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CONNECTIVITY AND NETWORKS 
 

We begin with the definition of a few symbols, two of which can cause great confusion, 

especially when hand-written.  Consider a graph G. 

 (G) the degree of the vertex with smallest vertex degree; the minimum degree of G 

 (G) the degree of the vertex with the largest vertex degree; the maximum degree of G 

 k(G) the number of components in G.  G is connected if and only if k(G) = 1. 

 (G) the vertex connectivity of G, commonly called the connectivity of G.  This is 

  the minimum number of vertices whose removal from G results in either 

  a disconnected graph or trivial graph. 

 1(G) the edge connectivity of G.  This is the minimum number of edges the removal 

  of which from G will result in either a disconnected graph or trivial graph. 

 G – v for a given vertex v  V(G), this is the graph obtained from G by removing the 

  vertex v and all edges incident on that vertex. 

 G – e for a given edge e  E(G), this is the graph obtained from G by removing the 

  edge e.  This does not remove the vertices upon which the edge is incident. 

 

 The student will note that the two symbols k(G) and (G) have the possibility for causing 

a lot of confusion, especially when this instructor normally writes the term k(G) when he 

intends to write (G).  This will be seen below in the definition of a cut vertex. 

 

Definition: A vertex is a cut-vertex of a graph G if its removal from G generates a new 

disconnected component.  Put another way, a vertex v  V(G) is a cut vertex if k(G – v) > 

k(G), that is the number of components in G with v removed is greater than the number in G. 

 

 The source of confusion in the terminology can be seen by noting that if v is a cut vertex, 

then it is most likely (though not required) that (G – v)  (G).  We shall show this later. 

 

Definition: A bridge of a graph G is an edge e such that k(G – e) > k(G); that is to say that 

the removal of the edge creates a new disconnected component of G. 

 

Definition: A block is a nontrivial connected graph with no cut vertices. 

Definition: A block of a graph G is a subgraph of G that is itself a block and which is 

maximal with respect to that property. 
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As an example, let’s look at the following figure and find the cut vertices and bridges, etc. 

 

 
Figure 26: A Graph G with Two Blocks 

 

Formally V(G) = {1, 2, 3, 4, 5, 6, 7} 

  E(G) = { (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7) } 

 

We begin by noting the degree of each vertex in the above graph: 

d1 = 2, d2 = 2, d3 = 3, d4 = 3, d5 = 3, d6 = 3, and d7 = 2.  Note that the degrees of these vertices 

sum to 18, twice the number of edges (as expected). 

 

The degree sequence of G is (3, 3, 3, 3, 2, 2, 2) as the degree sequence of a graph presents the 

degrees of the vertices in non-increasing order..  We see that (G) = 3 and (G) = 2.  This is 

obvious from reading the degree sequence, but can be seen also from examining the graph. 

 

Note that k(G) = 1 as the graph is connected.  Note that, by coincidence, (G) = 1 also as the 

removal of either vertex 3 or vertex 4 will cause the graph to break into two disconnected 

components.  Thus each of vertex 3 and vertex 4 is a cut-vertex.  The next figure shows the 

graph G – v3. 

 

 
Figure 27: The Graph G – v3 
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In this case, the edge connectivity of the graph is also one; 1(G) = 1.  This can be seen by 

noting that the removal of edge (3, 4) from the original graph G will disconnect the graph. 

 

 
Figure 28: The Graph G – (3, 4) 

 

We now go searching for the blocks of G.  To do this precisely, we should examine figure 26, 

but we refer to figure 28 which actually shows the two blocks: {1, 2, 3} and 

{4, 5, 6, 7}.  Note that the subgraph induced by vertices {4, 5, 6} is not a block.  True, the 

graph induced by {4, 5, 6} is a K3 (triangle) and is a nontrivial connected graph with no cut 

vertices, but it is not maximal with that property as one can add vertex 7 to that set and still 

have a block.  So, we now have the block as {4, 5, 6, 7}.  Note that vertex 4 becomes a cut 

vertex only when we consider vertex 3, so the set {3, 4, 5, 6, 7} forms a subgraph that does 

contain a cut vertex. 

 

Let’s make this important point another way.  Each of vertices 3 and 4 is a cut vertex in the 

graph G.  Within the subgraph induced by the vertex set {4, 5, 6, 7}, vertex 4 is not a cut 

vertex as its removal will not cause that subgraph to become disconnected. 

 

We now state and partially prove one of the basic theorems on connectivity. 

Theorem 21: For any graph G, (G)  1(G)  (G). 

Note: To show that 1(G)  (G), take the vertex of minimum degree in G and remove all its 

edges.  This isolates the vertex and causes the graph to be disconnected. 

