
Issues in
Parallel Processing

Lecture for CPSC 5155

Edward Bosworth, Ph.D.

Computer Science Department

Columbus State University

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2

Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Job-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)

§
9
.1

 In
tro

d
u
c
tio

n

Questions to Address

1. How do the parallel processors share data?

2. How do the parallel processors coordinate
their computing schedules?

3. How many processors should be used?

4. What is the minimum speedup S(N)
acceptable for N processors?
What are the factors that drive this decision?

Question: How to Get
Great Computing Power?

• There are two obvious options.

1. Build a single large very powerful CPU.

2. Construct a computer from multiple
cooperating processing units.

• The early choice was for a computing system
with only a few (1 to 16) processing units.

• This choice was based on what appeared to be
very solid theoretical grounds.

Linear Speed-Up

• The cost of a parallel processing system with
N processors is about N times the cost of a
single processor; the cost scales linearly.

• The goal is to get N times the performance of
a single processor system for an N-processor
system. This is linear speedup.

• For linear speedup, the cost per unit of
computing power is approximately constant.

The Cray-1

Supercomputers vs.
Multiprocessor Clusters

• “If you were plowing a field, which would you rather
use: Two strong oxen or 1024 chickens”. Seymour Cray

• Here are two opinions from a 1984 article.
“The speedup factor of using an n–processor system
over a uniprocessor system has been theoretically
estimated to be within the range (log2n, n/log2n).”

• “By the late 1980s, we may expect systems of 8–16
processors. Unless the technology changes drastically,
we will not anticipate massive multiprocessor systems
until the 90s.”

• The drastic technology change is called “VLSI”.

The Speed–Up Factor: S(N)

Cost Efficiency: S(N) / N

Harold Stone on Linear Speedup

• Harold Stone wrote in 1990 on what he called “peak
performance”.

• “When a multiprocessor is operating at peak performance,
1. All processors are engaged in useful work.
2. No processor is idle, and no processor is executing an

instruction that would not be executed if the same
algorithm were executing on a single processor.

3. In this state of peak performance, all N processors are
contributing to effective performance, and the processing
rate is increased by a factor of N.

4. Peak performance is a very special state that
is rarely achievable.”

The Problem with the Early Theory

• The early work focused on the problem of
general computation.

• Not all problems can be solved by an
algorithm that can be mapped onto a set
of parallel processors.

• However, many very important problems can
be solved by parallel algorithms.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 12

Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware

 Challenge: making effective use of parallel
hardware

Cooperation Among Processes

• Parallel execution on a multi-core CPU is not
inherently a difficult problem. The problems
arise when the processes need to cooperate.

• Example: A quad-core running 4 independent
programs that do not communicate.

• One measure of the complexity of parallel
execution is the amount of communication
required among the processes.

• More communication means more complex.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Parallel Programming

 Parallel software is the problem

 Need to get significant performance

improvement

 Otherwise, just use a faster uniprocessor,

since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

§
7
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






Some Results Due to Amdahl’s Law

Characterizing Problems

• One result of Amdahl’s Law is that only
problems with very small necessarily
sequential parts can benefit from massive
parallel processing.

• Fortunately, there are many such problems

1. Weather forecasting.

2. Nuclear weapons simulation.

3. Protein folding and issues in drug design.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix
sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 2 — Instructions: Language of the Computer — 21

Synchronization

 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize

 Result depends of order of accesses

 Hardware support required

 Atomic read/write memory operation

 No other access to the location allowed between the

read and write

 Could be a single instruction

 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§
2
.1

1
 P

a
ra

lle
lis

m
 a

n
d
 In

s
tru

c
tio

n
s
: S

y
n
c
h
ro

n
iz

a
tio

n

The Necessity for Synchronization

• “In a multiprocessing system, it is essential to
have a way in which two or more processors
working on a common task can each execute
programs without corrupting the other’s sub-
tasks”.

• “Synchronization, an operation that guarantees
an orderly access to shared memory, must be
implemented for a properly functioning
multiprocessing system”.

• Chun & Latif, MIPS Technologies Inc.

Synchronization in Uniprocessors

• The synchronization issue posits 2 processes
sharing an area of memory.

• The processes can be on different processors,
or on a single shared processor.

• Most issues in operating system design are
best imagined within the context of multiple
processors, even if there is only one that is
being time shared.

The Lost Update Problem

• Here is a synchronization problem straight out
of database theory. Two travel agents book a
flight with one seat remaining.

• A1 reads seat count. One remaining.

• A2 reads seat count. One remaining.

• A1 books the seat. Now there are no more seats.

• A2, working with old data, also books the seat.
Now we have at least one unhappy customer.

I’ve Got It;
You Can’t Have It

• What is needed is a way to put a “lock” on the
seat count until one of the travel agents
completes the booking. Then the other agent
must begin with the new seat count.

• Database engines use “record locking” as one
way to prevent lost updates.

• Another database technique is the idea of an
atomic transaction, here a 2-step transaction.

Atomic Transactions

 • We do not mean the type of
transaction at left.

• An atomic read and modify
must proceed without any
interruption.

• No other process can access
the shared memory between
the read and write back to
the memory location.

Chapter 2 — Instructions: Language of the Computer — 27

Synchronization in MIPS

 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

 ll $t1,0($s1) ;load linked

 sc $t0,0($s1) ;store conditional

 beq $t0,$zero,try ;branch store fails

 add $s4,$zero,$t1 ;put load value in $s4

Details on LL and SC

• These commands work with the cache
memory system at a cache line level.

• Each cache line has a LL bit, which is set by the
Load Linked command.

• The LL bit will be cleared if another process
writes to that specific cache line.

• The SC command works only if the LL bit
remains set; otherwise it fails.

Chapter 7 — Multicores, Multiprocessors, and Clusters — 29

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 7 — Multicores, Multiprocessors, and Clusters — 31

Multithreading Example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

Future of Multithreading

 Will it survive? In what form?

 Power considerations  simplified

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share

resources more effectively

Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Instruction and Data Streams

 An alternate classification

§
7
.6

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel
applications

Chapter 7 — Multicores, Multiprocessors, and Clusters — 35

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to MIPS

 32 × 64-element registers (64-bit elements)

 Vector instructions

 lv, sv: load/store vector

 addv.d: add vectors of double

 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

Example: DAXPY (Y = a × X + Y)

 Conventional MIPS code

 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

 Vector MIPS code

 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried
dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media
extensions (such as MMX, SSE)

 Better match with compiler technology

