CONNECTIVITY AND NETWORKS

We begin with the definition of a few symbols, two of which can cause great confusion, especially when hand-written. Consider a graph G.
$\delta(\mathrm{G})$ the degree of the vertex with smallest vertex degree; the minimum degree of G
$\Delta(\mathrm{G})$ the degree of the vertex with the largest vertex degree; the maximum degree of G
$\mathrm{k}(\mathrm{G})$ the number of components in G . G is connected if and only if $\mathrm{k}(\mathrm{G})=1$.
$\kappa(\mathrm{G})$ the vertex connectivity of G, commonly called the connectivity of G. This is the minimum number of vertices whose removal from G results in either a disconnected graph or trivial graph.
$\kappa_{1}(\mathrm{G})$ the edge connectivity of G . This is the minimum number of edges the removal of which from G will result in either a disconnected graph or trivial graph.
$\mathrm{G}-v$ for a given vertex $v \in \mathrm{~V}(\mathrm{G})$, this is the graph obtained from G by removing the vertex v and all edges incident on that vertex.
$\mathrm{G}-e$ for a given edge $e \in \mathrm{E}(\mathrm{G})$, this is the graph obtained from G by removing the edge e. This does not remove the vertices upon which the edge is incident.

The student will note that the two symbols $\mathrm{k}(\mathrm{G})$ and $\kappa(\mathrm{G})$ have the possibility for causing a lot of confusion, especially when this instructor normally writes the term $k(G)$ when he intends to write $\kappa(\mathrm{G})$. This will be seen below in the definition of a cut vertex.

Definition: A vertex is a cut-vertex of a graph G if its removal from G generates a new disconnected component. Put another way, a vertex $v \in \mathrm{~V}(\mathrm{G})$ is a cut vertex if $\mathrm{k}(\mathrm{G}-v)>$ $\mathrm{k}(\mathrm{G})$, that is the number of components in G with v removed is greater than the number in G .

The source of confusion in the terminology can be seen by noting that if v is a cut vertex, then it is most likely (though not required) that $\kappa(G-v) \leq \kappa(G)$. We shall show this later.

Definition: A bridge of a graph G is an edge e such that $\mathrm{k}(\mathrm{G}-e)>\mathrm{k}(\mathrm{G})$; that is to say that the removal of the edge creates a new disconnected component of G.

Definition: A block is a nontrivial connected graph with no cut vertices.
Definition: A block of a graph \mathbf{G} is a subgraph of G that is itself a block and which is maximal with respect to that property.

As an example, let's look at the following figure and find the cut vertices and bridges, etc.

Figure 26: A Graph G with Two Blocks
Formally $\quad \mathrm{V}(\mathrm{G})=\{1,2,3,4,5,6,7\}$

$$
\mathrm{E}(\mathrm{G})=\{(1,2),(1,3),(2,3),(3,4),(4,5),(4,6),(5,6),(5,7),(6,7)\}
$$

We begin by noting the degree of each vertex in the above graph:
$\mathrm{d}_{1}=2, \mathrm{~d}_{2}=2, \mathrm{~d}_{3}=3, \mathrm{~d}_{4}=3, \mathrm{~d}_{5}=3, \mathrm{~d}_{6}=3$, and $\mathrm{d}_{7}=2$. Note that the degrees of these vertices sum to 18 , twice the number of edges (as expected).

The degree sequence of G is $(3,3,3,3,2,2,2)$ as the degree sequence of a graph presents the degrees of the vertices in non-increasing order.. We see that $\Delta(\mathrm{G})=3$ and $\delta(\mathrm{G})=2$. This is obvious from reading the degree sequence, but can be seen also from examining the graph.

Note that $\mathrm{k}(\mathrm{G})=1$ as the graph is connected. Note that, by coincidence, $\kappa(\mathrm{G})=1$ also as the removal of either vertex 3 or vertex 4 will cause the graph to break into two disconnected components. Thus each of vertex 3 and vertex 4 is a cut-vertex. The next figure shows the graph $G-v_{3}$.

Figure 27: The Graph G-v3

In this case, the edge connectivity of the graph is also one; $\kappa_{1}(\mathrm{G})=1$. This can be seen by noting that the removal of edge $(3,4)$ from the original graph G will disconnect the graph.

Figure 28: The Graph G-(3, 4)
We now go searching for the blocks of G. To do this precisely, we should examine figure 26, but we refer to figure 28 which actually shows the two blocks: $\{1,2,3\}$ and $\{4,5,6,7\}$. Note that the subgraph induced by vertices $\{4,5,6\}$ is not a block. True, the graph induced by $\{4,5,6\}$ is a K_{3} (triangle) and is a nontrivial connected graph with no cut vertices, but it is not maximal with that property as one can add vertex 7 to that set and still have a block. So, we now have the block as $\{4,5,6,7\}$. Note that vertex 4 becomes a cut vertex only when we consider vertex 3 , so the set $\{3,4,5,6,7\}$ forms a subgraph that does contain a cut vertex.

Let's make this important point another way. Each of vertices 3 and 4 is a cut vertex in the graph G. Within the subgraph induced by the vertex set $\{4,5,6,7\}$, vertex 4 is not a cut vertex as its removal will not cause that subgraph to become disconnected.

