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Pipelining: A Faster Approach 

• There are two types of simple control unit design: 
1. The single–cycle CPU with its slow clock, which executes  

one instruction per clock pulse. 
2. The multi–cycle CPU with its faster clock.  This divides the 

execution of an instruction into 3, 4, or 5 phases, but takes 
that number of clock pulses to execute a single 
instruction. 

• We now move to the more sophisticated CPU design that 
allows the apparent execution of one instruction per clock 
cycle, even with the faster clock. 

• This design technique is called pipelining, though it might 
better be considered as an assembly line. 
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Pipelining Analogy 

 Pipelined laundry: overlapping execution 

 Parallelism improves performance 
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 Non-stop: 

 Speedup 

= 2n/0.5n + 1.5 ≈ 4 

= number of stages 



The Ford Assembly Line in 1913 



Mr. Ford’s Idea 

• Henry Ford began working on the assembly line concept about 
1908 and had essentially perfected the idea by 1913.  His 
motivations are worth study. 

• In previous years, automobile manufacture was done by highly 
skilled technicians, each of whom assembled the whole car. 

• It occurred to Mr. Ford that he could get more get more 
workers if he did not require such a high skill level.  One way to 
do this was to have each worker perform only a few tasks. 

• It soon became obvious that is was easier to bring the 
automobile to the worker than have the worker (and his tools) 
move to the automobile.  The assembly line was born. 



Productivity in an Assembly Line 

• We may ask about how to measure the 
productivity of an assembly line. 

• How long does it take for any individual car to 
be fabricated, from basic parts to finish? 
This might be a day or so. 

• How many cars are produced per hour? 
This might be measured in the 100’s. 

• The key measure is the rate of production. 



The Pipelined CPU 

• The CPU pipeline is similar to an assembly line. 

1. The execution of an instruction is broken into a 
number of simple steps, each of which can be 
handled by an efficient execution unit. 

2. The CPU is designed so that it can execute a 
number of instructions simultaneously, each in 
its own distinct phase of execution. 

3. The important number is the number of 
instructions completed per unit time, or 
equivalently the instruction issue rate. 



A Constraint on Pipelining 

• The effect of an instruction sequence cannot be 
changed by the pipeline. 

• Consider the following code fragment. 

•  add $s0, $t0, $t1  # $s0 = $t0 + $t1 

•  sub $t2, $s0, $t3  # $t2 = $s0 - $t3 

• This does not have the same effect as it would if 
reordered. 

•  sub $t2, $s0, $t3  # $t2 = $s0 - $t3 

•  add $s0, $t0, $t1  # $s0 = $t0 + $t1 

 



The Earliest Pipelines 

• The first problem to be attacked in the 
development of pipelined architectures was  the 
fetch–execute cycle. The instruction is fetched 
and then executed. 

• How about fetching one instruction while a 
previous instruction is executing? 

• It is here that we see one of the advantages of 
RISC designs, such as the MIPS.  Each instruction 
has the same length (32 bits) as any other 
instruction, so that an instruction can be  
pre-fetched without taking time to identify it. 



Instruction Pre-Fetch 

• Break up fetch–execute and do the two in 
parallel.  This dates to the IBM Stretch (1959). 

 

 

 

• The prefetch buffer is implemented in the CPU 
with on–chip registers.  Logically, it is a queue. 
The CDC–6600 buffer had a queue of length 8. 

 



Flushing the Instruction Queue 

• The CDC-6600 was word addressable. 

• Suppose that an instruction at address X is 
executing.  The instructions at addresses  
(X+1) through (X+7) are in the queue. 

• Suppose that the instruction at address X 
causes a jump to address (X + 100). 

