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TERMINOLOGY AND BASIC GRAPH THEORY 

 

Introduction 

This chapter presents an overview of basic graph theory, including its association with set 

theory.  Graphs can be shown to be quite useful, especially as a mathematical tool for 

studying network problems.  We shall begin our study with graph theory as applied to 

static problems in network theory, which are those problems that are related to the 

structure of the network.  Static problems include the assessment of the impact of the loss 

of one or more communicating nodes or one or more communication links.  We use 

graph theory in an attempt to create networks that are less vulnerable to such loss. 

 

In another chapter of these notes, we shall consider the application of graph theory to 

dynamic problems, such as dynamic load balancing.  We shall show that certain 

algorithms become unstable under dynamic conditions, in that they present alternating 

optimal solutions: try this, no try that, etc.  This observation should serve as a caution not 

to trust results from static graph theory to work in all dynamic problem areas. 

 

But first we must get started with the basic graph theory.  We begin with the definition of 

sets and develop the idea of a graph as a set of vertices and a set of edges. 

 

Terminology and notations used 

A graph G is a finite non-empty set of objects called vertices together with a (possibly 

empty) finite set of unordered pairs of distinct vertices of G called edges.  The vertex set 

of G is commonly denoted by V(G), and the edge set commonly denoted by E(G).  The 

cardinality of the vertex set of a graph G is called the order of G, and the cardinality of 

the edge set is called the size of G.  An (n, m)-graph G is a graph with n vertices and  

m edges; |V(G)| = n and |E(G)| = m.  Although graphs are formally defined in terms of 

sets, they are commonly depicted by figures in which the nodes are depicted as circles (or 

ellipses) and the edges as lines between the circles. 

 

The formal definition of a graph is based on set theory and utilizes the Cartesian product 

of sets, for which we present the standard definition.  We begin by recalling that a set is 

an unordered collection of elements.  For a set A, we write a  A if element a is an 

member of set A and a  A if it is not.  We sometimes define sets by a complete listing 

of the members of the set and sometimes by a description of the form {x | p(x)}, to be 

read as the set of all x such that p(x) is true.  Although it would be a bit strange, one can 

define the set of all odd integers as { x | (x is an integer) and (x is an odd number) }. 

 

Let A and B be two arbitrary sets, defined over the same type of elements.  We say that A 

is a subset of B, denoted as A  B, if every element that is in A is also in B; more 

formally: A  B if and only if a  A implies a  B.  Two sets A and B are equal if and 

only if both A  B and B  A.  We say that A is a proper subset of B, denoted A  B, if 

A  B, but A  B. 
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Definition: For any two sets A and B, the Cartesian product of A and B, denoted 

by A  B, is the set of pairs of elements defined by A  B = { (a, b) | a  A, b  B}; thus it is the 

set of pairs of elements (a, b) for which the first element is a member of set A and the second 

element is a member of set B. 

 

As we shall soon see, one may take the Cartesian product of a set with itself.  Thus we have  

A  A = { (a1, a2) | a1  A, a2  A}.  This work will use the Cartesian product sets for which the 

elements of the pair are distinct and unordered; thus a1  a2  and (a1, a2) is considered the same 

element as (a2, a1).  For example, consider A = {1, 2, 3, 4},  The set A  A has 16 elements; our 

work focuses on a subset of A  A, E  A  A, that can be listed as  

 E = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }. 

 

Let X be an arbitrary set with a finite number of elements.  The cardinality of X, denoted by |X|, 

is the number of elements in the set.  If |X| = 0, the set is said to be the empty set, denoted by .  

If |X| > 0, the set is said to be non-empty.  We now define the basic set operations.  For two sets 

A and B: 

  the set intersection, denoted A  B, is A  B = { x | x  A and x  B}, 

  the set union, denoted A  B, is A  B = { x | x  A or x  B}, and 

  the set difference, denoted A – B, is A – B = { x | x  A and x  B}, and 

  the set symmetric difference, denoted A  B, is A  B = (A  B) – (A  B); 

   that is, the set of elements either in set A or in set B, but not in both sets. 

 

 As an example, consider the following two sets, each a subset of the integers. 

  A = {2, 4, 6, 8, 10, 12, 14, 16, 18} 

  B = {3, 6, 9, 12, 15, 18} 

 Then A  B = {6, 12, 18} 

  A  B = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18} 

  A – B = {2, 4, 8, 10, 14, 16} 

  A  B = {2, 3, 4, 8, 9, 10, 14, 15, 16}. 

 

These set operations are often illustrated using Venn diagrams, as shown below. 

 
Figure 1: Venn Diagrams for Common Set Operations 
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Set Elements and Singleton Sets 

At this point, it is important to make the distinction between elements of sets and the sets 

themselves.  A set element can never be equal to a set.  A singleton set is a set with one element.  

Singleton sets, unlike the empty set , generally have no special significance in set theory and 

are mentioned only to clarify the notations used in the theory. 

 

Consider the following set: F = {0, 1, 2, 3}, the set of integers modulo 4.  The number 1 is an 

element of that set, so we can write 1  F.  Note that the element 1 is distinct from {1}, which is 

the set consisting of the single element 1.  The following are true statements. 