We now state and partially prove one of the basic theorems on connectivity.
Theorem 21: For any graph $G, \kappa(\mathrm{G}) \leq \kappa_{1}(\mathrm{G}) \leq \delta(\mathrm{G})$.
Note: To show that $\kappa_{1}(G) \leq \delta(G)$, take the vertex of minimum degree in G and remove all its edges. This isolates the vertex and causes the graph to be disconnected.

In our example, $\kappa_{1}(\mathrm{G})=1$ and $\delta(\mathrm{G})=2$.
We now state some theorems related to connectivity and actually prove a few.
Theorem 22: A vertex v of a connected graph G is a cut-vertex of G if and only if there exist vertices distinct vertices x and $y(x \neq v, y \neq v)$ such that v is on every $x-y$ path of G.
Proof: Let v be a cut-vertex of G so that the graph $\mathrm{G}-v$ (G with the vertex v removed) is disconnected. Let x and y be vertices in different components of $\mathrm{G}-v$, then there are no $x-y$ paths in $\mathrm{G}-v$. However, G is connected, so there is at least one $x-y$ path in G . Therefore, every $x-y$ path in G contains the vertex v.

Conversely, assume that there exist vertices x and y in G such that a vertex v lies on every path between them. Then, there are no $x-y$ paths in $G-v$, implying that $\mathrm{G}-v$ is disconnected, and that v is a cut-vertex of G.

Theorem 23: An edge e of a connected graph G is a bridge of G if and only if there exist vertices x and y such that the edge e is on every $x-y$ path of G.

Theorem 24: An edge e of a graph G is a bridge of G if and only if e is on no cycle of G.
Recalling that a block is a non-trivial graph without cut vertices, we have the following. Theorem 25: A graph G with $n \geq 3$ vertices is a block if and only if every two vertices of G lie on a common cycle of G.

Recalling that a graph is called \boldsymbol{r}-connected if $\kappa(\mathrm{G}) \geq \mathrm{r}$, that is, it requires the removal of at least r vertices to cause the graph to become either disconnected or trivial, we have this.
Theorem 26: Let G be a graph with $n \geq 2$ vertices, and let r be an integer such that $0<r<n$. If $\mathrm{d}(v) \geq\lceil(n+r-2) / 2\rceil$ for every vertex $v \in \mathrm{~V}(\mathrm{G})$, then G is r-connected.

Corollary 27: Let G be a graph with $n \geq 3$ vertices. If $\mathrm{d}(v) \geq\lceil n / 2\rceil$ for every vertex $v \in$ $\mathrm{V}(\mathrm{G})$, then G has no cut-vertices.
Proof: This is the above theorem with $r=2$ and $n \geq 3$ to avoid trivial cases. The graph is 2-connected, implying that there is no single vertex the removal of which will disconnect the graph. Hence the graph has no cut-vertices.

One should note that the implication of the above statement is that G is a dense graph. The reasoning is quite simple. If $\mathrm{d}(v) \geq\lceil n / 2\rceil$ for every vertex $v \in \mathrm{~V}(\mathrm{G})$, then the sum of the vertex degrees is greater than $n \bullet\lceil\mathrm{n} / 2\rceil \geq n^{2} / 2$, so (by Theorem 3), $2 \bullet m \geq n^{2} / 2$, and G is dense.

One should be cautious not to infer that dense graphs lack cut-vertices; the only valid conclusion is that they are less likely to contain cut-vertices. The next figure shows that dense graphs can contain cut-vertices. It is a $(6,11)$-graph that is a dense graph (as $6^{2} / 4=36 / 4=9$). The vertex labeled with the asterisk is a cut-vertex.

Figure 29: Dense Graph with a Cut-Vertex
We now generalize the idea of connectivity (also called 1-connectivity) with the following two theorems that can prove quite useful for the study of networks. We begin with a few definitions, them move on to the two theorems.

Definition: A set S of vertices (or edges) of a graph G is said to separate two vertices u and v of G if the removal of the elements of S from G produces a disconnected graph in which the vertices u and v lie in different components.

Recall that a path between two vertices u and v can be described as a sequence of distinct vertices $x_{0}, x_{1}, x_{2}, \ldots, x_{\mathrm{p}}$, such that $u=x_{0}, v=x_{\mathrm{p}}$, and that every vertex is adjacent to the one following it in the sequence. The path is created by following the edges, so one starts with (x_{0}, x_{1}) and continues through the sequence until finishing with ($x_{\mathrm{p}-1}, x_{\mathrm{p}}$). With this in mind, we state the next definitions.

Definition: An internal vertex of a $u-v$ path P is any vertex of P that is not either u or v.
Definition: Two $u-v$ paths are internally disjoint if they have no internal vertices in common.
For example, let P_{1} and P_{2} be two paths between vertices u and v. It should be obvious that each of the paths P_{1} and P_{2} contain both the vertices u and v. If these two vertices are the only vertices in common to the two paths, then specifically they share no internal vertices and the two paths would be called internally disjoint.

Definition: A collection $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{k}}\right\}$ of paths is called internally disjoint if each pair of paths is internally disjoint.

Theorem 28 (Menger): Let u and v be nonadjacent vertices in a graph G. Then the minimum number of vertices that separate u and v is equal to the maximum number of internally disjoint $u-v$ paths in G.

Theorem 29 (Whitney): A nontrivial graph G is r-connected if and only if for each pair u, v of distinct vertices there are at least r internally disjoint $u-v$ paths in G.