• The instructions already in the queue are 
“stale” and will not be used.  Flush the queue. 
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MIPS Pipeline 

 Five stages, one step per stage 

1. IF: Instruction fetch from memory 

2. ID: Instruction decode & register read 

3. EX: Execute operation or calculate address 

4. MEM: Access memory operand 

5. WB: Write result back to register 
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Pipelining and ISA Design 

 MIPS ISA designed for pipelining 

 All instructions are 32-bits 
 Easier to fetch and decode in one cycle 

 c.f. x86: 1- to 17-byte instructions 

 Few and regular instruction formats 
 Can decode and read registers in one step 

 Load/store addressing 
 Can calculate address in 3rd stage, access memory 

in 4th stage 

 Alignment of memory operands 
 Memory access takes only one cycle 
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Pipeline Performance 

 Assume time for stages is 

 100ps for register read or write 

 200ps for other stages 

 Compare pipelined datapath with single-cycle 

datapath 

Instr Instr fetch Register 

read 

ALU op Memory 

access 

Register 

write 

Total time 

lw 200ps 100 ps 200ps 200ps 100 ps 800ps 

sw 200ps 100 ps 200ps 200ps 700ps 

R-format 200ps 100 ps 200ps 100 ps 600ps 

beq 200ps 100 ps 200ps 500ps 



A Pipeline Needs Registers 

• Suppose a CPU  with five independent 
instructions in different stages of execution. 

• Each instruction needs to execute within its 
own context, and have its own state 
(set of registers) 

• Fortunately, Moore’s law has allowed us to 
place increasingly larger numbers of 
transistors (hence registers) in a CPU. 
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MIPS Pipelined Datapath 
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Pipeline registers 

 Need registers between stages 

 To hold information produced in previous cycle 
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Pipelined Control 

 Control signals derived from instruction 

 As in single-cycle implementation 



Chapter 4 — The Processor — 19 

IF for Load, Store, … 
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ID for Load, Store, … 
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EX for Load 
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MEM for Load 
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WB for Load 

Wrong 

register 

number 
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Corrected Datapath for Load 



Pipelines and Heat 

• The number of stages in a pipeline is often 
called the “depth” of the pipeline. 

• The MIPS design has depth = 5. 

• The greater the depth of the pipeline,  

the faster the CPU, and 

the more heat the CPU generates, as it  
has more registers and circuits to support  
the pipeline. 

 



Graphical Depiction of the Pipeline 

• The data elements in IF and ID are read during 
the second half of the clock cycle. 

• The data elements in WB are written during 
the first half of the clock cycle. 
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Pipeline Performance 

Single-cycle (Tc= 800ps) 

Pipelined (Tc= 200ps) 
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Pipeline Speedup 

 If all stages are balanced 

 i.e., all take the same time 

 Time between instructionspipelined 

= Time between instructionsnonpipelined 

  Number of stages 

 If not balanced, speedup is less 

 Speedup due to increased throughput 

 Latency (time for each instruction) does not 

decrease 
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Pipelining and ISA Design 

 MIPS ISA designed for pipelining 

 All instructions are 32-bits 
 Easier to fetch and decode in one cycle 

 c.f. x86: 1- to 17-byte instructions 

 Few and regular instruction formats 
 Can decode and read registers in one step 

 Load/store addressing 
 Can calculate address in 3rd stage, access memory 

in 4th stage 

 Alignment of memory operands 
 Memory access takes only one cycle 



The Ideal Pipeline 

• Each instruction is issued and enters the 
pipeline.  This step is IF (Instruction Fetch) 

• As it progresses through the pipeline it does 
not depend on the results of any other 
instruction now in the pipeline. 

• The speedup of an N-stage pipeline under 
these conditions is about N. 

• The older vector machines, such as the Cray, 
structured code that would meet this ideal. 



Pipeline Realities 
1. It is not possible for any instruction to depend on the 

results of instructions that will execute in the future.  This 
is a logical impossibility. 

2. There are no issues associated with dependence on 
instructions that have completed execution and exited the 
pipeline. 

3. Hazards occur due to instructions that have started 
execution, but are still in the pipeline. 

4. It is possible, and practical, to design a compiler that will 
minimize hazards in the pipeline.  This is a desirable result 
of the joint design of compile and ISA. 

5. It is not possible for the compiler to eliminate all 
pipelining problems without reducing the CPU to a  
non–pipelined datapath, which is unacceptably slow. 



