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Graph Traversal Algorithms 
 

Many important problems in the field of computer science have solutions that are best modeled 

by graph traversal.  When considering traversal of graphs, we need to consider some sort of 

systematic procedure for “visiting” each vertex in the graph and generating a solution to the 

problem based on these traversals. 

 

The two main graph traversal algorithms are called Depth-First Search (DFS) and Breadth-

First Search (BFS).  In these algorithms, we base the traversal on the adjacencies found in the 

graph.  Other search algorithms, such as branch-and-bound and a number of other algorithms 

found in the study of Artificial Intelligence, use more of the graph structure.  We begin with the 

“simple” algorithms. 

 

We begin this discussion by recalling the effects of adjacency and connectivity upon graph 

traversal.  Let G = (V, E) be a graph with vertex set V and edge set E.  Two vertices u and v are 

said to be said to be adjacent in G if (u, v)  E; i.e., (u, v) is an edge in the graph.  A graph 

traversal algorithm moves from one vertex to another along edges, thus one can move from 

vertex u to vertex v if and only if (u, v)  E.  A path from vertex u to vertex v in a graph G can 

be defined as a sequence of adjacent vertices that starts with u and ends with v.  We may present 

a recursive definition of the existence of a path from u to v as follows. 

 

In a graph G = (V, E), there is a path from vertex u to vertex v if and only if either 

  1) (u, v)  E, or 

  2) there is a vertex w  V, with (u, w)  E, such that there is a path from w to v. 

 

A graph is said to be connected if and only if there is a path from u to v for every pair of vertices 

u and v.  If a graph is not connected, it will be seen to comprise two or more connected 

components.  Formally a connected component is a maximal subgraph of a given graph, 

meaning that the subgraph cannot be expanded by addition of extra vertices that are adjacent to 

vertices already included in the component. 

 

 
 Graph with Graph with 

 Two Connected Components One Connected Component 

  (A Connected Graph) 
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Graph traversals are defined in terms of connected components.  A traversal of a single 

connected component of a graph (or the graph itself, it the graph is connected) produces a tree 

structure indicating the order in which the vertices were visited.  A traversal of a graph with two 

or more components produces two or more trees, collectively called a forest. 

 

 

Depth-First Search 

We show the DFS algorithm as a pair of algorithms, one called DFS and one called dfs.  The 

algorithm presented uses two arrays, called Mark and Back, to manage the search and help in 

generation of the search forest. 

 
Algorithm DFS (G)  // DFS on a graph G = (V, E) 

//  The graph G may be connected or unconnected. 

//  This operates by marking each vertex. 

//  This uses two arrays: Mark and Back. 

// 

 count = 0 

 For each vertex v  V Do // The primary purpose of 

  Mark[v] = 0   // DFS is to initialize these 

  Back[v] = 0   // arrays and call dfs. 

 End For 

 For each vertex v  V(G) Do 
  If (0 == Mark[v]) then 

   // 

   // Vertex v is in a new component, not connected 

   // to any vertex already visited by algorithm dfs. 

   dfs(v) 

  End If 

 End Do 

 

If G is a connected graph, then dfs(v) will be called exactly once in DFS(G), as every vertex in G 

will be marked by the first call to dfs(v).  Recall that the DFS produces a rooted tree structure 

corresponding to the traversal of the graph.  For a connected graph G, the root vertex of the 

search tree will be the first vertex used in a call to the dfs algorithm. 

 

If G is not a connected graph, then dfs(v) will be called once for each component, producing a 

search tree for each component.  The result of DFS(G) will be a search forest, with one search 

tree for each of the connected components. 

 

Each search tree in the forest corresponds to a connected component in the graph.  Each 

search tree is rooted at that vertex in the connected component that was first selected by the top-

level algorithm DFS. 
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Algorithm dfs(v)  // v is a vertex in the graph G 

// 

 count = count + 1  // This is a global variable 

 Mark[v] = count  // Explicit array here 

 For each vertex w in V adjacent to v Do 

  If (0 == Mark[w]) Then 

   Back[w] = v // Remember where we “came from”. 

   dfs(w) 

  End If 

 End Do 

 
The best way to proceed here is to solve a specific instance of the DFS problem.  We examine the graph shown in 

the figure below.  Note that the graph, as drawn, clearly is not connected, having exactly two 

connected components with vertex sets {a, b, c, d, e, f} and {g, h, i, j}, 

 

 
 

In order to illustrate the execution of the algorithm, we must work from the computer 

representation of the graph and introduce the auxiliary data structures required for DFS. 

The graph may be represented by an adjacency matrix, with the 0’s not shown. 

