
Control Units:
Hardwired & Microprogrammed

Lecture for CPSC 5155

Edward Bosworth, Ph.D.

Computer Science Department

Columbus State University

The Central Processing Unit (CPU)

• The CPU has four main components:

1. The Control Unit (along with the IR) interprets the
machine language instruction and issues the control
signals to make the CPU execute that instruction.

2. The ALU (Arithmetic Logic Unit) that does the
arithmetic and logic.

3. The Register Set (Register File) that stores temporary
results related to the computations. There are also
Special Purpose Registers used by the Control Unit.

4. An internal bus structure for communication.

The Control Unit (Part 2)

• The function of the control unit is to decode the
binary machine word in the IR (Instruction Register)
and issue appropriate control signals. These cause
the computer to execute its program.

Two Options for the Control Unit

• Hardwired: The control signals are generated as
an output of a set of basic logic gates, the input
of which derives from the binary bits in the
Instruction Register.

• Microprogrammed: The control signals are
generated by a microprogram that is stored in
Control Read Only Memory.

• The microcontroller fetches a control word from
the CROM and places it into the MBR, from
which control signals are emitted.

The Microprogrammed Control Unit

Design of the CU

• The only function of the micro-control unit
(CU) is to compute the address of the CROM
word next to be placed into the MBR.

• As such, it is extremely primitive and simple.

• Even for a large sophisticated computer,
design of the CU might be suitable as a
project for undergraduate students.

• This simplicity makes the unit very attractive.

The Boz-5: A Very Simple Computer

• We shall use some material from a didactic
computer designed by your instructor to
illustrate various control unit designs.

• In this design, instruction execution is divided
into three phases. We focus on the first of
these phases: fetch, which fetches the next
instruction and updates the PC.

The Common Fetch Sequence

• In the Boz-5 design, the Fetch sequence is
divided into four phases, each having duration
of one clock pulse.

• Here are the microoperations associated with
the first three phases of the fetch sequence.

• Step 1: (PC)  MAR, READ.

• Step 2: (PC) + 4  PC.

• Step 3: (MBR)  IR.

Control Signals are More Primitive

• Control signals directly enable transfers, so
they must be very low level.

• Note that the inputs (Fetch, T0, T1, T2) are
discrete binary signals.

Fetch, T0: (PC)  B1, tra1, B3  MAR, READ.

Fetch, T1: (PC)  B1, 4  B2, add, B3  PC.

Fetch, T2: (MBR)  B2, tra2, B3  IR.

The Boz-5 Control Signals
• PC  B1 Copy the contents of the PC onto bus B1

• +4  B2 Copy the constant +4 onto B2.

• MBR  B2 Copy the contents of the MBR onto B2

• tra1 Causes the ALU to copy the contents of B1 onto B3

• tra2 Causes the ALU to copy the contents of B2 onto B3

• add Causes the ALU to add the contents of B1 and B2,
 placing the sum onto B3.

• read Causes the memory to be read; place the results in MBR

• Bus3  MAR Copy the contents of B3 to the MAR

• Bus3  PC Copy the contents of B3 to the PC

• Bus3  IR Copy the contents of B3 to the IR

Hardwired Signal Generation

• The first phase of the
fetch sequence has
Fetch = 1 and T0 = 1.

• If Fetch = 1 and T0 = 1
then
tra1 = 1 (it is asserted)
B3  MAR = 1
read = 1
PC  B1 = 1

Microprogrammed Signals

• The microprogram can be written as
 10 0100 0101 0x245
 11 0010 1000 0x328
 00 1001 0010 0x092

 PC 

Bus1

+1 

Bus2

MBR



Bus2

Bus3



MAR

Bus3

 PC

Bus3

 IR

add tra1 tra2 read

T0 1 0 0 1 0 0 0 1 0 1

T1 1 1 0 0 1 0 1 0 0 0

T2 0 0 1 0 0 1 0 0 1 0

Microprogramming Example

• Consider the micro–memory associated with bus B1.

• At address 105 we have MAR  B1.

• At address 106 we have R  B1.