One Simplistic Solution 

• As we shall see in a moment, the following code 
causes a data hazard in the pipeline. 
add $s0, $t0, $t1 
sub $t2, $s0, $t3 

• Here is a simplistic way to avoid the hazard. 
add $s0, $t0, $t1 
nop    # Do nothing for two 
nop    # clock cycles. 
sub $t2, $s0, $t3 

 



One View of the Pipeline Process 
This is the ideal case with no stalls. 



Another View of the Pipeline 
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Hazards 

 Situations that prevent starting the next 
instruction in the next cycle 

 Structure hazards 

 A required resource is busy 

 Data hazard 

 Need to wait for previous instruction to 
complete its data read/write 

 Control hazard 

 Deciding on control action depends on 
previous instruction 



Bubbles in the Pipeline 

• A “bubble”, also called a “pipeline stall” occurs 
when a hazard must be resolved prior to 
continuation of instruction execution. 

• The control unit will insert a nop instruction into the 
pipeline in order to stall it. 
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Structure Hazards 

 Conflict for use of a resource 

 In MIPS pipeline with a single memory 

 Load/store requires data access 

 Instruction fetch would have to stall for that 

cycle 

 Would cause a pipeline “bubble” 

 Hence, pipelined datapaths require 

separate instruction/data memories 

 Or separate instruction/data caches 



Avoiding the Structure Hazard 
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Data Hazards 

 An instruction depends on completion of 

data access by a previous instruction 

 add $s0, $t0, $t1 
sub $t2, $s0, $t3 
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Forwarding (aka Bypassing) 

 Use result when it is computed 

 Don’t wait for it to be stored in a register 

 Requires extra connections in the datapath 
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Load-Use Data Hazard 

 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 
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Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in 

the next instruction 

 C code for A = B + E; C = B + F; 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

lw $t4, 8($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

stall 

stall 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

lw $t4, 8($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

11 cycles 13 cycles 



Chapter 4 — The Processor — 43 

Dependencies & Forwarding 
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Forwarding Paths 
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Detecting the Need to Forward 

 Pass register numbers along pipeline 
 e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register 

 ALU operand register numbers in EX stage 
are given by 
 ID/EX.RegisterRs, ID/EX.RegisterRt 

 Data hazards when 
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 

EX/MEM 

pipeline reg 

Fwd from 

MEM/WB 

pipeline reg 
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Datapath with Forwarding 
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Control Hazards 

 Branch determines flow of control 

 Fetching next instruction depends on branch 
outcome 

 Pipeline can’t always fetch correct instruction 
 Still working on ID stage of branch 

 In MIPS pipeline 

 Need to compare registers and compute 
target early in the pipeline 

 Add hardware to do it in ID stage 



HLL Control Hazard Examples 

• # Branch based on a loop structure. 

# Python semantics: xx[10] is the last one processed. 

• for k in range (0, 11): 
  xx[k] = 0 

• # Branch based on a conditional statement. 

• if (x < y): 

  z = y – x 

  else: 
  z = x – y 

 



Branch for Loop 

100  la   $t0, xx        #Get base address of xx.  Pseudo- 

                         #instruction taking 8 bytes. 

108  li   $t1, 0         #Initialize counter 

112  slti $t2, $t1,11    #$t2 set to 1 of $t1 < 11 

116  beq  $t2, $0, 4     # 120 + 4*4 = 136 

120  sw   $0, ($t0)      #Clear word at address in $t0 

124  addi $t0, 4         #Move address to next word 

128  addi $t1, 1         #Increment counter 

132  beq  $0,$0, -6      #Branch back to 112 

                         #End of loop 

136  li   $t0, 0         # 136 – 6*4 = 112 



Branch for Conditional 

200  lw   $t1, x         #Get value of x into $t1 

204  lw   $t2, y         #Get value of y into $t2 

208  slt  $t0, $t1, $t2  #Set $t0 = 1 iff $t1 < $t2 

212  beq  $t0, $0, 3     #Branch if $t0 == 0 ($t1 >= $t2) 

