–level language statement Y = X.
The microprogram to implement this instruction might appear as follows.

1. Fetch and decode the instruction.

2. Compute the address for the label X and fetch the value stored at that address.
Store that value in a temporary CPU register.

3. Compute the address for the label Y and store the value from the temporary
CPU register into that address.

The IBM S/360 and S/370 architecture contains a number of assembly language instructions
of precisely this format. The following two instructions are rather commonly used.

MVC (Move Characters) Moves a string of characters from one
memory location to another.

ZAP (Zero and Add Packed) Moves a sequence of packed decimal digits
from one memory location to another.

In each scenario, the problem is the same. Here is an analysis of the above sequence.

1. The instruction is fetched. If the instruction is located in a page that is not resident
in primary memory, raise a page fault interrupt. This program is suspended until
the page with the instruction is loaded into memory. This is not a problem.

2. The argument X is fetched. If the address of X is not resident in primary memory,
raise a page fault interrupt. The program is suspended until the page with the needed
data is loaded into memory. The instruction is restarted at step 1. Since the page
containing the instruction is also memory resident, this is not a problem.

3. The address of Y is computed. If that address is not in primary memory, there is
a problem. The instruction has already partially executed. What to do with the
partial results? In this case, the answer is quite easy, because the instruction has
had no side effects other than changing the value of a temporary register: raise a
page fault interrupt, wait for the page to be loaded, and restart the instruction.

The handling of such interrupts that can occur after the instruction has had other side effects,
such as storing a partial result into memory, can become quite complex.

As an aside, the IBM S/360 did not support virtual memory, which was introduced with the
S/370 in 1970.
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Input/Output Processing
We now consider realistic modes of transferring data into and out of a computer. We first
discuss the limitations of program controlled I/O and then explain other methods for I/O.

As the simplest method of I/O, program controlled I/O has a number of shortcomings that
should be expected. These shortcomings can be loosely grouped into two major issues.

1) The imbalance in the speeds of input and processor speeds.
Consider keyboard input. An excellent typist can type about 100 words a minute (the author
of these notes was tested at 30 wpm – wow!), and the world record speeds are 180 wpm (for
1 minute) in 1918 by Margaret Owen and 140 wpm (for 1 hour with an electric typewriter) in
1946 by Stella Pajunas. Consider a typist who can type 120 words per minute – 2 words a
second. In the world of typing, a word is defined to be 5 characters, thus our excellent typist
is producing 10 characters per second or 1 character every 100,000 microseconds. This is a
waste of time; the computer could execute almost a million instructions if not waiting.

2) The fact that all I/O is initiated by the CPU.
The other way to state this is that the I/O unit cannot initiate the I/O. This design does not
allow for alarms or error interrupts. Consider a fire alarm. It would be possible for someone
at the fire department to call once a minute and ask if there is a fire in your building; it is
much more efficient for the building to have an alarm system that can be used to notify the
fire department. Another good example is a patient monitor that alarms if either the
breathing or heart rhythm become irregular. While such a monitor should be polled by the
computer on a frequent basis, it should be able to raise an alarm at any time.

As a result of the imbalance in the timings of the purely electronic CPU and the electro-
mechanical I/O devices, a number of I/O strategies have evolved. We shall discuss these in
this chapter. All modern methods move away from the designs that cause the CPU to be the
only component to initiate I/O.

The first idea in getting out of the problems imposed by having the CPU as the sole initiator
of I/O is to have the I/O device able to signal when it is ready for an I/O transaction.
Specifically, we have two possibilities.

1) The input device has data ready for reading by the CPU. If this is the case, the CPU
can issue an input instruction, which will be executed without delay.

2) The output device can take data from the CPU, either because it can output the data
immediately or because it can place the data in a buffer for output later. In this case,
the CPU can issue an output instruction, which will be executed without delay.

The idea of involving the CPU in an I/O operation only when the operation can be executed
immediately is the basis of what is called interrupt-driven I/O. In such cases, the CPU
manages the I/O but does not waste time waiting on busy I/O devices. There is another
strategy in which the CPU turns over management of the I/O process to the I/O device itself.
In this strategy, called direct memory access or DMA, the CPU is interrupted only at the
start and termination of the I/O. When the I/O device issues an interrupt indicating that I/O
may proceed, the CPU issues instructions enabling the I/O device to manage the transfer and
interrupt the CPU upon normal termination of I/O or the occurrence of errors.
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An Extended (Silly) Example of I/O Strategies
There are four major strategies that can be applied to management of the I/O process:

Program-Controlled, and
Interrupt-Driven, and
Direct Memory Access, and
I/O Channel.