 

 A B C D E F G H I J 

A   1 1 1      

B     1 1     

C 1   1  1     

D 1  1        

E 1 1    1     

F  1 1  1      

G        1  1 

H       1  1  

I        1  1 
J       1  1  
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Vertex A B C D E F G H I J 

Mark 0 0 0 0 0 0 0 0 0 0 

Back 0 0 0 0 0 0 0 0 0 0 
 

We now consider the algorithm DFS(G), arbitrarily deciding that the statement  

 For each vertex v  V Do is interpreted as scanning the above array.  The first vertex 

to be the root of a search tree is v = A, which is the first vertex marked with a 0.  Note that we 

could have started the search at any vertex; I choose A for no good reason. 
 

The first effect of calling dfs(v) with v = A is to set the mark of A to 1, so we have the following 

for the mark array. 

 

Vertex A B C D E F G H I J 

Mark 1 0 0 0 0 0 0 0 0 0 

Back 0 0 0 0 0 0 0 0 0 0 

 

Before continuing with the search, we should note an artifact of the way in which the algorithm 

is often presented – we can see the entire graph and search it mentally with great facility.  This 

presentation will focus on only those parts of the graph that are visible to the algorithm at the 

time a decision is made.  When we have processed A, the situation is as follows. 

 

Here we show only vertex A and the vertices adjacent to it.  The 

rest of the graph is “invisible” at this point.  The algorithm 

proceeds recursively, implicitly using a call stack.  As this is the 

first call, the call stack might be viewed as  

STACK => A 

 

 

Consider now the statement For Each vertex w in V adjacent to v Do 

There are many ways to implement this in a programming language.  One way would be as 

follows: For w = A to J Do If Adjacency[w, A] = 1 Then 

 

The requirement of the algorithm is that each vertex adjacent to A be explored.  The order of 

exploration is not important and depends on the data structure used to represent the graph.  In 

these notes, we follow the books suggestion and process vertices in alphabetical order, thus we 

next call algorithm dfs on vertex C.  After this call, we have the following. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 0 0 0 0 0 0 0 

Back 0 0 A 0 0 0 0 0 0 0 
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At this point the stack status is given by STACK => A => C. 

Vertex C has been marked with the number 2, denoting its 

position in the traversal order.  Again, all we see is those three 

vertices that are adjacent to vertex C.  The algorithm calls for us 

to process each of those three vertices, but we see that vertex A 

has already been marked.  For this reason, vertex D is next. 

 

It is at this point in the algorithm that we first see two types of edges in the graph.  There are 

three edges incident on vertex C: (C, A) – incident on a vertex already visited and two edges  

(C, D) and (C, F) incident on vertices that have yet to be visited.  The DFS algorithm has names 

for these types of edges: tree edge and back edge. 

 

A tree edge is an edge incident on the vertex being processed that is also incident on an 

unmarked vertex.  A back edge is an edge incident on the vertex being processed that is also 

incident on a marked vertex.  The origin of this latter name should be obvious. 

 

We now see the use of the Back array; it identifies back edges.  The algorithm now calls 

dfs (D), after which call we have the following. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 0 0 0 0 0 0 

Back 0 0 A C 0 0 0 0 0 0 

 

 

At this point the status of the stack is STACK => A => C => D. 

 

There are two vertices adjacent to D: A and C.  Both have been marked, so 

we remove D from the stack and return to C. 

 

 

The situation after D is popped off the call stack by the return from the 

recursive call dfs(D) is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 0 0 0 0 0 0 

Back 0 0 A C 0 0 0 0 0 0 

 

The stack status is given by STACK => A => C. 

There are three vertices adjacent to C (just as there was when we 

last visited the vertex), but now two of them (A and D) have 

been marked.  The only vertex that is both adjacent to vertex C 

and unmarked is vertex F, so we visit that one. 
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The situation after vertex F is visited is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 0 4 0 0 0 0 

Back 0 0 A C 0 C 0 0 0 0 

 

 

The status of the stack is given by STACK => A => C => F. 

There are three vertices adjacent to F, we attempt to visit B first 

and note that it is marked with 0.  So the next step in the algorithm 

is to process dfs(B). 

 

 

 

The situation after vertex B is visited is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 0 4 0 0 0 0 

Back 0 F A C 0 C 0 0 0 0 

 

 

The stack is given by STACK => A => C => F => B. 

There are two vertices adjacent to B: E and F.  We attempt to visit E first 

and note that it is unmarked, so we process dfs(E). 

 

 

 
 

The situation after vertex E is visited is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 0 0 0 0 

Back 0 F A C B C 0 0 0 0 

 

 

 

The stack is given by STACK => A => C => F => B => E. 

There are three vertices adjacent to E, but each has been marked 

with a positive number.  For this reason, we return and move up 

the call stack.  We called dfs(E) from visiting B, so it is there we 

return. 
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The situation after E is popped off the stack by the return from the recursive call is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 0 0 0 0 

Back 0 F A C B C 0 0 0 0 

 

The call stack is given by STACK => A => C => F => B. 

Again, there are two vertices adjacent to B: E and F.  Both of these vertices 

have been marked with positive integers, so we again return up the call 

chain. 

