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Grammars and Languages 
 

This chapter will complete our examination of theoretical models of computing.  We have 

the indention of examining the question “What is computable?”, with the hope of arriving at 

a definition a bit more precise than “It is what computers can compute”.  What can be 

computed by an automatic electronic device called a computer?  We hope to attempt an 

answer to that question in terms that are more basic than the intuitive ideas we have all 

developed by actually using the electronic devices called computers. 

 

At this point, we should make the disclaimer that nothing requires a computing machine to be 

electronic, as there are historical examples of purely mechanical computers.  Having noted 

that distinction, we focus on electronic computing machines as computers, not only because 

such devices are almost the only computers in use today, but also because that model is 

sufficiently broad to encompass anything we might intend when speaking of a “computer”. 

 

We shall also ignore the fact that the term “computer” historically referred to a person who 

does computations; in other words a job title.  To support this irrelevant idea, we quote the 

following two definitions from the 1933 Oxford English Dictionary. 

“Calculator – One who calculates; a reckoner”. 

“Computer – One who computes; a calculator, reckoner; specifically a person 

employed to make calculations in an observatory, in surveying, etc.” 

This last usage of the word “computer” is seen in a history of the Royal Greenwich 

Observatory in London, England.  One of the primary functions of this observatory during 

the period 1765 to 1925 was the creation of tables of astronomical data; such work “was done 

by hand by human computers”.  While this is interesting, our investigations must focus on 

electronic stored-program computing machines, now called “computers”. 

 

Finite Automata and Language Recognizers 

We continue our study of theoretical models of computation by framing the question in the 

terms that are most approachable theoretically – what languages are recognized by a given 

model of computation.  Now that we have said it, we must explain what we have just said. 

It turns out that we have two ways to approach this problem, either the study of finite 

automata (already discussed briefly) that can be said to recognize certain languages, or the 

study of formal grammars, that can be said to generate these languages.  We now begin a 

discussion of the idea of formal grammars and then connect the grammars to specific classes 

of finite automata.  As before, these topics are easier than they seem. 

 

Here is an example of a computation that can be viewed as language recognition.  Given a 

positive integer, N, we are to determine whether or not it is a prime number.  One of the few 

reliable algorithms for primality testing is the Sieve of Eratosthenes, often called “the sieve”.  

This algorithm can be programmed easily.  Now consider the integer as represented by a 

binary string of K bits.  We present this string to a FA that recognizes prime numbers.  If the 

number is prime the FA is said to recognize it, otherwise it does not. The set of prime 

numbers is the language recognized by this FA. 
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Strings and Words 

We begin with the idea of an alphabet, which is defined to be a finite non-empty set of 

elements called “symbols” or, more informally, “letters”.  A string over an alphabet is a 

finite sequence of elements from that alphabet.  The length of a string (word) is the number 

of elements in the string or word.  One string, called the empty string and denoted by , is 

important for theoretical considerations. 

 

So far, the definitions have followed exactly what would be expected from the standard 

definitions using a dictionary as a list of words, with the exception of the empty string.  The 

empty string may seem a strange idea, but it is required by the theory. 

 

The empty string  is most often used in recursive definitions.  The length of the empty string 

is 0 as it contains no symbols.  We denote the length of an arbitrary string s by |s|, so that |s|  

is the number of symbols (elements) in the string (word).  Obviously || = 0.  We note that 

the empty string is unique, so that |s| = 0 implies that s = ; we speak of “the empty string”. 

 

Suppose s is an arbitrary string with length |s| = k > 0.  Then either 

 1) k = 1, s = a1, a single character, and |s| = 1or 

 2) k > 1, s = a1a2…ak is a sequence of k elements of A, and |s| = k. 

 

If s1 and s2 are two strings over an alphabet A, then the concatenation of s1 and s2 is the 

string s1s2, which is the string s1 followed by the string s2.  More formally, we have the 

following definition of concatenation. 

 1) If s is an arbitrary string and  the empty string, then s = s = s. 

 2) Otherwise let s1 = a1a2…am (|s1| = m  1) and s2 = b1b2…bn (|s2| = n  1). 

  Then  = s1s2 = a1a2…amb1b2…bn, and |s1s2| = |s1| + |s2| = m + n. 

 

Example: Let A = {0, 1}.  This is an alphabet with only two symbols.  Given this, we have 

 1) The strings 00, 01, 10, and 11 are the only strings of length 2 over A. 

 2) If s1 = 011 and s2 = 0110, then s1s2 = 0110110 and s2s1 = 0110011. 

 3) If s1 = 011 and s2 = 0110, then |s1| = 3, |s2| = 4, and both |s1s2| and |s2s1| are 7. 

 

The concatenation operation is associative, but (as we have just seen) not commutative.  

