
Page 1 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Graph Traversal Algorithms

Many important problems in the field of computer science have solutions that are best modeled

by graph traversal. When considering traversal of graphs, we need to consider some sort of

systematic procedure for “visiting” each vertex in the graph and generating a solution to the

problem based on these traversals.

The two main graph traversal algorithms are called Depth-First Search (DFS) and Breadth-

First Search (BFS). In these algorithms, we base the traversal on the adjacencies found in the

graph. Other search algorithms, such as branch-and-bound and a number of other algorithms

found in the study of Artificial Intelligence, use more of the graph structure. We begin with the

“simple” algorithms.

We begin this discussion by recalling the effects of adjacency and connectivity upon graph

traversal. Let G = (V, E) be a graph with vertex set V and edge set E. Two vertices u and v are

said to be said to be adjacent in G if (u, v) E; i.e., (u, v) is an edge in the graph. A graph

traversal algorithm moves from one vertex to another along edges, thus one can move from

vertex u to vertex v if and only if (u, v) E. A path from vertex u to vertex v in a graph G can

be defined as a sequence of adjacent vertices that starts with u and ends with v. We may present

a recursive definition of the existence of a path from u to v as follows.

In a graph G = (V, E), there is a path from vertex u to vertex v if and only if either

 1) (u, v) E, or

 2) there is a vertex w V, with (u, w) E, such that there is a path from w to v.

A graph is said to be connected if and only if there is a path from u to v for every pair of vertices

u and v. If a graph is not connected, it will be seen to comprise two or more connected

components. Formally a connected component is a maximal subgraph of a given graph,

meaning that the subgraph cannot be expanded by addition of extra vertices that are adjacent to

vertices already included in the component.

 Graph with Graph with

 Two Connected Components One Connected Component

 (A Connected Graph)

Chapter 4 Graph Traversal Algorithms

Page 2 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Graph traversals are defined in terms of connected components. A traversal of a single

connected component of a graph (or the graph itself, it the graph is connected) produces a tree

structure indicating the order in which the vertices were visited. A traversal of a graph with two

or more components produces two or more trees, collectively called a forest.

Depth-First Search

We show the DFS algorithm as a pair of algorithms, one called DFS and one called dfs. The

algorithm presented uses two arrays, called Mark and Back, to manage the search and help in

generation of the search forest.

Algorithm DFS (G) // DFS on a graph G = (V, E)

// The graph G may be connected or unconnected.

// This operates by marking each vertex.

// This uses two arrays: Mark and Back.

//

 count = 0

 For each vertex v V Do // The primary purpose of

 Mark[v] = 0 // DFS is to initialize these

 Back[v] = 0 // arrays and call dfs.

 End For

 For each vertex v V(G) Do
 If (0 == Mark[v]) then

 //

 // Vertex v is in a new component, not connected

 // to any vertex already visited by algorithm dfs.

 dfs(v)

 End If

 End Do

If G is a connected graph, then dfs(v) will be called exactly once in DFS(G), as every vertex in G

will be marked by the first call to dfs(v). Recall that the DFS produces a rooted tree structure

corresponding to the traversal of the graph. For a connected graph G, the root vertex of the

search tree will be the first vertex used in a call to the dfs algorithm.

If G is not a connected graph, then dfs(v) will be called once for each component, producing a

search tree for each component. The result of DFS(G) will be a search forest, with one search

tree for each of the connected components.

Each search tree in the forest corresponds to a connected component in the graph. Each

search tree is rooted at that vertex in the connected component that was first selected by the top-

level algorithm DFS.

Chapter 4 Graph Traversal Algorithms

Page 3 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Algorithm dfs(v) // v is a vertex in the graph G

//

 count = count + 1 // This is a global variable

 Mark[v] = count // Explicit array here

 For each vertex w in V adjacent to v Do

 If (0 == Mark[w]) Then

 Back[w] = v // Remember where we “came from”.

 dfs(w)

 End If

 End Do

The best way to proceed here is to solve a specific instance of the DFS problem. We examine the graph shown in

the figure below. Note that the graph, as drawn, clearly is not connected, having exactly two

connected components with vertex sets {a, b, c, d, e, f} and {g, h, i, j},

In order to illustrate the execution of the algorithm, we must work from the computer

representation of the graph and introduce the auxiliary data structures required for DFS.

The graph may be represented by an adjacency matrix, with the 0’s not shown.

 A B C D E F G H I J

A 1 1 1

B 1 1

C 1 1 1

D 1 1

E 1 1 1

F 1 1 1

G 1 1

H 1 1

I 1 1
J 1 1

Chapter 4 Graph Traversal Algorithms

Page 4 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Vertex A B C D E F G H I J

Mark 0 0 0 0 0 0 0 0 0 0

Back 0 0 0 0 0 0 0 0 0 0

We now consider the algorithm DFS(G), arbitrarily deciding that the statement

 For each vertex v V Do is interpreted as scanning the above array. The first vertex

to be the root of a search tree is v = A, which is the first vertex marked with a 0. Note that we

could have started the search at any vertex; I choose A for no good reason.

