
The Pipelined CPU

Lecture for CPSC 5155
Edward Bosworth, Ph.D.

Computer Science Department
Columbus State University

Revised 9/22/2013

Pipelining: A Faster Approach

• There are two types of simple control unit design:
1. The single–cycle CPU with its slow clock, which executes

one instruction per clock pulse.
2. The multi–cycle CPU with its faster clock. This divides the

execution of an instruction into 3, 4, or 5 phases, but takes
that number of clock pulses to execute a single
instruction.

• We now move to the more sophisticated CPU design that
allows the apparent execution of one instruction per clock
cycle, even with the faster clock.

• This design technique is called pipelining, though it might
better be considered as an assembly line.

Chapter 4 — The Processor — 3

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g

 Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/0.5n + 1.5 ≈ 4

= number of stages

The Ford Assembly Line in 1913

Mr. Ford’s Idea

• Henry Ford began working on the assembly line concept about
1908 and had essentially perfected the idea by 1913. His
motivations are worth study.

• In previous years, automobile manufacture was done by highly
skilled technicians, each of whom assembled the whole car.

• It occurred to Mr. Ford that he could get more get more
workers if he did not require such a high skill level. One way to
do this was to have each worker perform only a few tasks.

• It soon became obvious that is was easier to bring the
automobile to the worker than have the worker (and his tools)
move to the automobile. The assembly line was born.

Productivity in an Assembly Line

• We may ask about how to measure the
productivity of an assembly line.

• How long does it take for any individual car to
be fabricated, from basic parts to finish?
This might be a day or so.

• How many cars are produced per hour?
This might be measured in the 100’s.

• The key measure is the rate of production.

The Pipelined CPU

• The CPU pipeline is similar to an assembly line.

1. The execution of an instruction is broken into a
number of simple steps, each of which can be
handled by an efficient execution unit.

2. The CPU is designed so that it can execute a
number of instructions simultaneously, each in
its own distinct phase of execution.

3. The important number is the number of
instructions completed per unit time, or
equivalently the instruction issue rate.

A Constraint on Pipelining

• The effect of an instruction sequence cannot be
changed by the pipeline.

• Consider the following code fragment.

• add $s0, $t0, $t1 # $s0 = $t0 + $t1

• sub $t2, $s0, $t3 # $t2 = $s0 - $t3

• This does not have the same effect as it would if
reordered.

• sub $t2, $s0, $t3 # $t2 = $s0 - $t3

• add $s0, $t0, $t1 # $s0 = $t0 + $t1

The Earliest Pipelines

• The first problem to be attacked in the
development of pipelined architectures was the
fetch–execute cycle. The instruction is fetched
and then executed.

• How about fetching one instruction while a
previous instruction is executing?

• It is here that we see one of the advantages of
RISC designs, such as the MIPS. Each instruction
has the same length (32 bits) as any other
instruction, so that an instruction can be
pre-fetched without taking time to identify it.

Instruction Pre-Fetch

• Break up fetch–execute and do the two in
parallel. This dates to the IBM Stretch (1959).

• The prefetch buffer is implemented in the CPU
with on–chip registers. Logically, it is a queue.
The CDC–6600 buffer had a queue of length 8.

Flushing the Instruction Queue

• The CDC-6600 was word addressable.

• Suppose that an instruction at address X is
executing. The instructions at addresses
(X+1) through (X+7) are in the queue.

• Suppose that the instruction at address X
causes a jump to address (X + 100).

• The instructions already in the queue are
“stale” and will not be used. Flush the queue.

Chapter 4 — The Processor — 12

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 13

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Chapter 4 — The Processor — 14

Pipeline Performance

 Assume time for stages is

 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle

datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

A Pipeline Needs Registers

• Suppose a CPU with five independent
instructions in different stages of execution.

• Each instruction needs to execute within its
own context, and have its own state
(set of registers)

• Fortunately, Moore’s law has allowed us to
place increasingly larger numbers of
transistors (hence registers) in a CPU.

Chapter 4 — The Processor — 16

MIPS Pipelined Datapath
§
4
.6

 P
ip

e
lin

e
d
 D

a
ta

p
a
th

 a
n
d
 C

o
n
tro

l

WB

MEM

Right-to-left

flow leads to

hazards

Chapter 4 — The Processor — 17

Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

Chapter 4 — The Processor — 18

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 19

IF for Load, Store, …

Chapter 4 — The Processor — 20

ID for Load, Store, …

Chapter 4 — The Processor — 21

EX for Load

Chapter 4 — The Processor — 22

MEM for Load

Chapter 4 — The Processor — 23

WB for Load

Wrong

register

number

Chapter 4 — The Processor — 24

Corrected Datapath for Load

Pipelines and Heat

• The number of stages in a pipeline is often
called the “depth” of the pipeline.

• The MIPS design has depth = 5.

• The greater the depth of the pipeline,

the faster the CPU, and

the more heat the CPU generates, as it
has more registers and circuits to support
the pipeline.

Graphical Depiction of the Pipeline

• The data elements in IF and ID are read during
the second half of the clock cycle.

• The data elements in WB are written during
the first half of the clock cycle.

Chapter 4 — The Processor — 27

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 28

Pipeline Speedup

 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

 Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput

 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 29

Pipelining and ISA Design

 MIPS ISA designed for pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle

 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

The Ideal Pipeline

• Each instruction is issued and enters the
pipeline. This step is IF (Instruction Fetch)

• As it progresses through the pipeline it does
not depend on the results of any other
instruction now in the pipeline.

• The speedup of an N-stage pipeline under
these conditions is about N.

• The older vector machines, such as the Cray,
structured code that would meet this ideal.