Because concatenation is associative, expressions such as s1s2s3 have a unique interpretation, 

as (s1s2)s3 = s1(s2s3).  For example, let s1 = 11 s2 = 2222, and s3 = 333333. Then 

 s1s2 = 112222 and (s1s2)s3 = (112222)333333 = 112222333333, while 

 s2s3 = 2222333333 and s1(s2s3)   = 112222333333. 

 

We can reinforce the idea that concatenation is not commutative by noting that, for this last 

example, that s1s2 = 112222, while s2s1 = 222211. 
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An Extra Remark on Commutativity 

This author was once a student (hard to believe) in a modern algebra class.  The professor 

was asked to name a simple operation that was not commutative.  He was not ready for that 

question and could not name one.  The answer is quite simple – subtraction.  It is easily 

shown that subtraction is neither associative nor commutative. 

 

Associativity test: (4 – 2) – 1 = 2 – 1 = 1 

    4 – (2 – 1) = 4 – 1 = 3 

 

Commutativity test: (4 – 2) =    2 

    (2 – 4) = – 2  

 

Remember that one cannot prove an assertion by a simple example, but certainly can use a 

counterexample to disprove an assertion. 

 

A Simple Lemma 

Before continuing our discussion, we present the proof of a simple lemma.  By itself, this 

lemma is of little consequence and unlikely to be used again in this course.  It is the intent of 

this author to demonstrate the proof method, from which the reader can learn a few tricks. 

 

Lemma: For any two strings s1 and s2 , |s1s2 |  |s1|, with equality if and only if s2 = . 

Proof: For any two strings s1 and s2 , |s1s2 | = |s1| + |s2|.  Now |s2| is a counting number, so it is 

not negative.  From that remark, we immediately infer that |s1s2 | = |s1| + |s2|  |s1|. 

 

Now suppose that |s1s2 | = |s1| + |s2| = |s1|.  Then obviously |s2| = 0 and s2 = , the unique 

string of zero length.  If s2 = , then |s2| = 0 and |s1s2 | = |s1| + |s2| = |s1s2 | = |s1| + 0 =  |s1|. 

 

 

Alphabets, Words, and Languages 

We shall repeat a few of the above definitions and present them more formally.  While 

struggling with these seemingly abstract ideas, the reader should remember that the terms as 

we use and precisely define them reflect the common usage learned in grammar school. 

 

Words are the basic units used in definition of any language, although in some contexts the 

words are called “tokens”.  These words are built by concatenating a number of symbols 

from the finite set of symbols called the alphabet of the language.  Following standard 

practice, we use the Greek symbol  to denote the alphabet.  For standard English, we might 

say that  is the set of 26 standard letters, with || = 26. 

 

Words are usually understood to be non-empty strings of symbols taken from the alphabet.  

Because of the significance of non-empty strings, we use the symbol 
+
 to denote the set of 

all non-empty strings formed from the alphabet .  Note that   
+
, as  is the empty string 

and 
+
 is the set of non-empty strings.  To allow the empty string to join the fun, we define 

another set (Sigma-Star) 
*
 = 

+
  {}. 

 



Chapter 11  Formal Languages and Grammars 

Page 4 of 18 CPSC 3115 Revised June 6, 2013 

 Copyright © 2005 by Edward L. Bosworth.  All rights reserved. 

The reader is cautioned to remember that while  is the empty string, the set {} is a set with 

one member – the empty string.  Thus || = 0, but |{}| = 1.  The reader should also recall 

that the process 
*
 = 

+
  {} is the standard way of adding a single element to a set; first 

we pop the element into a singleton set and then take the set union.  The reader should also 

note the use of an overloaded operator in this paragraph.  For a string s, we use |s| to denote 

the number of symbols (characters) in s , while for a set S, we use |S| to denote the number of 

elements in the set.  The definitions are consistent, just not identical. 

 

Definition: For an alphabet , we use the symbol 
*
 to denote the set of all strings over that 

alphabet, including the empty string. 

 

Definition: For an alphabet , we define a language on the alphabet as a subset of 
*
. 

In set terminology, we say that L  
*
.  L is called a “language on alphabet ”. 

 

The reader will certainly note that the above definition is a bit broad for what we people 

normally consider to be a language.  Indeed, according to this precise definition one could 

concatenate all words listed in an unabridged dictionary, producing a single word of about 

600,000 letters in length that would by itself be a language.  From the view of natural 

languages, a language should be mutually comprehensible with well established word 

meanings derived from a dictionary.  This is not a requirement of a formal language. 

 

Example: Hexadecimal numbers are base-16 numbers often found in discussions of 

computer architecture and organization.  The “alphabet” for hexadecimal numbers is the 

hexadecimal digit set: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}.  This can be written as: 

 

Hex_Digits = Decimal_Digits  {A, B, C, D, E, F} 

 

The following is a language defined over the alphabet  = {A, B, C, D, E, F}. 