Horizontal and Vertical Microcode

• Consider a bus, B1, that can be fed by seven
different signal sources.

• In horizontal microcode, each signal has a bit
in the micro-memory. The B1 field would
have 8 bits.

• In vertical microcode, the field would have a
binary encoding to indicate the single source
to be placed on the bus; here 3 bits.

Advantages of Vertical Microcode

• One advantage is that it allows a “narrower
micro–memory”, fewer bits per word in the
micro–memory. But memory is cheap.

• The major advantage is that it prevents the
assertion of two or more data sources on a
given bus or two or more simultaneous ALU
operations.

B1 With Vertical Microcode

Typical Microinstruction Format

• Each microinstruction includes the address of
the instruction to be executed next.

• Here is a format that supports a branch. There
are two 8-bit addresses. The signal S2 will
indicate whether or not the branch is taken.

• Non-branching instructions have the same
value in both fields.

Micro–Op B1 B2 B3 ALU M1 M2 S2 = 0 S2 = 1

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 8 bits 8 bits

Why Store Addresses in the Microcode

• Here are two options for a sequence of control
signals, taken out of context. The first uses a
conditional branch.

• 0x02C IR  B1, R  B2, add, B3  MAR
0x02D If D = 0 Go To 0x030
0x02E READ

• Similar code in the modern style
0x02C IR  B1, R  B2, add, B3  MAR, 0x030, 0x02E

Maurice Wilkes

• Maurice Wilkes worked in the Computing Laboratory at
Cambridge University beginning in 1936, but mostly from
1945 as he served in WW 2.

• On May 6, 1949 the EDSAC was first operational, computing
the values of N2 for 1  N  99. In 1951, Wilkes published
The Preparation of Programs for Electronic Digital
Computers, the first book on programming.

• Also in 1951, Wilkes published a paper “The Best Way to
Design an Automatic Calculating Machine” that described a
technique that he called microprogramming. This
technique is still in use today and still has the same name.

Wilkes’ Motivation

• Here is a direct quote from Maurice Wilkes.

• “As soon as we started programming, we
found to our surprise that it wasn’t as easy to
get programs right as we had thought. … I can
remember the exact instant when I realized
that a large part of my life from then on was
going to be spent in finding mistakes in my
own programs.”

The Complexity of the Control Unit

• After his visit to the United States, Wilkes started
to worry about the complexity of the control unit
of the EDVAC, then in design. Here is what he
wrote later.

• “It was not, I think, until I got back to Cambridge
that I realized that the solution was to turn the
control unit into a computer in miniature by
adding a second matrix to determine the flow of
control at the micro-level and by providing for
conditional microinstructions”.

A Diode Matrix

• A diode memory is just a collection of diodes
connected in a matrix.

Problems in the 1950’s

• In 1958, the EDSAC 2 became operational; it was
the first microprogrammed computer. The control
unit used ROM made from magnetic cores.

• There were two reasons that Wilkes’ idea did not
take off in the 1950’s.

1. The simple instruction sets of the time did not
demand microprogramming, and

2. The methods for fabricating a microprogram
control store were not adequate.

Microprogramming is Taken Seriously

• IBM introduced the System/360 in 1964. This
caused microprogramming to be taken seriously
as an option for designing control units. There
were three reasons.

1. The recent availability of memory units with
sufficient reliability and reasonable cost.

2. The fact that IBM took the technology seriously.

3. The fact that IBM aggressively pushed the
memory technology inside the company to
make microprogramming feasible.

IBM’s Goals for Microprogramming

• “Microprogramming in the System/360 …
has been used to help design a fixed
instruction set capable of reaching across a
compatible line of machines in a wide range of
performances. … [It] has, however, made it
feasible for the smaller models of System/360
to provide the same comprehensive
instruction set as the large models.”

IBM’s Marketing Problem

• The System/360 was a bold move to replace a
number of incompatible designs:
the IBM 1401, the IBM 7040, and IBM 7094.

• Each of the older designs had a large customer
base with considerable developed code.

• None of the old code would run on the 360.
• Honeywell, along with other companies, began

marketing newer computers that would run the
old code.