The first effect of calling dfs(v) with v = A is to set the mark of A to 1, so we have the following

for the mark array.

Vertex A B C D E F G H I J

Mark 1 0 0 0 0 0 0 0 0 0

Back 0 0 0 0 0 0 0 0 0 0

Before continuing with the search, we should note an artifact of the way in which the algorithm

is often presented – we can see the entire graph and search it mentally with great facility. This

presentation will focus on only those parts of the graph that are visible to the algorithm at the

time a decision is made. When we have processed A, the situation is as follows.

Here we show only vertex A and the vertices adjacent to it. The

rest of the graph is “invisible” at this point. The algorithm

proceeds recursively, implicitly using a call stack. As this is the

first call, the call stack might be viewed as

STACK => A

Consider now the statement For Each vertex w in V adjacent to v Do

There are many ways to implement this in a programming language. One way would be as

follows: For w = A to J Do If Adjacency[w, A] = 1 Then

The requirement of the algorithm is that each vertex adjacent to A be explored. The order of

exploration is not important and depends on the data structure used to represent the graph. In

these notes, we follow the books suggestion and process vertices in alphabetical order, thus we

next call algorithm dfs on vertex C. After this call, we have the following.

Vertex A B C D E F G H I J

Mark 1 0 2 0 0 0 0 0 0 0

Back 0 0 A 0 0 0 0 0 0 0

Chapter 4 Graph Traversal Algorithms

Page 5 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

At this point the stack status is given by STACK => A => C.

Vertex C has been marked with the number 2, denoting its

position in the traversal order. Again, all we see is those three

vertices that are adjacent to vertex C. The algorithm calls for us

to process each of those three vertices, but we see that vertex A

has already been marked. For this reason, vertex D is next.

It is at this point in the algorithm that we first see two types of edges in the graph. There are

three edges incident on vertex C: (C, A) – incident on a vertex already visited and two edges

(C, D) and (C, F) incident on vertices that have yet to be visited. The DFS algorithm has names

for these types of edges: tree edge and back edge.

A tree edge is an edge incident on the vertex being processed that is also incident on an

unmarked vertex. A back edge is an edge incident on the vertex being processed that is also

incident on a marked vertex. The origin of this latter name should be obvious.

We now see the use of the Back array; it identifies back edges. The algorithm now calls

dfs (D), after which call we have the following.

Vertex A B C D E F G H I J

Mark 1 0 2 3 0 0 0 0 0 0

Back 0 0 A C 0 0 0 0 0 0

At this point the status of the stack is STACK => A => C => D.

There are two vertices adjacent to D: A and C. Both have been marked, so

we remove D from the stack and return to C.

The situation after D is popped off the call stack by the return from the

recursive call dfs(D) is shown below.

Vertex A B C D E F G H I J

Mark 1 0 2 3 0 0 0 0 0 0

Back 0 0 A C 0 0 0 0 0 0

The stack status is given by STACK => A => C.

There are three vertices adjacent to C (just as there was when we

last visited the vertex), but now two of them (A and D) have

been marked. The only vertex that is both adjacent to vertex C

and unmarked is vertex F, so we visit that one.

Chapter 4 Graph Traversal Algorithms

Page 6 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

The situation after vertex F is visited is shown below.

Vertex A B C D E F G H I J

Mark 1 0 2 3 0 4 0 0 0 0

Back 0 0 A C 0 C 0 0 0 0

The status of the stack is given by STACK => A => C => F.

There are three vertices adjacent to F, we attempt to visit B first

and note that it is marked with 0. So the next step in the algorithm

is to process dfs(B).

The situation after vertex B is visited is shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 0 4 0 0 0 0

Back 0 F A C 0 C 0 0 0 0

The stack is given by STACK => A => C => F => B.

There are two vertices adjacent to B: E and F. We attempt to visit E first

and note that it is unmarked, so we process dfs(E).

The situation after vertex E is visited is shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 0 0 0 0

Back 0 F A C B C 0 0 0 0

The stack is given by STACK => A => C => F => B => E.

There are three vertices adjacent to E, but each has been marked

with a positive number. For this reason, we return and move up

the call stack. We called dfs(E) from visiting B, so it is there we

return.

Chapter 4 Graph Traversal Algorithms

Page 7 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

The situation after E is popped off the stack by the return from the recursive call is shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 0 0 0 0

Back 0 F A C B C 0 0 0 0

The call stack is given by STACK => A => C => F => B.