 

L1 = {A, BE, ADD, BAD, CAD, FAD, FED} 

 

This author uses words such as found in L1 to add a bit of variety to his problems for 

homework and tests.  The favorite use of the hexadecimal number “BAD”, usually written in 

the problems as “BAD1” or “0BAD”.  If a memory location has contents “BAD1”, it is 

usually a subtle hint that the correct answer lies elsewhere. 

 

We should also note that the following language is a formal language over the same alphabet. 

 

L2 = {AA, BB, CC, DD, EE, FF, AAA, AAB, AAC, AAD, AAE, AAF}. 

 

Some formal languages bear no resemblance to any spoken language. 

 



Chapter 11  Formal Languages and Grammars 

Page 5 of 18 CPSC 3115 Revised June 6, 2013 

 Copyright © 2005 by Edward L. Bosworth.  All rights reserved. 

Definition: Let  be an alphabet and let L and M be two languages on .  The concatenation 

of languages L and M, written LM, is the set LM = { xy | x  L and y  M}.  Concatenation 

of a language with itself is also supported, according to the following recursive definition. 

 

L
0
 = {} 

L
N
 = L

N–1
L 

 

Example:  Let  = {0, 1, 2} and let L = {00, 01} and M = {0, 20, 21}. 

Then  L{} = { xy | x  L and y  {} }  think LM with M = {} 

    = { 00, 01 } 

   LM = { 000, 0020, 0021, 010, 0120, 0121 } 

   L
2
 = { 0000, 0001, 0100, 0101 } 

Definition: Let L be a language on alphabet .  The Kleene Star of L, written L
*
, is the 

infinite union of sets: {}  L  L
2
  L

3
  L

4
  L

5
  L

6
  …., etc.  The Kleene Star is 

obviously an infinite set. 

 

Example:  Let  = {0, 1, 2} and let L = {00, 01}.  The Kleene Star of L is the infinite set 

beginning L
*
 = {}  {00, 01}  { 0000, 0001, 0100, 0101 } …, etc. 

 

Example:  Let  = {0, 1, 2} and let M = { 22 }.  The Kleene Star of L is the infinite set 

beginning M
*
 = {}  { 22 }  { 2222 }  { 222222 }  { 22222222 } …, etc.  Here the 

language M
*
 is easily described as the set of all strings of even length containing only “2”. 

 

Grammars and Formal Languages 

We first make an important distinction between natural languages (those spoken or once-

spoken by humans) and formal languages.  The difference focuses on the role of the grammar 

in the evolution of the language. 

 

A formal language is completely specified by its grammar.  Put another way, we say that the 

grammar generates the formal language.  Any construct not supported by the grammar is not 

in the language and will remain outside the language until a new formal grammar is agreed 

upon and published.  Often these published grammars are called “standards”. 

 

A natural language is one that has evolved, and often continues to evolve, by being spoken 

by humans.  The role of grammar in this case is to codify the currently accepted usage.  The 

grammar does not lead the language, but follows it and evolves as usage patterns change.  

One example of this evolution is the recent developments in the English grammar rule that a 

pronoun should agree with the noun to which it refers.  The following sentences are each 

grammatically correct, but one is considered politically incorrect. 

 

“Let each programmer examine the output of his program” 

”Let each programmer examine the output of her program” 
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In standard (pre-1960’s) grammar, the first form was to be used unless it was specifically 

known that the programmer was a female.  This usage is now considered “sexist”, as a result 

of which, we quite often will hear the sentence spoken as follows. 

“Let each programmer examine the output of their program.” 

 

In strict grammar, the programmer is viewing the output of a program written by another 

group of programmers.  Sentences, such as this, are often used because the pronoun “their” 

denotes neither male nor female and thus is thought to be non-sexist.  Despite the feeble 

efforts of this old fuddy-duddy, the usage of grammar with the plurals “their” and “them” 

associated with single nouns will probably become the normative grammatical usage. 

 

The following sections of these notes will focus on the use of a grammar to generate a formal 

language.  In order to illustrate the discussion, we shall begin with a formal grammar that 

will generate valid sentences in the English language.  More precisely, every sentence 

generated by this grammar will follow correct English syntax, in that the combination of 

words produced will have valid form.  The sentences so produced might be nonsensical. 

 

Before launching on formal grammars and formal languages, this author wishes to admit that 

the ambiguity in the English language can be the source of great literature and some raunchy 

humor.  Those who like word-play should read the comedies of William Shakespeare, whom 

the author of these notes will not vilify by attempting to quote. 

 

As for the humor in very bad taste, this author will mention a college classmate of his who 

claimed to be able to render any song in a vulgar mode without changing any of the words.  

Thus, he would sing the song line “I wonder who’s kissing her now?” and then ask “What is 

a now?”, pretending to consider it a part of the body. 

 

Another ridiculous song rendition was to begin singing. 

“I’m in the mood for love 

Simply because you’re near me. 

Funny but, when you’re near me” 

After singing these lines, he would stop and ask what sadist would name his daughter “Funny 

Butt”.  I guess one had to be there and drunk to appreciate such humor. 