 

 

 

 

The situation after B is popped off the call stack by the return is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 0 0 0 0 

Back 0 F A C B C 0 0 0 0 

 

 

The call stack is given by STACK => A => C => F. 

There are three vertices adjacent to vertex F: A, C, and E.  Each of 

these has been marked with a positive integer, so again we return 

up the call chain. 

 

 

 

The situation after F has been removed from the call stack by return from the recursive call is 

shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 0 0 0 0 

Back 0 F A C B C 0 0 0 0 

 

 

The call stack is given by STACK => A => C.  There are three 

vertices adjacent to vertex C: A, D, and F.  Just as before, each of 

these vertices has been marked with a positive integer, so again we 

execute a return from the recursive call and move up the call stack. 
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The situation after C has been removed from the call stack is shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 0 0 0 0 

Back 0 F A C B C 0 0 0 0 

 

 

 

The call stack status is given by STACK => A.  There are three 

vertices adjacent to A, all of which have been marked with 

positive integers, so we return from the call to dfs(A).  At this 

point we have returned to the top-level algorithm DFS(G). 

 

 

The top level algorithm then scans the mark array for the next vertex after A to be marked with a 

0.  The next vertex to have this property is G.  The student is invited to show that the algorithm 

visits vertices G, H, I, and J in that order, giving rise to the following situation when the top-level 

algorithm DFS exits. 

 

Vertex A B C D E F G H I J 

Mark 1 5 2 3 6 4 7 8 9 10 

Back 0 F A C B C 0 G H I 

 

These two arrays now contain the results of the depth first search and serve as a basis for the 

generation of the two search trees found in the DFS forest for this graph. 

 

 

The search trees for this graph are obtained from the array 

Back as follows.  There are two vertices in this graph that are 

roots of the DFS search trees when the algorithm is executed 

as above: A and G.  These are identified by the fact that the 

Back entry for each is 0. 

 

The DFS tree rooted at A is constructed by reading the Back 

array.  What vertices have Back[v] = A?  C is the only vertex.  

What vertices have Back[v] = C?  There are two such vertices 

– D and F.  The process proceeds as expected to produce the 

search trees.  Note that every edge placed in the search tree is 

an edge that the algorithm would identify as a tree edge.  The 

name comes from the fact that the edge is a part of the search 

tree – big surprise. 
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Breadth-First Search 

We now examine the other major graph traversal algorithm – BFS (Breadth-First Search).  

Again, BFS is presented in the textbook as a pair of algorithms, to allow for search of each of the 

connected components of a graph. 

 

The BFS algorithm uses a data structure called a queue – a first-in first-out data structure,  We 

shall model the queue in our example as a list, adding to the “back” of the queue and removing 

from the “front” of the queue.  In our adaptation of the algorithm we have the following 

operations on the queue, which we shall denote as Q. 

 

 Initialize(Q) this sets up the data structure and initializes the queue to empty 

 IsEmpty(Q) this returns True if and only if the queue is empty 

 Add(Q, v)  add vertex v to the queue 

 Remove(Q, v) remove a vertex from the queue and return it as v. 

 

As before with DFS, we shall use a number of arrays, including a “Back” array not mentioned in 

the textbook.  The queue may be implemented either as an array or a linked list; the details of its 

implementation are not of interest at present. 

 

The top-level algorithm, BFS, is applied to the entire graph. 

 
Algorithm BFS(G) 

//  Implements a breadth-first search traversal for a graph G. 

//  The graph can have one or more connected components. 

// 

// This pair of algorithms uses four global variables. 

// Count – the order of the vertex in the traversal 

// Q     - the queue used by bfs to order the search. 

// Mark  - the “mark array” used to mark each vertex 

// Back  - the “back array” used to construct the search tree. 

// 

 Count = 0  // Initialize the global variables 

 Initialize(Q) 

// 

 For each vertex v in V Do 

  Mark[v] = 0 

  Back[v] = 0 

 End Do 

 

// Now do the search 

// 

 For each vertex v in V Do 

  If Mark[v] = 0 Then bfs(v) 

 End Do 
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Here is the “low-level” algorithm bfs(v) – note that it is not recursive.  We have labeled three 

points in the algorithm as 1, 2, and 3 to facilitate talking about it. 

 
Algorithm bfs(u) 

// 

// Visits all unvisited vertices adjacent to vertex u 

// and assigns them a number in the order they are visited. 

// This also allows the search tree to be built. 

// 

 count = count + 1   // Increment the global variable count 

 mark [u] = count 

 Add(Q, u)           // Add this vertex to the queue 

// Point 1 

 While ( Not IsEmpty(Q)) Do 

  Remove (Q, v)    // Remove the front vertex from queue 

//   Point 2 

  For each vertex w in V adjacent to v Do 

//        Point 3 

   If (Mark[w] = 0) Then 

    Count = Count + 1 

    Mark[w] = Count 

    Back[w] = v 

    Add(Q, w) 

   End If 

  End For Each 

// 

//  Note that I remove the vertex at the top of the loop 

// 

 End While 

 

Here again is our favorite sample graph with two connected components.  As before, we expect 

the BFS algorithm to yield a search forest, with one search tree for each of the two connected 

components in the graph. 
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The adjacency matrix for the sample graph is shown below. 