Again, there are two vertices adjacent to B: E and F. Both of these vertices

have been marked with positive integers, so we again return up the call

chain.

The situation after B is popped off the call stack by the return is shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 0 0 0 0

Back 0 F A C B C 0 0 0 0

The call stack is given by STACK => A => C => F.

There are three vertices adjacent to vertex F: A, C, and E. Each of

these has been marked with a positive integer, so again we return

up the call chain.

The situation after F has been removed from the call stack by return from the recursive call is

shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 0 0 0 0

Back 0 F A C B C 0 0 0 0

The call stack is given by STACK => A => C. There are three

vertices adjacent to vertex C: A, D, and F. Just as before, each of

these vertices has been marked with a positive integer, so again we

execute a return from the recursive call and move up the call stack.

Chapter 4 Graph Traversal Algorithms

Page 8 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

The situation after C has been removed from the call stack is shown below.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 0 0 0 0

Back 0 F A C B C 0 0 0 0

The call stack status is given by STACK => A. There are three

vertices adjacent to A, all of which have been marked with

positive integers, so we return from the call to dfs(A). At this

point we have returned to the top-level algorithm DFS(G).

The top level algorithm then scans the mark array for the next vertex after A to be marked with a

0. The next vertex to have this property is G. The student is invited to show that the algorithm

visits vertices G, H, I, and J in that order, giving rise to the following situation when the top-level

algorithm DFS exits.

Vertex A B C D E F G H I J

Mark 1 5 2 3 6 4 7 8 9 10

Back 0 F A C B C 0 G H I

These two arrays now contain the results of the depth first search and serve as a basis for the

generation of the two search trees found in the DFS forest for this graph.

The search trees for this graph are obtained from the array

Back as follows. There are two vertices in this graph that are

roots of the DFS search trees when the algorithm is executed

as above: A and G. These are identified by the fact that the

Back entry for each is 0.

The DFS tree rooted at A is constructed by reading the Back

array. What vertices have Back[v] = A? C is the only vertex.

What vertices have Back[v] = C? There are two such vertices

– D and F. The process proceeds as expected to produce the

search trees. Note that every edge placed in the search tree is

an edge that the algorithm would identify as a tree edge. The

name comes from the fact that the edge is a part of the search

tree – big surprise.

Chapter 4 Graph Traversal Algorithms

Page 9 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Breadth-First Search

We now examine the other major graph traversal algorithm – BFS (Breadth-First Search).

Again, BFS is presented in the textbook as a pair of algorithms, to allow for search of each of the

connected components of a graph.

The BFS algorithm uses a data structure called a queue – a first-in first-out data structure, We

shall model the queue in our example as a list, adding to the “back” of the queue and removing

from the “front” of the queue. In our adaptation of the algorithm we have the following

operations on the queue, which we shall denote as Q.

 Initialize(Q) this sets up the data structure and initializes the queue to empty

 IsEmpty(Q) this returns True if and only if the queue is empty

 Add(Q, v) add vertex v to the queue

 Remove(Q, v) remove a vertex from the queue and return it as v.

As before with DFS, we shall use a number of arrays, including a “Back” array not mentioned in

the textbook. The queue may be implemented either as an array or a linked list; the details of its

implementation are not of interest at present.

The top-level algorithm, BFS, is applied to the entire graph.

Algorithm BFS(G)

// Implements a breadth-first search traversal for a graph G.

// The graph can have one or more connected components.

//

// This pair of algorithms uses four global variables.

// Count – the order of the vertex in the traversal

// Q - the queue used by bfs to order the search.

// Mark - the “mark array” used to mark each vertex

// Back - the “back array” used to construct the search tree.

//

 Count = 0 // Initialize the global variables

 Initialize(Q)

//

 For each vertex v in V Do

 Mark[v] = 0

 Back[v] = 0

 End Do

// Now do the search

//

 For each vertex v in V Do

 If Mark[v] = 0 Then bfs(v)

 End Do

Chapter 4 Graph Traversal Algorithms

Page 10 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Here is the “low-level” algorithm bfs(v) – note that it is not recursive. We have labeled three

points in the algorithm as 1, 2, and 3 to facilitate talking about it.

Algorithm bfs(u)

//

// Visits all unvisited vertices adjacent to vertex u

// and assigns them a number in the order they are visited.

// This also allows the search tree to be built.

//

 count = count + 1 // Increment the global variable count

 mark [u] = count

 Add(Q, u) // Add this vertex to the queue

// Point 1

 While (Not IsEmpty(Q)) Do

 Remove (Q, v) // Remove the front vertex from queue

// Point 2

 For each vertex w in V adjacent to v Do

// Point 3

 If (Mark[w] = 0) Then

 Count = Count + 1

 Mark[w] = Count

 Back[w] = v

 Add(Q, w)

 End If

 End For Each

//

// Note that I remove the vertex at the top of the loop

//

 End While

Here again is our favorite sample graph with two connected components. As before, we expect

the BFS algorithm to yield a search forest, with one search tree for each of the two connected

components in the graph.