Pipeline Realities
1. It is not possible for any instruction to depend on the

results of instructions that will execute in the future. This
is a logical impossibility.

2. There are no issues associated with dependence on
instructions that have completed execution and exited the
pipeline.

3. Hazards occur due to instructions that have started
execution, but are still in the pipeline.

4. It is possible, and practical, to design a compiler that will
minimize hazards in the pipeline. This is a desirable result
of the joint design of compile and ISA.

5. It is not possible for the compiler to eliminate all
pipelining problems without reducing the CPU to a
non–pipelined datapath, which is unacceptably slow.

One Simplistic Solution

• As we shall see in a moment, the following code
causes a data hazard in the pipeline.
add $s0, $t0, $t1
sub $t2, $s0, $t3

• Here is a simplistic way to avoid the hazard.
add $s0, $t0, $t1
nop # Do nothing for two
nop # clock cycles.
sub $t2, $s0, $t3

One View of the Pipeline Process
This is the ideal case with no stalls.

Another View of the Pipeline

Chapter 4 — The Processor — 35

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Bubbles in the Pipeline

• A “bubble”, also called a “pipeline stall” occurs
when a hazard must be resolved prior to
continuation of instruction execution.

• The control unit will insert a nop instruction into the
pipeline in order to stall it.

Chapter 4 — The Processor — 37

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that

cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require

separate instruction/data memories

 Or separate instruction/data caches

Avoiding the Structure Hazard

Chapter 4 — The Processor — 39

Data Hazards

 An instruction depends on completion of

data access by a previous instruction

 add $s0, $t0, $t1
sub $t2, $s0, $t3

Chapter 4 — The Processor — 40

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 41

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 42

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

Chapter 4 — The Processor — 43

Dependencies & Forwarding

Chapter 4 — The Processor — 44

Forwarding Paths

Chapter 4 — The Processor — 45

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

Chapter 4 — The Processor — 46

Datapath with Forwarding

Chapter 4 — The Processor — 47

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute
target early in the pipeline

 Add hardware to do it in ID stage

HLL Control Hazard Examples

• # Branch based on a loop structure.

Python semantics: xx[10] is the last one processed.

• for k in range (0, 11):
 xx[k] = 0

• # Branch based on a conditional statement.

• if (x < y):

 z = y – x

 else:
 z = x – y

Branch for Loop

100 la $t0, xx #Get base address of xx. Pseudo-

 #instruction taking 8 bytes.

108 li $t1, 0 #Initialize counter

112 slti $t2, $t1,11 #$t2 set to 1 of $t1 < 11

116 beq $t2, $0, 4 # 120 + 4*4 = 136

120 sw $0, ($t0) #Clear word at address in $t0

124 addi $t0, 4 #Move address to next word

128 addi $t1, 1 #Increment counter

132 beq $0,$0, -6 #Branch back to 112

 #End of loop

136 li $t0, 0 # 136 – 6*4 = 112

Branch for Conditional

200 lw $t1, x #Get value of x into $t1

204 lw $t2, y #Get value of y into $t2

208 slt $t0, $t1, $t2 #Set $t0 = 1 iff $t1 < $t2

212 beq $t0, $0, 3 #Branch if $t0 == 0 ($t1 >= $t2)

216 sub $t3, $t2, $t1 #Form y – x

220 beq $0, $0, 1 #Go to 228

224 sub $t3, $t1, $t2 #Form x – y

228 sw $t3, z #Store result

Chapter 4 — The Processor — 51

Stall on Branch

 Wait until branch outcome determined

before fetching next instruction

Chapter 4 — The Processor — 52

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 53

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

Chapter 4 — The Processor — 54

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Unrolling Loops

• Consider the following loop code
for (k = 0; k < 3, k++)

 a[k] = b[k] + c[k];

• This is logically equivalent to the following:
 k = 0 ;

loop: a[k] = b[k] + c[k] ;

 k = k + 1;

 if (k < 3) go to loop

 # Here is the branch

The Unrolled Loop

• In this case, unrolling the loop removes the
necessity for branch prediction by removing
the branch instruction.

• Here is the unrolled code
a[0] = b[0] + c[0] ;

a[1] = b[1] + c[1] ;

a[2] = b[2] + c[2] ;

• Note: There are no data hazards here. This is
the trick used by vector computers.

Chapter 4 — The Processor — 57

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of

inner loop

 Then mispredict as not taken on first

iteration of inner loop next time around

Chapter 4 — The Processor — 58

2-Bit Predictor

 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 59

Calculating the Branch Target

 Even with predictor, still need to calculate

the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can

fetch target immediately

The Branch Penalty

• Consider the following program fragment in
which the branch has been taken.

• 36 sub $10, $4, $8

40 beq $1, $3, 7 #40 + 4 + 7*4

44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $7

56 slt $15, $6, $7

 and so on

72 lw $2, 50($7)

Chapter 4 — The Processor — 61

Branch Hazards

 If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

Reducing Branch Delay

• Move the hardware to determine the branch
outcome to the ID stage.

• This involves minimal additional hardware.

– 1. A register comparison unit, comprising XOR
gates to handle the branch on equal.

– 2. An additional adder to determine the target
address.

• Now only the instruction in the IF state must be
flushed if the branch is taken.

If Branch Outcome Determined in ID

Reorder the Code
• This illustrates the idea of a delay slot.

The instruction after the beq is always executed.

• 36 beq $1, $3, 8 #36 + 4 + 8*4

40 sub $10, $4, $8 #Always

44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $7

56 slt $15, $6, $7

 and so on

72 lw $2, 50($7)

Scheduling the Delay Slot
• The placement depends on the code construct.

Chapter 4 — The Processor — 66

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