We try to clarify the difference between these strategies by the example of having a party in
one’s house to which guests are invited. The issue here is balancing work done in the house
to prepare it for the party with the tasks of waiting at the front door to admit the guests.

Program-Controlled
The analogy for program-controlled I/O would be for the host to remain at the door,
constantly looking out, and admitting guests as each one arrives. The host would be at the
door constantly until the proper number of guests arrived, at which time he or she could
continue preparations for the party. While standing at the door, the host could do no other
productive work. Most of us would consider that a waste of time.

Interrupt-Driven
Many of us have solved this problem by use of an interrupt mechanism called a doorbell.
When the doorbell rings, the host suspends the current task and answers the door. Having
admitted the guest, the host can then return to preparations for the party. Note that this
example contains, by implication, several issues associated with interrupt handling.
The first issue is priority. If the host is in the process of putting out a fire in the kitchen, he
or she may not answer the door until the fire is suppressed. A related issue is necessary
completion. If the host has just taken a cake out of the oven, he or she will not drop the cake
on the floor to answer the door, but will first put the cake down on a safe place and then
proceed to the door. In this scenario, the host’s time is spent more efficiently as he or she
spends little time actually attending the door and can spend most of the time in productive
work on the party.

Direct Memory Access
In this case, the host unlocks the door and places a note on it indicating that the guests should
just open the door and come in. The host places a number of tickets at the door, one for each
guest expected, with a note that the guest taking the last ticket should so inform the host.
When the guest taking the last ticket has arrived, the host is notified and locks the door. In
this example the host’s work is minimized by removing the requirement to go to the door for
each arrival of a guest. There are only two trips to the door, one at the beginning to set up for
the arrival of guests and one at the end to close the door.

I/O Channel
The host hires a butler to attend the door and lets the butler decide the best way to do it. The
butler is expected to announce when all the guests have arrived.

Note that the I/O channel is not really a distinct strategy. Within the context of our silly
example, we note that the butler will use one of the above three strategies to admit guests.
The point of the strategy in this context is that the host is relieved of the duties. In the real
world of computer I/O, the central processor is relieved of most I/O management duties.
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Implementation of I/O Strategies
We begin our brief discussion of physical I/O by noting that it is based on interaction of a
CPU and a set of registers associated with the I/O device. In general, each I/O device has
three types of registers associated with it: data, control, and status. From the view of a
programmer, the I/O device can be almost completely characterized by these registers,
without regard to the actual source or destination of the data.

For this section, we shall imagine a hopelessly simplistic computer with a single CPU
register, called the ACC (accumulator) and four instructions. These instructions are:

1. LOAD Address Loads the accumulator from the memory address,
2. STORE Address Stores the accumulator contents into the memory address,
3. GET Register Loads the accumulator from the I/O register, and
4. PUT Register Stores the accumulator contents into the I/O register.

The best way to understand IBM’s rationale for its I/O architecture to consider some simpler
designs that might have been chosen. We begin with a very primitive I/O scheme.

The First Idea, and Why It Cannot Work
At first consideration, I/O in a computer system would appear trivial. We just issue the
instructions and access the data register by address, so that we have:

GET TEXT_IN_DATA -- this reads from the input unit.
PUT TEXT_OUT_DATA -- this writes to the output unit.

Strictly speaking, these instructions operate as advertised in the code fragments above. We
now expose the difficulties, beginning with the input problem. The input unit is connected to
the CPU through the register at address TEXT_IN_DATA. Loading a CPU from that input
register will always transfer some data, but might not transfer what we want. Normally, we
expect an input request to wait until a character has been input by the user and only then
transfer the character to the CPU. As written above, the instruction just copies what is in the
data buffer of the input unit; it might be user data or it might be garbage left over from
initialization. We must find a way to command the unit to read, wait for a new character to
have been input, and only then transfer the data to the CPU.