Chapter 4 Graph Traversal Algorithms

Page 11 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

The adjacency matrix for the sample graph is shown below.

 A B C D E F G H I J

A 1 1 1

B 1 1

C 1 1 1

D 1 1

E 1 1 1

F 1 1 1

G 1 1

H 1 1

I 1 1

J 1 1

The work arrays for this search are shown below. As before, we index each array by the vertex

name; each element of the array back contains either a 0 or a vertex name. Just after BFS is

called and just before the call to bfs(A), the work arrays are as follows.

Vertex A B C D E F G H I J

Mark 0 0 0 0 0 0 0 0 0 0

Back 0 0 0 0 0 0 0 0 0 0

We now call bfs(v) with v = A. After point 1 in the bfs algorithm, we have the following.

Vertex A B C D E F G H I J

Mark 1 0 0 0 0 0 0 0 0 0

Back 0 0 0 0 0 0 0 0 0 0

The status of the queue is shown at left. At this point, it has only one vertex.

We shall add and remove by inspection.

The loop is entered since the queue is not empty. We first remove the front vertex from the

queue (a slight variation of the book’s algorithm) and examine its adjacency list.

We again look for vertices that are adjacent to the first vertex A.

We find that there are three such vertices: C, D, and E. Again, the

order of the search will depend on the order in which we select the

vertices from the adjacency list, which could be written as {C, D,

E}. We again follow the book’s convention of taking the vertices

in alphabetical order.

Chapter 4 Graph Traversal Algorithms

Page 12 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

At this point, the algorithm starts to add vertices to the queue and remove them when they are to

be visited. To make things a bit clearer, we look at what is happening as a result of the statement

For each vertex w in V adjacent to v where v = A.

v = A, Adj(v) = {C, D, E}, w = C

 Mark vertex C with the count, update the back array, and add it to the queue.

The arrays at this point are:

Vertex A B C D E F G H I J

Mark 1 0 2 0 0 0 0 0 0 0

Back 0 0 A 0 0 0 0 0 0 0

The status of the queue is shown at left. Note that vertex A has been removed

from the front of the queue, leaving it temporarily empty (at a time we don’t

check it) and then re-inserting vertex C.

v = A, Adj(v) = {C, D, E}, w = D

 Mark vertex D with the count, update the back array, and add it to the queue.

The arrays at this point are:

Vertex A B C D E F G H I J

Mark 1 0 2 3 0 0 0 0 0 0

Back 0 0 A A 0 0 0 0 0 0

The status of the queue after vertex D has been visited is shown at left.

Note that the algorithm will not remove any vertex from the queue until all

vertices adjacent to vertex A have been examined and enqueued.

v = A, Adj(v) = {C, D, E}, w = E

 Mark vertex E with the count, update the back array, and add it to the queue.

The arrays at this point are:

Vertex A B C D E F G H I J

Mark 1 0 2 3 4 0 0 0 0 0

Back 0 0 A A A 0 0 0 0 0

The status of the queue at this point is shown at left. We have placed on the

queue all three vertices that are adjacent to vertex A, which is the vertex with

which we originally invoked the algorithm bfs. We now are at the bottom of

the For each vertex loop.

At point 1 in the bfs algorithm, the queue is found not to be empty, so the next vertex is removed

from the queue. We now have the following situation.

Chapter 4 Graph Traversal Algorithms

Page 13 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

After vertex C has been removed from the queue, we have the situation at left.

We next examine each vertex adjacent to vertex C and determine it status with

regard to the marking.

The arrays at this point have not been changed, but we repeat them for clarity.

Vertex A B C D E F G H I J

Mark 1 0 2 3 4 0 0 0 0 0

Back 0 0 A A A 0 0 0 0 0

At this point in the algorithm, we are looking for unmarked vertices

adjacent to vertex C. The picture at left shows the situation. We

have Adj(C) = {A, D, F}.

v = C, Adj(v) = {A, D, F}, w = A

 Note that vertex A is marked, so we do not process it.

v = C, Adj(v) = {A, D, F}, w = D

 Again, note that vertex D is marked, so we do not process it.

v = C, Adj(v) = {A, D, F}, w = F

 Mark vertex F with a 5, update the back array, and add vertex F to the queue.

The arrays at this point have not been changed, but we repeat them for clarity.