 

In our example, 1(G) = 1 and (G) = 2. 

 

We now state some theorems related to connectivity and actually prove a few. 

Theorem 22: A vertex v of a connected graph G is a cut-vertex of G if and only if there exist 

vertices distinct vertices x and y (x  v, y  v) such that v is on every x-y path of G. 

Proof:   Let v be a cut-vertex of G so that the graph G – v (G with the vertex v removed) is 

disconnected.  Let x and y be vertices in different components of G – v, then there are no 

x-y paths in G – v.  However, G is connected, so there is at least one x-y path in G.  Therefore, 

every x-y path in G contains the vertex v. 

 

Conversely, assume that there exist vertices x and y in G such that a vertex v lies on every 

path between them.  Then, there are no x-y paths in G – v, implying that G – v is disconnected, 

and that v is a cut-vertex of G. 
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Theorem 23: An edge e of a connected graph G is a bridge of G if and only if there exist 

vertices x and y such that the edge e is on every x-y path of G. 

 

Theorem 24: An edge e of a graph G is a bridge of G if and only if e is on no cycle of G. 

 

Recalling that a block is a non-trivial graph without cut vertices, we have the following. 

Theorem 25: A graph G with n  3 vertices is a block if and only if every two vertices of G 

lie on a common cycle of G. 

 

Recalling that a graph is called r-connected if (G)  r, that is, it requires the removal of at 

least r vertices to cause the graph to become either disconnected or trivial, we have this. 

Theorem 26: Let G be a graph with n  2 vertices, and let r be an integer such that 0 < r < n.  

If d(v)  (n + r – 2) / 2 for every vertex v  V(G), then G is r-connected.  

 

Corollary 27: Let G be a graph with n  3 vertices.  If d(v)  n / 2 for every vertex v  

V(G), then G has no cut-vertices. 

Proof: This is the above theorem with r = 2 and  n  3 to avoid trivial cases.  The graph is 

2-connected, implying that there is no single vertex the removal of which will disconnect the 

graph.  Hence the graph has no cut-vertices. 

 

One should note that the implication of the above statement is that G is a dense graph.  The 

reasoning is quite simple.  If d(v)  n / 2 for every vertex v  V(G), then the sum of the 

vertex degrees is greater than n  n / 2  n
2
 / 2, so (by Theorem 3), 2m  n

2
 / 2, and G is 

dense. 

 

One should be cautious not to infer that dense graphs lack cut-vertices; the only valid 

conclusion is that they are less likely to contain cut-vertices.  The next figure shows that dense 

graphs can contain cut-vertices.  It is a (6, 11)-graph that is a dense graph (as 6
2
/4 = 36/4 = 9).  

The vertex labeled with the asterisk is a cut-vertex. 

 

 
Figure 29: Dense Graph with a Cut-Vertex 

 

We now generalize the idea of connectivity (also called 1-connectivity) with the following 

two theorems that can prove quite useful for the study of networks.  We begin with a few 

definitions, them move on to the two theorems. 
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Definition: A set S of vertices (or edges) of a graph G is said to separate two vertices u and v 

of G if the removal of the elements of S from G produces a disconnected graph in which the 

vertices u and v lie in different components. 

 

Recall that a path between two vertices u and v can be described as a sequence of distinct 

vertices x0, x1, x2, …, xp, such that u = x0, v = xp, and that every vertex is adjacent to the one 

following it in the sequence.  The path is created by following the edges, so one starts with 

(x0, x1) and continues through the sequence until finishing with (xp-1, xp).  With this in mind, 

we state the next definitions. 

 

Definition: An internal vertex of a u-v path P is any vertex of P that is not either u or v. 

 

Definition: Two u-v paths are internally disjoint if they have no internal vertices in 

common. 

For example, let P1 and P2 be two paths between vertices u and v.  It should be obvious that 

each of the paths P1 and P2 contain both the vertices u and v.  If these two vertices are the only 

vertices in common to the two paths, then specifically they share no internal vertices and the 

two paths would be called internally disjoint. 

 

Definition: A collection {P1, P2, …., Pk} of paths is called internally disjoint if each pair of 

paths is internally disjoint. 

 

Theorem 28 (Menger): Let u and v be nonadjacent vertices in a graph G.  Then the minimum 

number of vertices that separate u and v is equal to the maximum number of internally disjoint 

u-v paths in G. 

 

Theorem 29 (Whitney): A nontrivial graph G is r-connected if and only if for each pair 

u, v of distinct vertices there are at least r internally disjoint u-v paths in G. 