 

 A B C D E F G H I J 

A   1 1 1      

B     1 1     

C 1   1  1     

D 1  1        

E 1 1    1     

F  1 1  1      

G        1  1 

H       1  1  

I        1  1 

J       1  1  

 

The work arrays for this search are shown below.  As before, we index each array by the vertex 

name; each element of the array back contains either a 0 or a vertex name.  Just after BFS is 

called and just before the call to bfs(A), the work arrays are as follows. 

 

Vertex A B C D E F G H I J 

Mark 0 0 0 0 0 0 0 0 0 0 

Back 0 0 0 0 0 0 0 0 0 0 

 

We now call bfs(v) with v = A.  After point 1 in the bfs algorithm, we have the following. 

 

Vertex A B C D E F G H I J 

Mark 1 0 0 0 0 0 0 0 0 0 

Back 0 0 0 0 0 0 0 0 0 0 

 

 

The status of the queue is shown at left.  At this point, it has only one vertex.  

We shall add and remove by inspection. 

 

 

The loop is entered since the queue is not empty.  We first remove the front vertex from the 

queue (a slight variation of the book’s algorithm) and examine its adjacency list. 

 

We again look for vertices that are adjacent to the first vertex A.  

We find that there are three such vertices: C, D, and E.  Again, the 

order of the search will depend on the order in which we select the 

vertices from the adjacency list, which could be written as {C, D, 

E}.  We again follow the book’s convention of taking the vertices 

in alphabetical order. 
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At this point, the algorithm starts to add vertices to the queue and remove them when they are to 

be visited.  To make things a bit clearer, we look at what is happening as a result of the statement 

For each vertex w in V adjacent to v where v = A. 

 

v = A,  Adj(v) = {C, D, E}, w = C 

 Mark vertex C with the count, update the back array, and add it to the queue. 

 

The arrays at this point are: 

Vertex A B C D E F G H I J 

Mark 1 0 2 0 0 0 0 0 0 0 

Back 0 0 A 0 0 0 0 0 0 0 

 

The status of the queue is shown at left.  Note that vertex A has been removed 

from the front of the queue, leaving it temporarily empty (at a time we don’t 

check it) and then re-inserting vertex C. 

 

 

 

v = A,  Adj(v) = {C, D, E}, w = D 

 Mark vertex D with the count, update the back array, and add it to the queue. 

 

The arrays at this point are: 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 0 0 0 0 0 0 

Back 0 0 A A 0 0 0 0 0 0 

 

The status of the queue after vertex D has been visited is shown at left.  

Note that the algorithm will not remove any vertex from the queue until all 

vertices adjacent to vertex A have been examined and enqueued. 

 

 

v = A,  Adj(v) = {C, D, E}, w = E 

 Mark vertex E with the count, update the back array, and add it to the queue. 

 

The arrays at this point are: 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 4 0 0 0 0 0 

Back 0 0 A A A 0 0 0 0 0 

 

 

 

The status of the queue at this point is shown at left.  We have placed on the 

queue all three vertices that are adjacent to vertex A, which is the vertex with 

which we originally invoked the algorithm bfs.  We now are at the bottom of 

the For each vertex loop. 

 

At point 1 in the bfs algorithm, the queue is found not to be empty, so the next vertex is removed 

from the queue.  We now have the following situation. 
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After vertex C has been removed from the queue, we have the situation at left.  

We next examine each vertex adjacent to vertex C and determine it status with 

regard to the marking. 

 

 

The arrays at this point have not been changed, but we repeat them for clarity. 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 4 0 0 0 0 0 

Back 0 0 A A A 0 0 0 0 0 

 

 

At this point in the algorithm, we are looking for unmarked vertices 

adjacent to vertex C.  The picture at left shows the situation.  We 

have Adj(C) = {A, D, F}. 

 

 

 

 

v = C, Adj(v) = {A, D, F}, w = A 

  Note that vertex A is marked, so we do not process it. 

 

v = C, Adj(v) = {A, D, F}, w = D 

  Again, note that vertex D is marked, so we do not process it. 

 

v = C, Adj(v) = {A, D, F}, w = F 

 Mark vertex F with a 5, update the back array, and add vertex F to the queue. 

 

The arrays at this point have not been changed, but we repeat them for clarity. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 4 5 0 0 0 0 

Back 0 0 A A A C 0 0 0 0 

 

 

The status of the queue is again shown at left.  We have finished with the 

vertices that are adjacent to vertex C and are ready to remove another vertex 

from the queue.  Before we do this, we should stop and look at the partial 

search tree that has been generated at this point. 