Vertex A B C D E F G H I J

Mark 1 0 2 3 4 5 0 0 0 0

Back 0 0 A A A C 0 0 0 0

The status of the queue is again shown at left. We have finished with the

vertices that are adjacent to vertex C and are ready to remove another vertex

from the queue. Before we do this, we should stop and look at the partial

search tree that has been generated at this point.

Chapter 4 Graph Traversal Algorithms

Page 14 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Here is the search tree after vertices A and C have been fully processed.

We again classify edges in the graph according to how they are

encountered in the search process. When considering edges

incident on the start vertex, we note that all three of the edges –

(A, C), (A, D), and (A, E) – are included in the search tree and

are called tree edges.

Consider now the edges incident on vertex C, the second vertex

visited and marked. There are three edges incident on vertex

C: (C, A) = (A, C), (C, D), and (C, F). Each of these edges

belongs to a different class.

The edge (C, A) is an edge back to a vertex already visited that also is a part of the search path

from the root vertex A to the vertex C. In tree terminology A is an ancestor vertex of C; in fact

it is the parent vertex of C. We might call the edge (C, A) a back edge, following the

terminology used in DFS, although this terminology is not much used in BFS.

The edge (C, D) is an edge to a vertex already visited that is not a part of the search path from

the root to C. This type of edge is called a cross edge.

When we encountered edge (C, F), we had yet to mark vertex F and add it to the queue, so this

edge will become part of the search tree and edge (C, F) is also a tree edge.

We now return to the top of the loop, having examined all vertices adjacent to

vertex C. The status of the queue is shown at left, so vertex D is the next

vertex to be removed from the queue.

After vertex D has been removed from the queue, the state of the queue is as

shown at left. We consider the adjacency list for vertex D. Noting that

Adj(D) = {A, C} and that each of vertices A and C is marked, move on.

Not having found an unmarked vertex adjacent to vertex D, we finish that

loop and go back to the top. The queue is not empty, so we remove vertex E

from the front of the queue and examine its adjacency list. We have Adj(E) =

{A, B, F}. The work matrices are shown below.

Vertex A B C D E F G H I J

Mark 1 0 2 3 4 5 0 0 0 0

Back 0 0 A A A C 0 0 0 0

Chapter 4 Graph Traversal Algorithms

Page 15 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

v = E, Adj(v) = {A, B, F}, w = A

 As vertex A is marked, we do not process it.

v = E, Adj(v) = {A, B, F}, w = B

 As vertex B is not marked, we process it. Mark vertex B with the count, update the back

array, and add vertex B to the queue. The situation after this has been done is as follows.

Vertex A B C D E F G H I J

Mark 1 6 2 3 4 5 0 0 0 0

Back 0 E A A A C 0 0 0 0

The state of the queue after vertex B has been added is shown at left.

v = E, Adj(v) = {A, B, F}, w = F

 As vertex F is marked, we do not process it.

We have completed the work with vertices adjacent to vertex E. The loop

begins again with the test showing the queue is not empty. Vertex F is

removed from the queue, leaving the situation as at right. We examine the

adjacency list of vertex F and note that Adj(F) = {B, C, E}. Each of these

three vertices has been marked, so that the loop examining vertices adjacent to

F does not mark any vertices or add them to the queue.

Having completed the work with vertices adjacent to vertex F, the loop returns again to the top.

The queue is not empty, so the next vertex is removed. It is vertex B. We examine the

adjacency list of vertex B and find it to be Adj(B) = {E, F}. As each of these vertices has been

marked, neither is marked again or added to the queue, so we end this loop.

Having completed the work with vertices adjacent to vertex B, the loop returns again to the top.

The queue is found to be empty, so the call to bfs(A) completes and control returns to the top

level program BFS.

After the return from bfs(A), the status of the work arrays is as follows.

Vertex A B C D E F G H I J

Mark 1 6 2 3 4 5 0 0 0 0

Back 0 E A A A C 0 0 0 0

The next unmarked vertex in the list is G, so DFS next calls vertex G. (Terminology problem

here – I have also used G for the graph name. I have never used the graph name in the context of

algorithm dfs, so the call dfs(G) must be for vertex G.)

Chapter 4 Graph Traversal Algorithms

Page 16 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Vertex G has the following adjacency list: Adj(G) = {H, J}. The student should verify that the

vertices are visited in the following order: H, J, and I; with vertex I being visited from vertex J.

After the second (and last) component has been visited, the matrices are:

Vertex A B C D E F G H I J

Mark 1 6 2 3 4 5 7 8 10 9

Back 0 E A A A C 0 G H G

The search forest generated by BFS on the graph is shown below.

For comparison, the search forest generated by DFS on the graph is also shown.

Chapter 4 Graph Traversal Algorithms

Page 17 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Directed Graphs

The next topic for discussion is topological sort (see below). Topological sort is a process

applied to directed graphs, which we now discuss. Briefly stated, a directed graph is a graph in

which the edges have direction – they should be viewed as “one-way streets”.