 

Those who think that English grammar is easily described should examine these sentences. 

“Time flies like an arrow.” 

”Fruit flies like a banana.” 

The truly perverse will render the first sentence as a command to take a watch and time the  

flight of flies in the same way that one times the flight of an arrow.  This is really silly. 

 

There are also some valid sentences that show that English is not context-free (a term to be 

defined later).  For example consider a sentence beginning with the words “The old man”.  In 

a context-free language we would immediately know what to make of this.  But now consider 

the two following sentences, each of which begins with the same three words. 

“The old man likes to fish.” 

“The old man the boats.” 
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Here is the set of rules describe a grammar that produces a subset of English. 

 

 1. A sentence comprises a noun phrase followed by a verb phrase. 

 2. A noun phrase is either 

  a) an article followed by an adjective followed by a noun, or 

  b) an article followed by a noun. 

 3. A verb phrase is either 

  a) a verb followed by an adverb, or 

  b) a verb. 

 4. article  = {a, the}   -- this is a list of “terminal symbols” 

 5. adjective = {silly, clever} 

 6. noun  = {frog, cow, lawyer} 

 7. verb  = {writes, argues, eats} 

 8. adverb = {well, convincingly} 

 

Here is one sentence validly generated.  Note that it is nonsensical. 

 

 sentence 

 noun phrase verb phrase 

 article adjective noun verb adverb 
 the adjective noun verb adverb 

 the silly noun verb adverb 

 the silly cow verb adverb 

 the silly cow writes adverb 

 the silly cow writes convincingly 

 

Note that the generation of the sentence proceeds by replacing a non-terminal symbol, 

denoted in bold font, by another non-terminal symbol or by a terminal symbol. 

 

Just to show that the above grammar is not restrained to producing nonsense, we generate 

another valid sentence. 

 

 sentence 

 noun phrase verb phrase 

 article adjective noun  verb adverb 
 the adjective noun  verb adverb 

 the clever noun  verb adverb 

 the clever lawyer verb adverb 

 the clever lawyer argues adverb 

 the clever lawyer argues convincingly 

 

It is easily shown that the number of sentences validly generated by this grammar is 

computed by 23333 = 162.  Most are nonsensical; a few are not. 
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The reader should note that the process of generating valid sentences in a language differs 

from the process of recognizing the sentence as valid.  When in middle school, this author 

daily had to “diagram sentences”, a process of applying a mechanical construct to a sequence 

of words to determine if that sequence was consistent with accepted English grammar. 

 

For those who cannot remember the joys of High-School English class, here are the above 

two sentences diagrammed, using the notation taught to this author. 

 

 
What is to be noted about these diagrams is that they do not generate the sentences, but verify 

the structure of the sentences.  They are “acceptors” or “recognizers”, not “generators”. 

 

 

Four Types of Grammars for Formal Languages 

Here we follow the work of the great linguist Noam Chomsky (who is not related to Noam 

Chimpsky, the chimpanzee that can use sign language) who taught in the Department of 

Foreign Languages and Linguistics at the Massachusetts Institute of Technology.  We begin 

with a description of the methods used to describe a grammar and then quickly describe four 

grammars, each more restrictive than the previous one. 

 

Most standard texts on formal language theory use the terms “alphabet” (defined above) and 

“vocabulary” (not yet defined) interchangeably.  It will facilitate our understanding to assign 

differing definitions to the two terms.  We begin with this set of definitions. 

 

Definitions: 

 1. A vocabulary V is a finite, non-empty, set of elements called symbols. 

 2. A sentence over V is a sequence of a finite number of elements of V. 

 3. The empty sentence  (also called the empty string) is the sentence 

  containing no symbols. 

 4. The set of all sentences over V is denoted by V*. 

 5. A language over V is a subset of V*. 

 

Example:  

In the above grammar producing a subset of English, the vocabulary is given by the set 

 { sentence, noun phrase, verb phrase, article, adjective, noun, verb, adverb, 

  a, the, silly, clever, frog, cow, lawyer, writes, argues, eats, well, convincingly}. 

 

Note that each of the eight symbols in the first line of the set listing is written in bold font.  

The twelve symbols in the second line are called terminals in the grammar, because they 

cannot be replaced by other symbols.  Other symbols in the vocabulary, those that can be 

replaced by other symbols, are called non-terminals.  The set of terminals is denoted by T, 

the set of non-terminals is denoted by N; thus V = N  T. 
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There is one distinguished non-terminal symbol, called the start symbol and denoted S, that 

is the non-terminal from which we always begin our grammatical productions.  In this 

grammar, the start symbol is sentence.  We shall now examine each of the rules of this 

formal grammar (called “productions”) and classify the symbols by how they appear.  This 

analysis will function mostly to justify the results already stated above. 