 



Chapter 4  Graph Traversal Algorithms 

Page 14 of 25 CPSC 3115 Version of June 6, 2013 

 Copyright © by Edward Bosworth 

Here is the search tree after vertices A and C have been fully processed. 

 

 

We again classify edges in the graph according to how they are 

encountered in the search process.  When considering edges 

incident on the start vertex, we note that all three of the edges – 

(A, C), (A, D), and (A, E) – are included in the search tree and 

are called tree edges. 

 

Consider now the edges incident on vertex C, the second vertex 

visited and marked.  There are three edges incident on vertex 

C: (C, A) = (A, C), (C, D), and (C, F).  Each of these edges 

belongs to a different class. 

 

The edge (C, A) is an edge back to a vertex already visited that also is a part of the search path 

from the root vertex A to the vertex C.  In tree terminology A is an ancestor vertex of C; in fact 

it is the parent vertex of C.  We might call the edge (C, A) a back edge, following the 

terminology used in DFS, although this terminology is not much used in BFS. 

 

The edge (C, D) is an edge to a vertex already visited that is not a part of the search path from 

the root to C.  This type of edge is called a cross edge. 

 

When we encountered edge (C, F), we had yet to mark vertex F and add it to the queue, so this 

edge will become part of the search tree and edge (C, F) is also a tree edge. 

 

 

We now return to the top of the loop, having examined all vertices adjacent to 

vertex C.  The status of the queue is shown at left, so vertex D is the next 

vertex to be removed from the queue. 

 

 

After vertex D has been removed from the queue, the state of the queue is as 

shown at left.  We consider the adjacency list for vertex D.  Noting that 

Adj(D) = {A, C} and that each of vertices A and C is marked, move on. 

 

Not having found an unmarked vertex adjacent to vertex D, we finish that 

loop and go back to the top.  The queue is not empty, so we remove vertex E 

from the front of the queue and examine its adjacency list.  We have Adj(E) = 

{A, B, F}.  The work matrices are shown below. 

 

Vertex A B C D E F G H I J 

Mark 1 0 2 3 4 5 0 0 0 0 

Back 0 0 A A A C 0 0 0 0 
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v = E, Adj(v) = {A, B, F}, w = A 

 As vertex A is marked, we do not process it. 

 

v = E, Adj(v) = {A, B, F}, w = B 

 As vertex B is not marked, we process it.  Mark vertex B with the count, update the back 

array, and add vertex B to the queue.  The situation after this has been done is as follows. 

 

Vertex A B C D E F G H I J 

Mark 1 6 2 3 4 5 0 0 0 0 

Back 0 E A A A C 0 0 0 0 

 

 

The state of the queue after vertex B has been added is shown at left. 

 

 

 

v = E, Adj(v) = {A, B, F}, w = F 

 As vertex F is marked, we do not process it. 

 

We have completed the work with vertices adjacent to vertex E.  The loop 

begins again with the test showing the queue is not empty.  Vertex F is 

removed from the queue, leaving the situation as at right.  We examine the 

adjacency list of vertex F and note that Adj(F) = {B, C, E}.  Each of these 

three vertices has been marked, so that the loop examining vertices adjacent to 

F does not mark any vertices or add them to the queue. 

 

Having completed the work with vertices adjacent to vertex F, the loop returns again to the top.  

The queue is not empty, so the next vertex is removed.  It is vertex B.  We examine the 

adjacency list of vertex B and find it to be Adj(B) = {E, F}.  As each of these vertices has been 

marked, neither is marked again or added to the queue, so we end this loop. 

 

Having completed the work with vertices adjacent to vertex B, the loop returns again to the top.  

The queue is found to be empty, so the call to bfs(A) completes and control returns to the top 

level program BFS. 

 

After the return from bfs(A), the status of the work arrays is as follows. 

 

Vertex A B C D E F G H I J 

Mark 1 6 2 3 4 5 0 0 0 0 

Back 0 E A A A C 0 0 0 0 

 

The next unmarked vertex in the list is G, so DFS next calls vertex G. (Terminology problem 

here – I have also used G for the graph name.  I have never used the graph name in the context of 

algorithm dfs, so the call dfs(G) must be for vertex G.) 
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Vertex G has the following adjacency list: Adj(G) = {H, J}.  The student should verify that the 

vertices are visited in the following order: H, J, and I; with vertex I being visited from vertex J.  

After the second (and last) component has been visited, the matrices are: 

 

Vertex A B C D E F G H I J 

Mark 1 6 2 3 4 5 7 8 10 9 

Back 0 E A A A C 0 G H G 

 

The search forest generated by BFS on the graph is shown below. 

 

 
 

For comparison, the search forest generated by DFS on the graph is also shown. 
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Directed Graphs 

The next topic for discussion is topological sort (see below).  Topological sort is a process 

applied to directed graphs, which we now discuss.  Briefly stated, a directed graph is a graph in 

which the edges have direction – they should be viewed as “one-way streets”. 

 

We should first point out that every undirected graph may be represented as a directed graph.  