We should first point out that every undirected graph may be represented as a directed graph.

The following figure shows an undirected graph on four vertices (C4 – the cycle on four vertices)

and its equivalent as a directed graph. Note that each “street” is “two-way”.

We have defined a cycle in a graph loosely as a path that begins at a given vertex, goes to at least

one other vertex, and returns to the start vertex. A cycle that involves all other vertices is called

a Hamiltonian Cycle – the subject of a lot of interesting research. Directed graphs can also

contain cycles, but the paths have to “go with” the direction of the edges.

The next figure shows two similar directed graphs and the undirected graph equivalent.

Note that the graph in the middle has a single directed cycle, which could be denoted as

(A, B, D). The graph on the right does not contain a cycle, as the edge (A, D) is reversed. The

graph on the right is called a directed acyclic graph (or dag for short) as it is a directed graph

without cycles. The graph on the left, being undirected, also contains a cycle.

The graph algorithms we have studied, including BFS and DFS, operate not directly on a graph

but on its adjacency structure – either an adjacency matrix or an adjacency list. All of these

algorithms can easily be applied to directed graphs.

The adjacency matrix for the middle graph is shown at left. Note that

the matrix is not symmetric, as are the adjacency matrices for

undirected graphs. One uses this matrix in the expected way to apply

graph algorithms, such as BFS and DFS.

 A B C D

A 0 1 1 0

B 0 0 0 1

C 0 0 0 0

D 1 0 0 0

Chapter 4 Graph Traversal Algorithms

Page 18 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Topological Sort

We now turn to a process that can be applied only to directed acyclic graphs. This process,

called topological sorting, is a presentation of the vertices of the graph in a way that preserves

the ordering implied by the directions of the graph edges. The best example of topological

sorting is a listing of a set of college courses, one per term, in a way that does not violate the

prerequisite requirements.

Consider the set of course prerequisites represented by the graph below.

C1 and C2 are both prerequisites for C3.

C3 is a prerequisite for both C4 and C5.

C4 is a prerequisite for C5.

One way to view this problem is to consider

implicit prerequisites – the implied prerequisites

for course C5 are all of C1, C2, C3, and C4 – so course

C5 must be taken last. By inspection, we see that the two

possible orderings for these courses are

 C1, C2, C3, C4, C5, and

 C2, C1, C3, C4, C5.

We use topological sort to produce these results. There are two algorithms commonly used to do

topological sorting – DFS and Source Removal. We present the Source Removal as it is simpler.

First we define a source vertex as a vertex with no “incoming arrows”. The algorithm functions

by removing a source vertex and all edges incident to it, and placing the vertex in a list. In case

of more than one source vertex, one chooses arbitrarily.

Applying the algorithm to the example, we note that we have

two source vertices – C1 and C2. Here I arbitrarily pick vertex

C1 and remove it, giving rise to the graph at left.

Our list at the moment contains one vertex (C1).

We look now and see that there is exactly one source vertex, C2.

We remove it to get the next graph.

The list now is (C1, C2) and after removing these two vertices we have the

graph at right. It should be obvious that there is only one source vertex –

C3. We remove this to get the list (C1, C2, C3) and the algorithm proceeds

to produce the list (C1, C2, C3, C4, C5). The reader should verify that, had

we chosen to remove vertex C2 first, the list would have been (C2, C1, C3,

C4, C5) as expected.

Chapter 4 Graph Traversal Algorithms

Page 19 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

More Graph Examples: “Word Trail”

The word trail game is based on a common dictionary of words. One is supposed to move from

one word to another in a finite number of steps, with each step representing the change of a

single letter. A sample word trail would be DOG DOT COT CAT.

The common constraint is that the words in the trail be found in a usual dictionary. One

excellent source of words would be the Scrabble™ dictionary. Under this usual constraint, the

word trail DOG DOT DAT CAT would not be acceptable, as the word “DAT” is not

found in most dictionaries.

We consider the word trail problem as an example of a graph search problem. In order to make

the problem manageable, we restrict the dictionary of words to be used in the search to the

following list of arbitrarily chosen three-letter words.

BAG BAT BOG BOX CAT COW DOG

BAR BIG BOW CAR COG DIG

We convert this list to a graph by assigning each word to a vertex, labeled by that word, and

connecting two vertices by an edge if and only if the words differ by exactly one character.

The only issue with drawing this graph is to arrange the vertices in a manner that minimizes the

confusion in the drawing. The figure above is this author’s best try.

Chapter 4 Graph Traversal Algorithms

Page 20 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

One can use either DFS or BFS to discover the word trail. BFS turns out to be the better choice,

as this search strategy will find the shortest path from one word to the other. DFS will always

find a path, but the first path found will not necessarily be the best.