 

1. A sentence comprises a noun phrase followed by a verb phrase. 

 Here the symbol sentence is clearly a non-terminal as it is replaced by the symbol 

 noun phrase followed by the symbol verb phrase.  This is the first rule in the 

 grammar, so the symbol is the start symbol. 

 

2. A noun phrase is either 

 a) an article followed by an adjective followed by a noun, or 

 b) an article followed by a noun. 

 Here the symbol noun phrase is clearly a non-terminal as it can be replaced 

 by either one or two other symbols. 

 

3. A verb phrase is either 

 a) a verb followed by an adverb, or 

 b) a verb. 

 The symbol verb phrase is also clearly a non-terminal. 

 

4. article  = {a, the}   -- this is a list of “terminal symbols” 

5. adjective  = {silly, clever} 

6. noun  = {frog, cow, lawyer} 

7. verb  = {writes, argues, eats} 

8. adverb  = {well, convincingly} 

 The symbols article, adjective, noun, verb, adverb are clearly non-terminals. 

What we have left over are the symbols for which no substitution rules are specified.  This is 

the set of terminal symbols, denoted by T.  Thus we have the two sets, 

 

N = { sentence, noun phrase, verb phrase, article, adjective, noun, verb, adverb } 

T = { a, the, silly, clever, frog, cow, lawyer, writes, argues, eats, well, convincingly } 

 

Again, this approach is not so different from standard English grammar in which we speak of 

grammatical terms, such as nouns, adjectives, adverbs, and verbs.  We are not even bothered 

by the fact that the words “adjective”, “adverb”, and “verb” are all nouns.  In terms of formal 

grammar, we instinctively know the difference between terminals and non-terminals. 
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Productions and Grammars 

We now introduce the more formal notation for productions, which are the rules that specify 

how to replace one sequence of symbols from V* by another sequence of symbols.  We shall 

denote a production with notation such as X  Z, specifying that X can be replaced by Z. 

We shall extend the usual notation by notation such as X  Y | Z, which indicates that X can 

be replaced either by Y or by Z.  Thus the following set of productions. 

 

X  Y 

X  Z 

is equivalently written as 

X  Y | Z 

 

Each production has a left side and a right side.  In the above examples, the non-terminal X is 

on the left side.  The right side of the above examples are Y, Z, and Y | Z respectively. 

 

We now use this notation to present the sample grammar previously discussed in this chapter. 

 

 1. sentence  noun_phrase verb_phrase 

 2. noun_phrase  article adjective noun | article noun 

 3. verb_phrase  verb adverb | verb 

 4. article   a | the 

 5. adjective  silly | clever 

 6. noun   frog | cow | lawyer 

 7. verb   writes | argues | eats 

 8. adverb  well | convincingly 

 

Definition: A phase-structure grammar G = (V, T, S, P) consists of a vocabulary V; a 

subset T  V, consisting of terminal elements; by implication a set N = V – T, called the 

non-terminal elements; a start symbol S  N; and a set of productions P.  Every production 

must include at least one non-terminal on its left side. 

 

The clear implication of the above is that terminal symbols may appear on the left side of a 

production.  In our sample grammar we might change rule 7 to three distinct rules. 

 

 7a frog verb  frog eats 

 7b cow verb  cow eats 

 7c lawyer verb  lawyer writes | lawyer argues | lawyer eats 

 

Note that this version of the grammar, with the more restrictive three productions, excludes 

the sentence “the silly cow writes convincingly” but allows the sentence “the silly cow eats 

convincingly”, while still allowing “the clever lawyer argues convincingly". 
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Definition: Consider a production of the form X  Y.  The length of X is the number of 

symbols in X.  Similarly the length of Y is the number of symbols in Y.  We shall not extend 

the concept of length to the right side of productions such as X  Y | Z. 

 

Given the above definition, we may now define Chomsky’s four grammars. 

 

A type 0 grammar (phase-structure grammar) is a grammar with no restrictions on its 

productions other than the previously mentioned rule that the left side contain at least one 

non-terminal symbol. 

 

A type 1 grammar (context-sensitive grammar) is a grammar with the added restriction 

that productions must either be of the form X  , or X  Y, where the length of Y is not 

less than the length of X. 

 

A type 2 grammar (context-free grammar) is a type 1 grammar with the additional 

restriction that the left side of a production have a single non-terminal symbol. 

 

A type 3 grammar (regular grammar) is a type 2 grammar with the additional restriction 

that productions be only of one of these three forms 

X  xY 

X  x 

S   

where X and Y are non-terminals and x is a terminal. 

 

Put in words, the only productions allowed by a regular grammar are 

1. A single non-terminal symbol produces a terminal symbol followed by a non-terminal. 

2. A single non-terminal symbol produces a single terminal symbol. 

3. The start symbol produces the empty sentence. 

 

Example: We first consider the language described by the set {0
n
1

n
2

n
 | n  0}.  Since this 

notation may not be familiar to the reader, we first explain its meaning. 