The following figure shows an undirected graph on four vertices (C4 – the cycle on four vertices) 

and its equivalent as a directed graph.  Note that each “street” is “two-way”. 

 

 
 

We have defined a cycle in a graph loosely as a path that begins at a given vertex, goes to at least 

one other vertex, and returns to the start vertex.  A cycle that involves all other vertices is called 

a Hamiltonian Cycle – the subject of a lot of interesting research.  Directed graphs can also 

contain cycles, but the paths have to “go with” the direction of the edges. 

 

The next figure shows two similar directed graphs and the undirected graph equivalent. 

 

 
 

Note that the graph in the middle has a single directed cycle, which could be denoted as 

(A, B, D).  The graph on the right does not contain a cycle, as the edge (A, D) is reversed.  The 

graph on the right is called a directed acyclic graph (or dag for short) as it is a directed graph 

without cycles.  The graph on the left, being undirected, also contains a cycle. 

 

The graph algorithms we have studied, including BFS and DFS, operate not directly on a graph 

but on its adjacency structure – either an adjacency matrix or an adjacency list.  All of these 

algorithms can easily be applied to directed graphs. 

 

The adjacency matrix for the middle graph is shown at left.  Note that 

the matrix is not symmetric, as are the adjacency matrices for 

undirected graphs.  One uses this matrix in the expected way to apply 

graph algorithms, such as BFS and DFS. 

 

 

 A B C D 

A 0 1 1 0 

B 0 0 0 1 

C 0 0 0 0 

D 1 0 0 0 
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Topological Sort 

We now turn to a process that can be applied only to directed acyclic graphs.  This process, 

called topological sorting, is a presentation of the vertices of the graph in a way that preserves 

the ordering implied by the directions of the graph edges.  The best example of topological 

sorting is a listing of a set of college courses, one per term, in a way that does not violate the 

prerequisite requirements. 

 

Consider the set of course prerequisites represented by the graph below. 

 

C1 and C2 are both prerequisites for C3. 

C3 is a prerequisite for both C4 and C5. 

C4 is a prerequisite for C5. 

 

One way to view this problem is to consider 

implicit prerequisites – the implied prerequisites 

for course C5 are all of C1, C2, C3, and C4 – so course 

C5 must be taken last.  By inspection, we see that the two 

possible orderings for these courses are 

 C1, C2, C3, C4, C5, and 

 C2, C1, C3, C4, C5. 

 

We use topological sort to produce these results.  There are two algorithms commonly used to do 

topological sorting – DFS and Source Removal.  We present the Source Removal as it is simpler.  

First we define a source vertex as a vertex with no “incoming arrows”.  The algorithm functions 

by removing a source vertex and all edges incident to it, and placing the vertex in a list.  In case 

of more than one source vertex, one chooses arbitrarily. 

 

Applying the algorithm to the example, we note that we have 

two source vertices – C1 and C2.  Here I arbitrarily pick vertex 

C1 and remove it, giving rise to the graph at left. 

 

Our list at the moment contains one vertex (C1). 

 

We look now and see that there is exactly one source vertex, C2.  

We remove it to get the next graph. 

 

 

The list now is (C1, C2) and after removing these two vertices we have the 

graph at right.  It should be obvious that there is only one source vertex – 

C3.  We remove this to get the list (C1, C2, C3) and the algorithm proceeds 

to produce the list (C1, C2, C3, C4, C5).  The reader should verify that, had 

we chosen to remove vertex C2 first, the list would have been (C2, C1, C3, 

C4, C5) as expected. 
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More Graph Examples: “Word Trail” 

The word trail game is based on a common dictionary of words.  One is supposed to move from 

one word to another in a finite number of steps, with each step representing the change of a 

single letter.  A sample word trail would be DOG  DOT COT  CAT. 

 

The common constraint is that the words in the trail be found in a usual dictionary.  One 

excellent source of words would be the Scrabble™ dictionary.  Under this usual constraint, the 

word trail DOG  DOT DAT  CAT would not be acceptable, as the word “DAT” is not 

found in most dictionaries. 

 

We consider the word trail problem as an example of a graph search problem.  In order to make 

the problem manageable, we restrict the dictionary of words to be used in the search to the 

following list of arbitrarily chosen three-letter words. 

 

BAG BAT BOG BOX CAT COW DOG 

BAR BIG BOW CAR COG DIG 

 

We convert this list to a graph by assigning each word to a vertex, labeled by that word, and 

connecting two vertices by an edge if and only if the words differ by exactly one character. 

 

 
The only issue with drawing this graph is to arrange the vertices in a manner that minimizes the 

confusion in the drawing.  The figure above is this author’s best try. 
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One can use either DFS or BFS to discover the word trail.  BFS turns out to be the better choice, 

as this search strategy will find the shortest path from one word to the other.  DFS will always 

find a path, but the first path found will not necessarily be the best. 