The output instruction listed above might as well be stated as “Just throw it over the wall and
hope someone catches it.” We are sending data to the output unit without first testing to see
if the output unit is ready for data. Early in his career as a programmer, this author wrote a
program that sent characters to a teletype printer faster than they could be printed; the result
was that each character printed was a combination of two or more characters actually sent to
the TTY, and none were actually correct. As this was the intended result of this experiment,
this author was pleased and determined that he had learned something.

The solution to the problem of actually being able to do input and output correctly is based
on the proper use of these two instructions. The solution we shall describe is called program
controlled I/O. We shall first describe the method and then note its shortcomings.
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The basic idea for program–controlled I/O is that the CPU initiates all input and output
operations. The CPU must test the status of each device before attempting to use it and issue
an I/O command only when the device is ready to accept the command. The CPU then
commands the device and continually checks the device status until it detects that the device
is ready for an I/O event. For input, this happens when the device has new data in its data
buffer. For output, this happens when the device is ready to accept new data.

Pure program–controlled I/O is feasible only when working with devices that are always
instantly ready to transfer data. For example, we might use program–controlled input to read
an electronic gauge. Every time we read the gauge, the CPU will get a value. While this
solution is not without problems, it does avoid the busy wait problem.

The “busy wait” problem occurs when the CPU executes a tight loop doing nothing except
waiting for the I/O device to complete its transaction. Consider the example of a fast typist
inputting data at the rate of one character per 100,000 microseconds. The busy wait loop will
execute about one million times per character input, just wasting time. The shortcomings of
such a method are obvious (IBM had observed them in the late 1940’s).

As a result of the imbalance in the timings of the purely electronic CPU and the electro–
mechanical I/O devices, a number of I/O strategies have evolved. We shall discuss these in
this chapter. All modern methods move away from the designs that cause the CPU to be the
only component to initiate I/O.

The idea of involving the CPU in an I/O operation only when the operation can be executed
immediately is the basis of what is called interrupt-driven I/O. In such cases, the CPU
manages the I/O but does not waste time waiting on busy I/O devices. There is another
strategy in which the CPU turns over management of the I/O process to the I/O device itself.
In this strategy, called direct memory access or DMA, the CPU is interrupted only at the
start and termination of the I/O. When the I/O device issues an interrupt indicating that I/O
may proceed, the CPU issues instructions enabling the I/O device to manage the transfer and
interrupt the CPU upon normal termination of I/O or the occurrence of errors.

Interrupt Driven I/O
Here the CPU suspends the program that requests the Input and activates another process.
While this other process is being executed, the input device raises 80 interrupts, one for each
of the characters input. When the interrupt is raised, the device handler is activated for the
very short time that it takes to copy the character into a buffer, and then the other process is
activated again. When the input is complete, the original user process is resumed.

In a time–shared system, such as all of the S/370 and successors, the idea of an interrupt
allows the CPU to continue with productive work while a program is waiting for data. Here
is a rough scenario for the sequence of events following an I/O request by a user job.

1. The operating system commands the operation on the selected I/O device.

2. The operating system suspends execution of the job, places it on a wait queue,
and assigns the CPU to another job that is ready to run.

3. Upon completion of the I/O, the device raises an interrupt. The operating system
handles the interrupt and places the original job in a queue, marked as ready to run.

4. At some time later, the job will be run.
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In order to consider the next refinement of the I/O structure, let us consider what we have
discussed previously. Suppose that a line of 80 typed characters is to be input.

Interrupt Driven
Here the CPU suspends the program that requests the Input and activates another process.
While this other process is being executed, the input device raises 80 interrupts, one for each
of the characters input. When the interrupt is raised, the device handler is activated for the
very short time that it takes to copy the character into a buffer, and then the other process is
activated again. When the input is complete, the original user process is resumed.

Direct Memory Access
DMA is a refinement of interrupt-driven I/O in that it uses interrupts at the beginning and
end of the I/O, but not during the transfer of data. The implication here is that the actual
transfer of data is not handled by the CPU (which would do that by processing interrupts),
but by the I/O controller itself. This removes a considerable burden from the CPU.

In the DMA scenario, the CPU suspends the program that requests the input and again
activates another process that is eligible to execute. When the I/O device raises an interrupt
indicating that it is ready to start I/O, the other process is suspended and an I/O process
begins. The purpose of this I/O process is to initiate the device I/O, after which the other
process is resumed. There is no interrupt again until the I/O is finished.