 

Let n = 0.  Then 0
n
1

n
2

n
 = , the empty sentence with no 0’s, no 1’s, and no 2’s. 

Let n = 1.  Then 0
n
1

n
2

n
 = 012. 

Let n = 2.  Then 0
n
1

n
2

n
 = 001122. 

Let n = 3.  Then 0
n
1

n
2

n
 = 000111222. 

 

So the set {0
n
1

n
2

n
 | n  0} = {, 012, 001122, 000111222, 000011112222, … }. 

 

Similarly the set {0
n
1

n
 | n  0} = {, 01, 0011, 000111, 00001111, … }. 

 

However, the set {0
m

1
n
 | m  0,  n  0} is more complicated, beginning with 

{0
m

1
n
 | m  0,  n  0} = {, 0, 1, 00, 01, 11, 000, 001, 011, 111, … }.  This set is just a bunch 

of 0’s followed by a bunch of 1’s. 
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Here is the grammar that generates the language {0
n
1

n
2

n
 | n  0}.  

It is G = (V, T, S, P), with 

 V = {0, 1, 2, S, A, B} -- the set of symbols or vocabulary 

 T = {0, 1, 2}  -- the terminal symbols 

 N = {S, A, B}  -- the non-terminal symbols: N = V – T 

 Productions: S   | 0SAB 

    BA  AB 

    0A  01 

    1A  11 

    1B  12 

    2B  22. 

 

There are methods for constructing this set of productions from the description of the 

language, but we leave that to the compiler writers.  The student may want to verify that the 

grammar generates the given language, but it is acceptable to take the author’s word on that. 

 

The point is that this is a type 1 (context sensitive) grammar.  Note that the interpretation of 

the non-terminal symbols A and B depends on the terminal symbol preceding each, thus the 

production is sensitive to the context. 

 

 

Example: Consider the language {0
n
1

n
 | n  0}.  The grammar that generates this language is 

G = (V, T, S, P) with 

 V = {0, 1, S} 

 T = {0, 1} 

 N = {S} 

 Productions: S   | 0S1. 

 

It should be obvious that this grammar generates the language, as we increase the size of a 

string by adding a 0 to its start and a 1 to its end.  The number of 0’s always equals the 

number of 1’s and every zero precedes the first 1. 

 

The form of the production identifies this as a type 2 (context-free) grammar. 

 

 

Example: Consider the language {0
m

1
n
 | m  0,  n  0}.  Just to be contrary, we shall show 

two grammars that generate this language.  This will show that two grammars can generate 

the same language.  We see also that these two grammars are of distinct types. 

 

The first grammar is G1 = (V1, T, S, P1) with 

 V1 = {0, 1, S} 

 T = {0, 1}  -- same set as G2 

 N1 = {S}  -- the non-terminal symbols in this grammar 

 Productions: S   | 0S | S1. 
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G1 clearly produces this language, since using the production S  0S m  0 times puts m 0’s 

at the beginning of the string and using the production S  S1 n  0 times puts n 1’s at the 

end of the string.  The reader is invited to verify this claim, as the verification is easy. 

Examination of the productions shows this to be a type 2 (context-free)grammar. 

 

The second grammar to generate this language is G2 = (V2, T, S, P2) with 

 V2 = {0, 1, A, S} 

 T = {0, 1}  -- same set as G1 

 N2 = {A, S} -- the non-terminal symbols for this grammar 

 Productions:  S   | 0S | 1A | 1 

    A  1A | 1. 

 

The reader should recall that the above set of productions is shorthand for these six. 

 

S   

S  0S 

S  1A 

S  1 

A  1A 

A  1 

 

When the production rules are written in this fashion, it is easy to see that the grammar is 

regular.  So what do we say about the language? 

 

 1. It is generated by a context-free grammar G1. 

 2. It is generated by a regular grammar G2. 

 

Since there exists a regular grammar that generates this language, we consider it to be a 

regular language, also called a regular set.  As all regular languages are also context-free, it 

should come as no surprise that there exists a context-free grammar that generates this one. 

 

Backus-Naur Form 

This notation for describing a grammar was developed by John Backus of IBM, an inventor 

of the FORTRAN language, and first called Backus Normal Form.  After significant 

contributions by Peter Naur, the notation was renamed Backus-Naur Form, the name it has 

today.  It is also called BNF.  It is used to describe type 2 (context-free) grammars.  Since all 

type 3 (regular) grammars are also type 2 grammars, BNF can describe regular grammars. 

 

The notation for productions in BNF is slightly different.  All non-terminal symbols are 

enclosed in brackets, so that the symbol <A> is a non-terminal, while the symbol A is a 

terminal.  The notation “” used for a production is replaced by “::=”.  This comes from an 

earlier ALGOL-like notation for assignment and equality. 

 X = Y  An equality statement, is X equal to Y. 