 

In order to apply BFS to this problem, we make a minor modification to mark the vertices with 

the “distance” to the source vertex – the number of edges traversed.  The modified algorithm is 

shown below. 

 
Algorithm bfs_trail(x, y) 

// 

// Uses breadth-first search to create a “word trail” from 

// vertex x to vertex y.   

// 

 For each vertex v in V(G) Do 

  Mark[v] = - 1  // A distance of 0 is a valid mark 

  Back[v] =   0  // for a visited vertex, so we must 

 End Do    // initialize each to -1. 

// 

 Add(Q, x)  // Add this vertex to the queue and 

 mark [x] = 0  // set its distance to zero. 

// Point 1 

 While ( Not IsEmpty(Q)) Do 

  Remove (Q, v)    // Remove the front vertex from queue 

  DistToThis = Mark[v] 

//   Point 2 

  For each vertex w in V adjacent to v Do 

//        Point 3 

   If (Mark[w] < 0) Then 

    Mark[w] = DistToThis + 1 

    Back[w] = v 

    Add(Q, w) 

   End If 

 

   If (w == y) then exit algorithm    // Done 

 

  End For Each 

// 

//  Note that I remove the vertex at the top of the loop 

// 

 End While 

 

Note that the algorithm can be easily modified to discover the distance from any source vertex to 

all other vertices in the connected component. 

 

We now do the BFS starting at vertex DOG and see when we get to vertex CAT. 
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First we create and initialize the Mark and Back arrays. 

 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Back 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

dfs(DOG) 

 Add DOG to the Queue Q = (DOG) 

 Mark the array for DOG, setting its distance to 0. 

 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

Back 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Remove DOG from the queue, so Q = () Dist = Mark[Dog] = 0 

 Adj(DOG) = (BOG, COG, DIG) 

  Mark[BOG] < 0, so 

   Mark[BOG] = 1 

   Back[BOG] = DOG 

   Add BOG to the queue Q = (BOG) 

 

  Mark[COG] < 0, so 

   Mark[COG] = 1 

   Back[COG] = DOG 

   Add COG to the queue Q = (BOG, COG) 

 

  Mark[DIG] < 0, so 

   Mark[DIG] = 1 

   Back[DIG] = DOG 

   Add DIG to the queue  Q = (BOG, COG, DIG) 

  No more adjacent to DOG 

 

The status now is: 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 0 

Back 0 0 0 0 DOG 0 0 0 0 DOG 0 DOG 0 

 Q = (BOG, COG, DIG) 

 

Remove BOG from the queue, so Q = (COG, DIG)  Dist = Mark[BOG] = 1 

 Adj(BOG) = (BAG, BIG, BOW, BOX, COG, DOG) 

  Mark[BAG] < 0, so 

   Mark[BAG] = 2 

   Back[BAG] = BOG 

   Add BAG to the queue Q = (COG, DIG, BAG) 
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  Mark[BIG] < 0, so 

   Mark[BIG] = 2 

   Back[BIG] = BOG 

   Add BIG to the queue, so Q = (COG, DIG, BAG, BIG) 

 

  Mark[BOW] < 0, so 

   Mark[BOW] = 2 

   Back[BOW] = BOG 

   Add BOW to the queue, so Q = (COG, DIG, BAG, BIG, BOW) 

 

  Mark[BOX] < 0, so 

   Mark[BOX] = 2 

   Back[BOX] = BOG 

   Add BOX to the queue, so Q = (COG, DIG, BAG, BIG, BOW, BOX) 

 

  Mark[COG] = 1, so no action. 

 

  Mark[DOG] = 0, so no action. 

 

 No more adjacent to BOG 

 

The status now is 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark 2 -1 -1 2 1 2 2 -1 -1 1 -1 1 0 

Back BOG 0 0 BOG DOG BOG BOG 0 0 DOG 0 DOG 0 

 Q = (COG, DIG, BAG, BIG, BOW, BOX) 

 

Remove COG from the queue, so Q = (DIG, BAG, BIG, BOW, BOX) 

 Adj(COG) = (BOG, COW, DOG) Dist = Mark[COG] = 1 

  Mark[BOG] = 1, so no action 

 

  Mark[COW] < 0, so 

   Mark[COW] = 2 

   Back[COW] = COG 

   Add COW to the queue, so Q = (DIG, BAG, BIG, BOW, BOX, COW) 

 

  Mark[DOG] = 0, so no action. 

 

 No more adjacent to COG. 

 

The status now is 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark 2 -1 -1 2 1 2 2 -1 -1 1 2 1 0 

Back BOG 0 0 BOG DOG BOG BOG 0 0 DOG COG DOG 0 

 Q = (DIG, BAG, BIG, BOW, BOX, COW) 
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Remove DIG from the queue, so Q = (BAG, BIG, BOW, BOX, COW) 

 Adj(DIG) = (BIG, DOG) 

 

  Mark[BIG] = 2, so no action. 

 

  Mark[DOG] = 0, so no action. 