The design of a DMA controller then involves the development of mechanisms by which the
controller can communicate directly with the computer’s primary memory. The controller
must be able to assert a memory address, specify a memory READ or memory WRITE, and
access the primary data register, called the MBR (Memory Buffer Register).

Immediately, we see the need for a bus arbitration strategy – suppose that both the CPU
and a DMA controller want to access the memory at the same time. The solution to this
problem is called “cycle stealing”, in which the CPU is blocked for a cycle from accessing
the memory in order to give preference to the DMA device.

Any DMA controller must contain at least four registers used to interface to the system bus.

1) A word count register (WCR) – indicating how many words to transfer.
2) An address register (AR) – indicating the memory address to be used.
3) A data buffer.
4) A status register, to allow the device status to be tested by the CPU.

In essence, the CPU tells the DMA controller “Since you have interrupted me, I assume that
you are ready to transfer data. Transfer this amount of data to or from the memory block
beginning at this memory address and let me know when you are done or have a problem.”
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I/O Channel
A channel is a separate special-purpose computer that serves as a sophisticated Direct
Memory Access device controller. It directs data between a number of I/O devices and the
main memory of the computer. Generally, the difference is that a DMA controller will
handle only one device, while an I/O channel will handle a number of devices.

The I/O channel concept was developed by IBM (the International Business Machine
Corporation) in the 1940’s because it was obvious even then that data Input/Output might be
a real limit on computer performance if the I/O controller were poorly designed. By the IBM
naming convention, I/O channels execute channel commands, as opposed to instructions.

There are two types of channels – multiplexer and selector.
A multiplexer channel supports more than one I/O device by interleaving the transfer of
blocks of data. A byte multiplexer channel will be used to handle a number of low-speed
devices, such as printers and terminals. A block multiplexer channel is used to support
higher-speed devices, such as tape drives and disks.

A selector channel is designed to handle high speed devices, one at a time. This type of
channel became largely disused prior to 1980, probably replaced by blocked multiplexers.

Each I/O channel is attached to one or more I/O devices through device controllers that are
similar to those used for Interrupt-Driven I/O and DMA, as discussed above.

I/O Channels, Control Units, and I/O Devices
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In one sense, an I/O channel is not really a distinct I/O strategy, due to the fact that an I/O
channel is a special purpose processor that uses either Interrupt-Driven I/O or DMA to affect
its I/O done on behalf of the central processor. This view is unnecessarily academic.

In the IBM System-370 architecture, the CPU initiates I/O by executing a specific instruction
in the CPU instruction set: EXCP for Execute Channel Program. Channel programs are
essentially one word programs that can be “chained” to form multi-command sequences.

Physical IOCS
The low level programming of I/O channels, called PIOCS for Physical I/O Control System,
provides for channel scheduling, error recovery, and interrupt handling. At this level, the one
writes a channel program (one or more channel command words) and synchronizes the main
program with the completion of I/O operations. For example, consider double-buffered I/O,
in which a data buffer is filled and then processed while another data buffer is being filled. It
is very important to verify that the buffer has been filled prior to processing the data in it.

In the IBM PIOCS there are four major macros used to write the code.

CCW Channel Command Word
The CCW macro causes the IBM assembler to construct an 8-byte channel command word.
The CCW includes the I/O command code (1 for read, 2 for write, and other values), the start
address in main memory for the I/O transfer, a number of flag bits, and a count field.

EXCP Execute Channel Program
This macro causes the physical I/O system to start an I/O operation. This macro takes as its
single argument the address of a block of channel commands to be executed.

WAIT
This synchronizes main program execution with the completion of an I/O operation. This
macro takes as its single argument the address of the block of channel commands for which it
will wait.

Chaining
The PIOCS provides a number of interesting chaining options, including command chaining.
By default, a channel program comprises only one channel command word. To execute more
than one channel command word before terminating the I/O operation, it is necessary to
chain each command word to the next one in the sequence; only the last command word in
the block does not contain a chain bit.

Here is a sample of I/O code.
The main I/O code is as follows. Note that the program waits for I/O completion.

// First execute the channel program at address INDEVICE.
EXCP INDEVICE

// Then wait to synchronize program execution with the I/O
WAIT INDEVICE

// Fill three arrays in sequence, each with 100 bytes.
INDEVICE CCW 2, ARRAY_A, X’40’, 100

CCW 2, ARRAY_B, X’40’, 100
CCW 2, ARRAY_C, X’00’, 100
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The first number in the CCW (channel command word) is the command code indicating the
operation to be performed; e.g., 1 for write and 2 for read. The hexadecimal 40 in the CCW
is the “chain command flag” indicating that the commands should be chained. Note that the
last command in the list has a chain command flag set to 0, indicating that it is the last one.