 X := Y  An assignment statement, X is set to Y 

 X ::=Y  X is defined to be Y. 
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In our previous notation for productions, we have already borrowed from BNF.  Consider the 

productions written in these notes in the form A  Aa | a | AB, with A and B non-terminals.  

Strictly speaking, this set should be written as three distinct productions. 

 

A  Aa 

A  a  

A  AB 

 

The convention in BNF is to write these as one production, unless that is hard to read.  So the 

standard BNF statement of this trio of productions would be. 

 

<A> ::= <A>a | a | <A><B> 

 

The brackets around the upper case A and B indicate that those two are non-terminals.  In 

BNF, it is best to view the non-terminals as having brackets, so that the non-terminals in the 

above are really <A> and <B>.  The only terminal in this production is the symbol a.  The 

use of italics in displaying the terminal symbol has nothing to do with BNF, but is just a 

convention often used by this author when writing MS-Word documents. 

 

Here is the grammar for the pseudo-English, written in BNF. 

 

 1. <sentence> ::= <noun phrase> <verb phrase> 

 2. <noun phrase> ::= <article> <adjective> <noun> | <article> <noun> 

 3. <verb phrase> ::= <verb> <adverb> | <verb> 

 4. <article> ::= a | the 

 5. <adjective> ::= silly | clever 

 6. <noun> ::= frog | cow | lawyer 

 7. <verb> ::= writes | argues | eats 

 8. <adverb> ::= well | convincingly 

 

For more examples of the use of BNF, we turn to Chapter 17 (Grammar Summary) of  

The Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne Stroustrup, 

published by Addison-Wesley in 1990.  It has ISBN 0 – 201 – 51459 – 1.  Line breaks have 

been introduced into these examples to keep individual productions on one line. 

 

<expression> ::= <assignment expression> | <expression> , <assignment expression> 

<assignment expression>  

  ::= <conditional expression> 

  | <unary expression> <assignment operator><assignment expression> 

<assignment operator> :: = = | *= | /= | %= | += | –= | >>= | <<= | &= | ^= | |= 

<conditional expression>   

  ::= <logical or expression> 

  | <logical or expression> ? <expression> : <conditional expression> 

Rather than continue with this for several pages, let’s examine and translate each. 
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<expression> ::= <assignment expression> | <expression> , <assignment expression> 

 

This states that an expression is defined to be either an expression or the sequence of an 

expression followed by a comma followed by an assignment expression.  Note that the 

comma in the above BNF production is a terminal symbol in the grammar and is to be read 

literally.  This allows expressions such as the following 

 

x = 0 , y = 1 

 

 

<assignment expression>  

  ::= <conditional expression> 

  | <unary expression> <assignment operator><assignment expression> 

 

Here we state that an assignment expression is either a conditional expression or a unary 

expression followed by an assignment operator followed by an assignment expression. 

 

 

<assignment operator> ::=   = | *= | /= | %= | += | –= | >>= | <<= | &= | ^= | |= 

 

Here we list the valid assignment expressions.  There are 11 of them.  Some, such as 

“–=” and “|=” are hard to display in the font used in this document. 

 

 

<conditional expression>   

  ::= <logical or expression> 

  | <logical or expression> ? <expression> : <conditional expression> 

 

Here we begin to define the conditional expressions.  It may seem strange that the non-

terminal <logical or expression> is the only specific conditional expression listed, but that is 

the document’s way of specifying the hierarchy of logical operations.  Note again that the 

second part of this production has the non terminals “?” and “:”, used as a part of the 

conditional expression operator “?:” that is unique to C and C++. 

 

 

We close this section on BNF with the standard example of the grammar for signed integers. 

 

  <signed integer> ::= <sign><integer> 

  <sign>   ::= + | – 

  <integer>  ::= <digit><integer> 

  <digit>  ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Grammars and Automata 

Now we have the following facts. 

 1) Regular languages are generated by regular grammars. 

 2) Context-free languages are generated by context-free grammars. 

 3) Context-sensitive languages are generated by context-sensitive grammars. 

 4) Phrase-structure languages are generated by phrase-structure grammars. 

 

More strictly speaking, we should state that only regular languages can be generated by 

regular grammars, that context-free grammars can generate either context-free languages or 

regular languages (if properly constrained), etc.  However, the association of each language 

class with grammar type is standard and not to be trifled with. 

 

We now ask for an association of languages with the types of automata that recognize the 

languages.  We might as well list the associations and then give the definitions. 

 

 

 1) Regular languages are recognized by finite state automata, such as we have studied. 

 2) Context-free languages are recognized by pushdown automata. 

 3) Context-sensitive languages are recognized by linearly bounded automata. 

 4) Phrase-structure languages are recognized by Turing machines. 

 

The reader will note immediately that the regular languages are the most constrained of all of 

the four language types, in that the grammar that generates a regular language has the most 

constraints placed upon it.  It stands to reason that the most constrained language is 

recognized by the simplest automaton.  We need more powerful automata to recognize the 

less constrained languages. 