 

 1  F  the element 1 is a member of the set F. 

 1  {1} the element 1 is a member of this set also. 

 {1}  F the set {1} is a proper subset of the set F. 

 {1}  F the set {1} is a subset of the set F. 

   F  the empty set is a subset of every set.  In order to falsify this claim, one 

   would have to show an element x  , such that x  F.  But the empty 

   set has no members, so one cannot find such an element. 

 

Note that we normally write subset inclusion as X  Y, unless it is important to state that X is a 

proper subset of set Y.  We say X  Y if either X  Y or X = Y is an acceptable condition. 

 

The following statements are not correct and in many cases violate the conventions of set theory. 

 

 1  F  an element cannot be a subset of any set.  Elements are members of sets. 

 1 = {1} an element can never be equal to a set; the two are different object types. 

 {1}  F F is a set of elements, so another set cannot be a member of F. 

 {1} = F Obviously we have {1}  F, but F  {1} is shown to be false by noting 

   that 2  F, but 2  {1}. 

 

Sets of Sets 

Just so the student knows it can be done, we can define a set containing other sets as members.  

Thus we can define G = { {0}, {1}, {2}, {3} }.  Note that G is not equal to F, as F has four 

integers as members and G has four singleton sets as members.  In this case, we can properly 

write that {1}  G, as the set G contains the element {1}. 

 

Power Sets 

We shall normally avoid sets that contain other sets as members.  There is one important set of 

sets that we should discuss – the power set.  We define the term and give an example. 

 

For a given set X, the power set of X, denoted P(X), is the set of all subsets of X. 

 

If A = {0, 1, 2, 3}, as above, then 

 P(A) = {  , {0}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, 

  {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4} } 

 

It can be proven that if |X| = K, then |P(X)| = 2
K
; here |A| = 4 and |P(A)| = 16 = 2

4
. 
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We now restate the definition of a graph, using the more precise terminology. 

Definition: A graph G is a finite non-empty set of vertices, denoted V(G), together with a 

(possibly empty) finite set E  V(G)  V(G) of unordered pairs.  As before, we let |V(G)| = n  

and |E(G)| = m and speak of an (n, m)-graph, usually called G. 

 

The definition above is a bit too general for use in association with graph theory, so we 

immediately restrict it a bit.  We introduce the idea of simple graphs, which is the type of graphs 

normally implied by the term “graph”.  A simple graph is a graph without edges connecting any 

vertex to itself.  The graph in the next figure is not simple, as it has edges connecting vertex 1 to 

itself and vertex 4 to itself. 

  

 The graph at right is also described as follows 

 V(G) = {1, 2, 3, 4} 

 E(G) = { (1, 1), (1, 4), (2, 3), (2, 4), (4, 4) } 

 

Figure 2: Two Representations of a Not-Simple Graph 

 

We shall restrict our study of graphs to simple graphs.  While graphs with loops are valuable in a 

number of studies, they are not useful in the analysis of networks and do present a number of 

difficulties that we would like to avoid.  So – only simple graphs. 

 

For a set of n objects, there are n(n – 1) ordered pairs of distinct elements; that is pairs (i, j), 

with i  j, in which the element (i, j) is different from the element (j, i).  For a set of n objects, 

there are 
 n n n

2

1

2









 

 
 unordered pairs of distinct objects, in which the element (i, j) is 

considered to be the same as the element (j, i).  We have two options, depending on whether the 

edge set contains ordered or unordered pairs. 

 Directed graphs correspond to edge sets that contain ordered pairs. 

 Undirected graphs correspond to edge sets that contain unordered pairs. 

 

 Consider the figure below, which shows an undirected graph and a directed graph. 

 
Figure 3: Two Sample Graphs On the Same Vertex Set 

 

Each of the graphs in the figure has the vertex set V = {1, 2, 3, 4}.  The edge set of the directed 

graph is E = { (1, 4), (2, 4), (3, 2), (4, 1), (4, 3)}.  The edge set of the undirected graph is  

E = { (1, 4), (2, 3), (2, 4), (3, 4) }.  Note that in the undirected graph, the following edges are 

implicitly listed: (3, 2), (4, 1), (4, 2), (4, 3), as the pairs representing the edges are unordered.  

Thus, the pairs (1, 4) and (4, 1) are considered equivalent in an undirected graph and each 

represents the same edge.  In a directed graph each of the ordered pairs (1, 4) and (4, 1) 

represents a distinct edge. 
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The student should note that it is always possible to create a directed graph that is equivalent to 

an undirected graph; one need only “double up” each edge in the undirected graph.  The 

following figure shows an undirected graph and its equivalent directed graph. 

 
Figure 4: An Undirected Graph and the Equivalent Directed Graph 

 

For the moment we shall restrict our discussions to undirected simple graphs, which we shall call 

“graphs” with no further distinction.  As noted above, the edge set for an undirected graph with 

vertex set given by V(G) = {1, 2, …, n}.  E(G) is a subset of V(G)  V(G) that contains only 

unordered pairs of distinct elements.  For a set of n objects, there are 
 n n n

2

1

2









 

 
 unordered 

pairs of distinct objects, this is the maximum size of the edge set for an (n, m)-graph.  Thus we 

have the following limits on the number of edges in a simple undirected graph G. 