Front End Processor
We can push the I/O design strategy one step further – let another computer handle it. One
example that used to be common occurred when the IBM 7090 was introduced. At the time,
the IBM 1400 series computer was quite popular. The IBM 7090 was designed to facilitate
scientific computations and was very good at that, but it was not very good at I/O processing.
As the IBM 1400 series excelled at I/O processing it was often used as an I/O front-end
processor, allowing the IBM 7090 to handle I/O only via tape drives.

The batch scenario worked as follows:
1) Jobs to be executed were “batched” via the IBM 1401 onto magnetic tape. This

scenario did not support time sharing.
2) The IBM 7090 read the tapes, processed the jobs, and wrote results to tape.
3) The IBM 1401 read the tape and output the results as indicated. This output

included program listings and any data output required.

Another system that was in use was a combined CDC 6400/CDC 7600 system (with
computers made by Control Data Corporation), in which the CDC 6400 operated as an I/O
front-end and wrote to disk files for processing by the CDC 7600. This combination was in
addition to the fact that each of the CDC 6400 and CDC 7600 had a number of IOPS (I/O
Processors) that were essentially I/O channels as defined by IBM.



S/370 Assembler Computer Architecute & Organization

Page 124 Chapter 5 Revised November 5, 2008
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Gulliver’s Travels and “Big-Endian” vs. “Little-Endian”
The author of these notes has been told repeatedly of the literary antecedents of the terms
“big-endian” and “little-endian” as applied to byte ordering in computers. In a fit of
scholarship, he decided to find the original quote. Here it is, taken from Chapter IV of Part I
(A Voyage to Lilliput) of Gulliver’s Travels by Jonathan Swift, published October 28, 1726.

The edition consulted for these notes was published in 1958 by Random House, Inc. as a part
of its “Modern Library Books” collection. The LC Catalog Number is 58-6364.

The story of “big-endian” vs. “little-endian” is described in the form on a conversation
between Gulliver and a Lilliputian named Reldresal, the Principal Secretary of Private
Affairs to the Emperor of Lilliput. Reldresal is presenting a history of a number of struggles
in Lilliput, when he moves from one difficulty to another. The following quote preserves the
unusual capitalization and punctuation found in the source material.

“Now, in the midst of these intestine Disquiets, we are threatened with an
Invasion from the Island of Blefuscu, which is the other great Empire of the
Universe, almost as large and powerful as this of his majesty. ….

[The two great Empires of Lilliput and Blefuscu] have, as I was going to tell you,
been engaged in a most obstinate War for six and thirty Moons past. It began
upon the following Occasion. It is allowed on all Hands, that the primitive Way
of breaking Eggs before we eat them, was upon the larger End: But his present
Majesty’s Grand-father, while he was a Boy, going to eat an Egg, and breaking it
according to the ancient Practice, happened to cut one of his Fingers.
Whereupon the Emperor his Father, published an Edict, commanding all his
Subjects, upon great Penalties, to break the smaller End of their Eggs. The
People so highly resented this Law, that our Histories tell us, there have been six
Rebellions raised on that Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were constantly fomented by the
Monarchs of Blefuscu; and when they were quelled, the Exiles always fled for
Refuge to that Empire. It is computed, that eleven Thousand Persons have, at
several Times, suffered Death, rather than submit to break their Eggs at the
smaller end. Many hundred large Volumes have been published upon this
Controversy: But the Books of the Big-Endians have been long forbidden, and
the whole Party rendered incapable by Law of holding Employments.”

Jonathan Swift was born in Ireland in 1667 of English parents. He took a B.A. at Trinity
College in Dublin and some time later was ordained an Anglican priest, serving briefly in a
parish church, and became Dean of St. Patrick’s in Dublin in 1713. Contemporary critics
consider the Big-Endians and Little-Endians to represent Roman Catholics and Protestants
respectively. Lilliput seems to represent England, and its enemy Blefuscu is variously
considered to represent either France or Ireland. Note that the phrase “little-endian” seems
not to appear explicitly in the text of Gulliver’s Travels.