216  sub  $t3, $t2, $t1  #Form y – x 

220  beq  $0, $0, 1      #Go to 228 

224  sub  $t3, $t1, $t2  #Form x – y 

228  sw   $t3, z         #Store result 
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Stall on Branch 

 Wait until branch outcome determined 

before fetching next instruction 



Chapter 4 — The Processor — 52 

Branch Prediction 

 Longer pipelines can’t readily determine 

branch outcome early 

 Stall penalty becomes unacceptable 

 Predict outcome of branch 

 Only stall if prediction is wrong 

 In MIPS pipeline 

 Can predict branches not taken 

 Fetch instruction after branch, with no delay 
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MIPS with Predict Not Taken 

Prediction 

correct 

Prediction 

incorrect 
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More-Realistic Branch Prediction 

 Static branch prediction 

 Based on typical branch behavior 

 Example: loop and if-statement branches 

 Predict backward branches taken 

 Predict forward branches not taken 

 Dynamic branch prediction 

 Hardware measures actual branch behavior 

 e.g., record recent history of each branch 

 Assume future behavior will continue the trend 

 When wrong, stall while re-fetching, and update history 



Unrolling Loops 

• Consider the following loop code 
for ( k = 0; k < 3, k++) 

    a[k] = b[k] + c[k]; 

• This is logically equivalent to the following: 
      k = 0 ; 

loop: a[k] = b[k] + c[k] ; 

      k = k + 1; 

      if (k < 3) go to loop 

      # Here is the branch 



The Unrolled Loop 

• In this case, unrolling the loop removes the 
necessity for branch prediction by removing 
the branch instruction. 

• Here is the unrolled code 
a[0] = b[0] + c[0] ; 

a[1] = b[1] + c[1] ; 

a[2] = b[2] + c[2] ; 

• Note: There are no data hazards here.  This is 
the trick used by vector computers. 



Chapter 4 — The Processor — 57 

1-Bit Predictor: Shortcoming 

 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

 Mispredict as taken on last iteration of 

inner loop 

 Then mispredict as not taken on first 

iteration of inner loop next time around 
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2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 
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Calculating the Branch Target 

 Even with predictor, still need to calculate 

the target address 

 1-cycle penalty for a taken branch 

 Branch target buffer 

 Cache of target addresses 

 Indexed by PC when instruction fetched 

 If hit and instruction is branch predicted taken, can 

fetch target immediately 



The Branch Penalty 

• Consider the following program fragment in 
which the branch has been taken. 

• 36  sub $10, $4, $8 

40  beq $1, $3, 7  #40 + 4 + 7*4 

44  and $12, $2, $5 

48  or $13, $2, $6 

52  add $14, $4, $7 

56  slt $15, $6, $7 

    and so on 

72  lw $2, 50($7) 
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Branch Hazards 

 If branch outcome determined in MEM 
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Reducing Branch Delay 

• Move the hardware to determine the branch 
outcome to the ID stage. 

• This involves minimal additional hardware. 

– 1. A register comparison unit, comprising XOR 
gates to handle the branch on equal. 

– 2. An additional adder to determine the target 
address. 

• Now only the instruction in the IF state must be 
flushed if the branch is taken. 



If Branch Outcome Determined in ID 



Reorder the Code 
• This illustrates the idea of a delay slot. 

The instruction after the beq is always executed. 

• 36  beq $1, $3, 8  #36 + 4 + 8*4 

40  sub $10, $4, $8 #Always  

44  and $12, $2, $5 

48  or $13, $2, $6 

52  add $14, $4, $7 

56  slt $15, $6, $7 

    and so on 

72  lw $2, 50($7) 

 

 



Scheduling the Delay Slot 
• The placement depends on the code construct. 



Chapter 4 — The Processor — 66 

Pipeline Summary 

 Pipelining improves performance by 

increasing instruction throughput 

 Executes multiple instructions in parallel 

 Each instruction has the same latency 

 Subject to hazards 

 Structure, data, control 

 Instruction set design affects complexity of 

pipeline implementation 

The BIG Picture 