 

The main problem with a finite state automaton is that, by definition, it has a finite amount of 

memory.  A pushdown automaton is a finite state automaton to which a standard push-pop 

stack has been added.  The stack, in effect, adds a particular type of infinite memory to the 

finite automaton, which now includes operations to push symbols onto the stack and pop 

them for comparison with input symbols. 

 

We give an example of a language that can be recognized by a pushdown automaton that 

cannot be recognized by a finite state automaton.  This is the language of palindromes with 

distinct middle symbols.  For example, let the set of terminals in the language be {0, 1, #}, 

with the symbol “#” being the distinct middle symbol.  Let W be a sequence of symbols from 

the set {0, 1}.  A palindrome would be of the form W#W
R
, where W

R
 is W written in 

reverse.  A sample palindrome would be “1010#0101”. 

 

The “program” for the pushdown automaton to recognize this palindrome is as follows. 

 1) Read a symbol.  If not “#”, push the symbol onto the stack and continue. 

 2) If the symbol is “#” go to the next phase. 

 3) After reading “#”, continue reading symbols.  For each symbol read, pop a 

  symbol from the stack and compare.  If the two are not equal, stop and say “No”. 

 4) If the stack and input are both empty, stop and say “Yes”. 
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A linearly bounded automaton is a restricted Turing machine, so we define the Turing 

machine next and then define the linearly bounded automaton. 

 

A Turing machine is also a finite state automaton to which additional memory has been 

added.  The memory for a Turing machine can be considered as infinite, possibly in both 

directions.  The best way to think of such an infinite tape is to consider it as having a number 

of cells, each containing a single symbol.  Each cell can be identified by an integer.  

Recalling that the set of integers is infinite is both directions, so too is our theoretical tape. 

 

 
Figure: A Turing Machine at the Start State 

 

The specification of the Turing machine includes the following. 

 1) A finite set  of tape symbols, including a subset    of input symbols and  

  a distinguished blank symbol, which we can denote . 

 2) A finite set Q of states for the finite automaton that serves as the control of the 

  Turing machine.  This set must include three distinguished states 

   the start state, denoted q0, and 

   a halt state, qY, called the accept state, and 

   a halt state qN, called the reject state. 

 3) A transition function that causes the finite state controller to move through the states, 

  possibly reading from the tape and writing to the tape as it goes. 

 

The operation of a Turing machine is straightforward.  At the start of the process, the finite 

state controller is in state q0, and the input X is on squares 1 through |X| of the tape, where 

|X| is the length of the input X, which is a string X  *.  The Turing machine begins 

operating by moving to square 1 and reading the first symbol from the string X.  After that, it 

proceeds as directed by the transition function.  There are three possible outcomes. 

 1) It arrives at the accept state qY, at which time it halts and accepts the string. 

 2) It arrives at the reject state qN, at which time it halts and rejects the string. 

 3) It loops, which is to say it never arrives at a halt state but continues to process 

  indefinitely.  This leads indirectly to the halting problem, defined below. 

 

The halting problem is one of the few provably undecidable problems in computer science.  

This is to determine whether or not a Turing machine will halt after processing an arbitrary 

string of input.  The best we can do it let the Turing machine process the input and wait a 

while, after which it either has halted or has not halted.  If it has not halted, all we can say is 

that it might halt after some more operations, but we cannot be sure. 
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While the input to a Turing machine is a finite sequence of symbols, the string X, stored in 

squares 1 through |X| of the tape, the tape itself is infinite.  The Turing machine can write 

additional symbols in any other part of the tape and return to read them later as directed by 

the transition function. 

 

A linearly bounded automaton in a Turing machine with the restriction that the only part of 

the tape that can be accessed is the finite part of the tape originally occupied by the input. 

 

Let’s now compare the three automata just defined. 

 1) A pushdown automaton has an infinite memory, but it is a push-down stack. 

 2) A linearly bounded automaton has a random access memory, but it is finite. 

 3) A Turing machine has an infinite random access memory. 

 

 

The Church-Turing Thesis 

We have just claimed that any language can be recognized by a Turing machine.  This is a 

conjecture put forward by Alonzo Church and Alan Turing in the late 1930’s.  It basically 

claims that anything computable by a standard algorithm (with conventional definition) is 

computable by a Turing machine. 

 

We might ask why this is not called the “Church-Turing Theorem”.  The answer is that it 

cannot be proven.  We might then ask why it cannot be proven.  The simple answer is that all 

of our intuitive concepts of algorithms, as well as the formal definitions, are already 

equivalent to statements in terms of Turing machines. 

 

In order to prove the Church-Turing thesis, we would have to arrive at a formal definition of 

an algorithm that is independent of the Turing machine model.  We have yet to be able to 

arrive at such an independent definition, so we cannot even begin a proof. 

 