• Customers might abandon IBM.

Emulation on the S/360

• IBM was “spared mass defection of former customers”
when engineers working on the Model 30 suggested the
use of an extra control store on the micro–programmed
control unit to allow the Model 30 to execute IBM 1401
instructions in native mode.

• The effort lead to the ability to execute native mode
software for both the IBM 1401 and IBM 700 series.
Moss termed their work as “emulation”.

• The emulators they designed worked well enough so that
many customers never converted legacy software and
instead ran it for many years on System/360
hardware using emulation. This was a great marketing
success for IBM.

The 1960’s and 1970’s

• In the 1960s and 1970s, microprogramming was one of the
most important techniques used in implementing
machines. Through most of that period, machines were
implemented with discrete components or MSI (medium-
scale integration—fewer than 1000 gates per chip)

• The hardwired implementations were faster, but too costly
for most machines. Furthermore, it was very difficult to get
the control correct, and changing ROMs was easier than
replacing a random logic control unit.

• Eventually, microprogrammed control was implemented in
RAM, to allow changes late in the design cycle, and even in
the field after a machine shipped.

Benefits of Microprogramming

• As noted above, the primary impediment to adoption
of microprogramming was that sufficiently fast control
memory was not readily available.

• When the necessary memory became available,
microprogramming became popular.

• The main advantage of microprogramming was that it
handled difficulties associated with virtual memory,
especially restarting instructions after page faults.

• The IBM System 370 Model 138 implemented virtual
memory entirely in microcode.

The IBM XT/370

• IBM was attempting to regain dominance in the
desktop market. They noted that both the S/370 and
the Motorola 68000 used sixteen 32–bit general
purpose registers.

• In 1984 IBM announced the XT/370, a “370 on a
desktop”. The design used a pair of Motorola 68000s
re–microprogrammed to emulate the S/370 instruction
set. Two units were required because the control store
on the Motorola was too small for the S/370.

• As a computer the project was successful. It failed
because IBM wanted full S/370 prices for the software
to run on the XT/370.

Side–Effects of Microprogramming

• It is a simple fact that the introduction of
microprogramming allowed the development of
Instruction Set Architectures of almost arbitrary
complexity.

• The VAX series, marketed by the Digital
Equipment Corporation, is usually seen as the
“high water mark” of microprogrammed designs.
The later VAX designs supported an Instruction
Set Architecture with more than 300 instructions
and more than a dozen addressing modes.

Microprogramming and
Memory Technologies

• The drawback of microcode has always been
memory performance; the CPU clock cycle is
limited by the time to read the memory.

• In the 1950’s, microprogramming was
impractical for two reasons.

1. The memory available was not reliable, and

2. The memory available was the same slow
core memory as used in the main memory of
the computer.

Microprogramming and
Memory Technologies

• In the late 1960’s, semiconductor memory
(SRAM) became available for the control store. It
was ten times faster than the DRAM used in main
memory. This speed difference that opened the
way for microcode.

• In the late 1970’s, cache memories using the
SRAM became popular. At this point, the CROM
lost its speed advantage.

• For these reasons, instruction sets invented since
1985 have not relied on microcode.

Microprogramming:
The Late Evolution

• Events that lead to the reduced emphasis on
microprogramming include:

1. The availability of VLSI technology, which allowed a
number of improvements, including on–chip cache
memory, at reasonable cost.

2. The availability of ASIC (Application Specific Integrated
Circuits) and FPGA (Field Programmable Gate Arrays),
each of which could be used to create custom circuits that
were easily tested and reconfigured.

3. The beginning of the RISC (Reduced Instruction Set
Computer) movement, with its realization that complex
instruction sets were not required.

What Happened to Microcode?

• Control units for RISC designs tend not to use
microprogramming, but the simpler and faster
hardwired designs.

• One reason is that the simplicity of the control
unit does not require microprogramming.

• Another possible reason is that the speed of a
modern pipelined control unit requires control
signals to be issued at a rate faster than SRAM
read-only memory can deliver them.