 

 No more adjacent to DIG.  No change in status. 

 

Remove BAG from the queue, so Q = (BIG, BOW, BOX, COW) 

 Adj(BAG) = (BAR, BAT, BIG, BOG) Dist = Mark[BAG] = 2 

 

  Mark[BAR] < 0, so 

   Mark[BAR] = 3 

   Back[BAR] = BAG 

   Add BAR to the queue, so Q = (BIG, BOW, BOX, COW, BAR) 

 

  Mark[BAT] < 0, so 

   Mark[BAT] = 3 

   Back[BAT] = BAG 

   Add BAT to the queue, so Q = (BIG, BOW, BOX, COW, BAR, BAT) 

 

  Mark[BIG] = 2, so no action 

 

  Mark[BOG] = 1, so no action. 

 

 No more adjacent to BAG. 

At this point, an intelligent search would note that “BAT” differs from “CAT” by exactly one 

letter and move “BAT” to the front of the queue.  BFS does not do this. 

 

The status now is 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark 2 3 3 2 1 2 2 -1 -1 1 2 1 0 

Back BOG BAG BAG BOG DOG BOG BOG 0 0 DOG COG DOG 0 

 Q = (BIG, BOW, BOX, COW, BAR, BAT) 

 

Remove BIG from the queue, so Q = (BOW, BOX, COW, BAR, BAT) 

 Adj(BIG) = (BAG, BOG, DIG) 

 

  Mark[BAG] = 2, so no action. 

 

  Mark[BOG] = 1, so no action. 

 

  Mark[DIG] = 1, so no action. 

 

 No more adjacent to BIG.  No change in status. 
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Remove BOW from the queue, so Q = (BOX, COW, BAR, BAT) 

 Adj(BOW) = (BOG, BOX, COW) 

 

  Mark[BOG] = 1, so no action 

 

  Mark[BOX] = 2, so no action. 

 

  Mark[COW] = 2, so no action. 

 

 No more adjacent to BOW.  No change in status. 

 

Remove BOX from the queue, so Q = (COW, BAR, BAT) 

 Adj(BOX) = (BOG, BOW) 

 

  Mark[BOG] = 1, so no action. 

 

  Mark[BOW] = 2, so no action. 

 

 No more adjacent to BOX.  No change in status. 

 

Remove COW from the queue, so Q = (BAR, BAT) 

 Adj(COW) = (BOW, COG) 

 

  Mark[BOW] = 2, so no action. 

 

  Mark[COG] = 1, so no action. 

 

 No more adjacent to COW.  No change in status. 

 

Remove BAR from the queue, so Q = (BAT) 

 Adj(BAR) = (BAG, BAT, CAR)  Dist = Mark[BAR] = 3 

 

  Mark[BAG] = 2, so no action. 

 

  Mark[BAT] = 3, so no action 

 

  Mark[CAR] < 0, so 

   Mark[CAR] = 4 

   Back[CAR] = BAR 

   Add CAR to the queue, so Q = (BAT, CAR) 

 

The status now is 
 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark 2 3 3 2 1 2 2 4 -1 1 2 1 0 

Back BOG BAG BAG BOG DOG BOG BOG BAR 0 DOG COG DOG 0 

 Q = (BAT, CAR) 
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Remove BAT from the queue, so Q = (CAR) 

 Adj(BAT) = (BAG, BAR, CAT)  Dist = Mark[BAT] = 3 

 

  Mark[BAG] = 2, so no change. 

 

  Mark[BAR] = 3, so no change. 

 

  Mark[CAT] < 0, so 

   Mark[CAT] = 4 

   Back[CAT] = BAT 

   Add CAT to the queue, so Q = (CAR, CAT) 

 

 No more adjacent to BAT. 

 

 At this point the word trail is complete. 

 

The status now is 

 BAG BAR BAT BIG BOG BOW BOX CAR CAT COG COW DIG DOG 

Mark 2 3 3 2 1 2 2 4 4 1 2 1 0 

Back BOG BAG BAG BOG DOG BOG BOG BAR BAT DOG COG DOG 0 

 Q = (CAR, CAT) 

 

The word trail is CAT  BAT  BAG  BOG  DOG, which can be rewritten in the 

expected order as DOG  BOG  BAG  BAT  CAT. 

 

Just to be complete, we finish the BFS. 

 

Remove CAR from the queue, so Q = (CAT) 

 Adj(CAR) = (BAR, CAT) 

 

  Mark[BAR] = 3, so no action. 

 

  Mark[CAT] = 4, so no action. 

 

 No more adjacent to CAR.  No change in status. 

 

Remove CAT from the queue, so Q = () 

 Adj(CAT) = (BAT, CAR) 

 

  Mark[BAT] = 3, so no action. 

 

  Mark[CAR] = 4, so no action. 

 

 No more adjacent to CAT.  No change in status. 

 The queue is empty, so BFS terminates with the status as shown above. 