In order to apply BFS to this problem, we make a minor modification to mark the vertices with

the “distance” to the source vertex – the number of edges traversed. The modified algorithm is

shown below.

Algorithm bfs_trail(x, y)

//

// Uses breadth-first search to create a “word trail” from

// vertex x to vertex y.

//

 For each vertex v in V(G) Do

 Mark[v] = - 1 // A distance of 0 is a valid mark

 Back[v] = 0 // for a visited vertex, so we must

 End Do // initialize each to -1.

//

 Add(Q, x) // Add this vertex to the queue and

 mark [x] = 0 // set its distance to zero.

// Point 1

 While (Not IsEmpty(Q)) Do

 Remove (Q, v) // Remove the front vertex from queue

 DistToThis = Mark[v]

// Point 2

 For each vertex w in V adjacent to v Do

// Point 3

 If (Mark[w] < 0) Then

 Mark[w] = DistToThis + 1

 Back[w] = v

 Add(Q, w)

 End If

 If (w == y) then exit algorithm // Done

 End For Each

//

// Note that I remove the vertex at the top of the loop

//

 End While

Note that the algorithm can be easily modified to discover the distance from any source vertex to

all other vertices in the connected component.

We now do the BFS starting at vertex DOG and see when we get to vertex CAT.

Chapter 4 Graph Traversal Algorithms

Page 21 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

First we create and initialize the Mark and Back arrays.

 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Back 0 0 0 0 0 0 0 0 0 0 0 0 0

dfs(DOG)

 Add DOG to the Queue Q = (DOG)

 Mark the array for DOG, setting its distance to 0.

 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Back 0 0 0 0 0 0 0 0 0 0 0 0 0

Remove DOG from the queue, so Q = () Dist = Mark[Dog] = 0

 Adj(DOG) = (BOG, COG, DIG)

 Mark[BOG] < 0, so

 Mark[BOG] = 1

 Back[BOG] = DOG

 Add BOG to the queue Q = (BOG)

 Mark[COG] < 0, so

 Mark[COG] = 1

 Back[COG] = DOG

 Add COG to the queue Q = (BOG, COG)

 Mark[DIG] < 0, so

 Mark[DIG] = 1

 Back[DIG] = DOG

 Add DIG to the queue Q = (BOG, COG, DIG)

 No more adjacent to DOG

The status now is:
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 0

Back 0 0 0 0 DOG 0 0 0 0 DOG 0 DOG 0

 Q = (BOG, COG, DIG)

Remove BOG from the queue, so Q = (COG, DIG) Dist = Mark[BOG] = 1

 Adj(BOG) = (BAG, BIG, BOW, BOX, COG, DOG)

 Mark[BAG] < 0, so

 Mark[BAG] = 2

 Back[BAG] = BOG

 Add BAG to the queue Q = (COG, DIG, BAG)

Chapter 4 Graph Traversal Algorithms

Page 22 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

 Mark[BIG] < 0, so

 Mark[BIG] = 2

 Back[BIG] = BOG

 Add BIG to the queue, so Q = (COG, DIG, BAG, BIG)

 Mark[BOW] < 0, so

 Mark[BOW] = 2

 Back[BOW] = BOG

 Add BOW to the queue, so Q = (COG, DIG, BAG, BIG, BOW)

 Mark[BOX] < 0, so

 Mark[BOX] = 2

 Back[BOX] = BOG

 Add BOX to the queue, so Q = (COG, DIG, BAG, BIG, BOW, BOX)

 Mark[COG] = 1, so no action.

 Mark[DOG] = 0, so no action.

 No more adjacent to BOG

The status now is
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark 2 -1 -1 2 1 2 2 -1 -1 1 -1 1 0

Back BOG 0 0 BOG DOG BOG BOG 0 0 DOG 0 DOG 0

 Q = (COG, DIG, BAG, BIG, BOW, BOX)

Remove COG from the queue, so Q = (DIG, BAG, BIG, BOW, BOX)

 Adj(COG) = (BOG, COW, DOG) Dist = Mark[COG] = 1

 Mark[BOG] = 1, so no action

 Mark[COW] < 0, so

 Mark[COW] = 2

 Back[COW] = COG

 Add COW to the queue, so Q = (DIG, BAG, BIG, BOW, BOX, COW)

 Mark[DOG] = 0, so no action.

 No more adjacent to COG.

The status now is
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark 2 -1 -1 2 1 2 2 -1 -1 1 2 1 0

Back BOG 0 0 BOG DOG BOG BOG 0 0 DOG COG DOG 0

 Q = (DIG, BAG, BIG, BOW, BOX, COW)

Chapter 4 Graph Traversal Algorithms

Page 23 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Remove DIG from the queue, so Q = (BAG, BIG, BOW, BOX, COW)

 Adj(DIG) = (BIG, DOG)

 Mark[BIG] = 2, so no action.

 Mark[DOG] = 0, so no action.

 No more adjacent to DIG. No change in status.

Remove BAG from the queue, so Q = (BIG, BOW, BOX, COW)

 Adj(BAG) = (BAR, BAT, BIG, BOG) Dist = Mark[BAG] = 2

 Mark[BAR] < 0, so

 Mark[BAR] = 3

 Back[BAR] = BAG

 Add BAR to the queue, so Q = (BIG, BOW, BOX, COW, BAR)

 Mark[BAT] < 0, so

 Mark[BAT] = 3

 Back[BAT] = BAG

 Add BAT to the queue, so Q = (BIG, BOW, BOX, COW, BAR, BAT)

 Mark[BIG] = 2, so no action

 Mark[BOG] = 1, so no action.

 No more adjacent to BAG.

At this point, an intelligent search would note that “BAT” differs from “CAT” by exactly one

letter and move “BAT” to the front of the queue. BFS does not do this.

The status now is
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark 2 3 3 2 1 2 2 -1 -1 1 2 1 0

Back BOG BAG BAG BOG DOG BOG BOG 0 0 DOG COG DOG 0

 Q = (BIG, BOW, BOX, COW, BAR, BAT)

Remove BIG from the queue, so Q = (BOW, BOX, COW, BAR, BAT)

 Adj(BIG) = (BAG, BOG, DIG)

 Mark[BAG] = 2, so no action.

 Mark[BOG] = 1, so no action.

 Mark[DIG] = 1, so no action.

 No more adjacent to BIG. No change in status.

Chapter 4 Graph Traversal Algorithms

Page 24 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Remove BOW from the queue, so Q = (BOX, COW, BAR, BAT)

 Adj(BOW) = (BOG, BOX, COW)

 Mark[BOG] = 1, so no action

 Mark[BOX] = 2, so no action.

 Mark[COW] = 2, so no action.

 No more adjacent to BOW. No change in status.

Remove BOX from the queue, so Q = (COW, BAR, BAT)

 Adj(BOX) = (BOG, BOW)

 Mark[BOG] = 1, so no action.

 Mark[BOW] = 2, so no action.

 No more adjacent to BOX. No change in status.

Remove COW from the queue, so Q = (BAR, BAT)

 Adj(COW) = (BOW, COG)

 Mark[BOW] = 2, so no action.

 Mark[COG] = 1, so no action.

 No more adjacent to COW. No change in status.

Remove BAR from the queue, so Q = (BAT)

 Adj(BAR) = (BAG, BAT, CAR) Dist = Mark[BAR] = 3

 Mark[BAG] = 2, so no action.

 Mark[BAT] = 3, so no action

 Mark[CAR] < 0, so

 Mark[CAR] = 4

 Back[CAR] = BAR

 Add CAR to the queue, so Q = (BAT, CAR)

The status now is
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark 2 3 3 2 1 2 2 4 -1 1 2 1 0

Back BOG BAG BAG BOG DOG BOG BOG BAR 0 DOG COG DOG 0

 Q = (BAT, CAR)

Chapter 4 Graph Traversal Algorithms

Page 25 of 25 CPSC 3115 Version of June 6, 2013

 Copyright © by Edward Bosworth

Remove BAT from the queue, so Q = (CAR)

 Adj(BAT) = (BAG, BAR, CAT) Dist = Mark[BAT] = 3

 Mark[BAG] = 2, so no change.

 Mark[BAR] = 3, so no change.

 Mark[CAT] < 0, so

 Mark[CAT] = 4

 Back[CAT] = BAT

 Add CAT to the queue, so Q = (CAR, CAT)

 No more adjacent to BAT.

 At this point the word trail is complete.

The status now is

 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG

Mark 2 3 3 2 1 2 2 4 4 1 2 1 0

Back BOG BAG BAG BOG DOG BOG BOG BAR BAT DOG COG DOG 0

 Q = (CAR, CAT)

The word trail is CAT BAT BAG BOG DOG, which can be rewritten in the

expected order as DOG BOG BAG BAT CAT.

Just to be complete, we finish the BFS.

Remove CAR from the queue, so Q = (CAT)

 Adj(CAR) = (BAR, CAT)

 Mark[BAR] = 3, so no action.

 Mark[CAT] = 4, so no action.

 No more adjacent to CAR. No change in status.

Remove CAT from the queue, so Q = ()

 Adj(CAT) = (BAT, CAR)

 Mark[BAT] = 3, so no action.

 Mark[CAR] = 4, so no action.

 No more adjacent to CAT. No change in status.

 The queue is empty, so BFS terminates with the status as shown above.