Proposition 1: Let G be a simple undirected graph, with |V(G)| = n. 

  Then 0  |E(G)|  
 n n n

2

1

2









 

 
. 

 

The complement of a graph G, denoted GC, is the graph with the vertex set V(G) and edge set 

defined by E(GC) = { (u, v) | u  V(G), v  V(G), (u, v)  E(G) }.  If G is an (n, m)-graph, then 

GC is an (n, n(n – 1)/2 – m)-graph. 

 

In much of graph theory, the vertices of the graphs are labeled by integers, so that a four-vertex 

graph would have V(G) = {1, 2, 3, 4}.  The set of possible edges for such a graph would be  

{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }.  Consider two (4, 3)-graphs, a graph and its 

complement.  First we give a rather formal definition of the two graphs. 

  G = (V(G), E(G) | V(G) = {1, 2, 3, 4}, E(G) = {(1, 2), (1, 3), (1, 4)} 

  GC = (V(G), E(G) | V(G) = {1, 2, 3, 4}, E(G) = {(2, 3), (2, 4), (3, 4)} 

 

While this is a sufficient definition of the two graphs, most people prefer the visual 

representation of the graphs.  Here are standard representations of G and GC. 

 
Figure 5: A Graph and Its Complement 
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Two graphs often have the same structure, differing only in the way their vertices and edges are 

labeled or in the way they are drawn.  To make this idea more exact and to develop a way to 

focus on the essential structure of graphs, we introduce the concept of  graph isomorphism.  

Two graphs G1 and G2 are said to be isomorphic, denoted by G1  G2, if there exists a one-to-

one mapping  from V(G1) onto V(G2) such that the mapping preserves the adjacency, that is to 

say that (u, v)  E(G1) if and only if ((u), (v))  E(G2).  Were we to push a point, we would 

note that graph isomorphism forms equivalence classes on graphs: if G1  G2 and G2  G3, then 

G1  G3.  The next figure shows two graphs that are labeled and drawn differently, but are 

isomorphic. 

 

 

 

 

 

Figure 6: Two Isomorphic Graphs 

 

The two graphs in Figure 6 are isomorphic under the following transformation: (1) = A, (2) = 

B, (3) = C, and (4) = D.  The edge lists of the two graphs show this. 

  Graph on left:  (1, 2), (1, 4), (2, 3), and (3, 4) 

  Graph on right: (A, B), (A, D), (B, C), and (C, D). 

If we take the graph on left and apply the transformation to its vertex labels, we arrive at the edge 

list (A, B), (A, D), (B, C), and (C, D).  This is precisely the edge list of the graph on the right, as 

expected.  Thus, the two graphs are isomorphic. 

 

The basic use of the idea of graph isomorphism is that we can view isomorphic graphs as 

identical and ask questions only about graphs that are not isomorphic.  We use isomorphism to 

define a method of classifying graphs.  For integers n > 0 and m  0, let (n) denote the 

collection of all non-isomorphic graphs with n vertices and (n, m) denote the collection of all 

non-isomorphic graphs on n vertices and m edges.  The next figure shows the sets (n) for  

1  n  4.  Note that the set (1) has only one member – a single graph with one vertex and no 

edges incident on it; an isolated vertex. 

 

 
Figure 7: The sets (1), (2), and (3) 
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Figure 8: The Eleven Members of (4) 

 

Notation:  At this point, we make a change in the way we refer to vertices.  In our previous 

discussions, we used the “pure mathematics” approach to describing graphs, in which vertices 

were denoted by an integer in the range 1 to |V(G)| inclusive and edges were denoted by 

unordered pairs of integers.  In our studies, we normally use different labels for graphs, normally 

labeling the vertices as v1, v2, …., vn for a graph with n vertices.  When discussing a few vertices, 

we might give them labels, such as u, v, and w.  Similarly, in discussing edges, we might use 

notation such as (u, v) or (vi, vj).  The student should note that there is no theoretical significance 

to this; it is just one of many conventional notations used in describing graphs. 

 

An edge (u, v) is said to join the vertices u and v.  If (u, v)  E(G), then vertices u and v are said 

to be adjacent; u is adjacent to v, and v is adjacent to u.  The edge (u, v) is said to be incident on 

its end vertices u and v.  Again, in simple graphs we assume u  v. 

 

The degree of a vertex v in G, denoted either as dv or d(v), is the number of edges incident on the 

vertex v.  Since each edge incident on the vertex v causes another vertex to be adjacent to v, we 

might say that the degree of the vertex is the number of vertices adjacent to it.  The two 

definitions are entirely equivalent.  Occasionally, when a vertex is a part of two or more different 

graphs, we use the full notation dG(v) to indicate the degree of a vertex v in the graph G.  

Normally such precision is not required. 
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Figure 9: Illustration of Vertex Degrees 

 

In this figure, d1 = d(v1) = 2, d2 = d(v2) = 4, d3 = d(v3) = 3, d4 = d(v4) = 2, and 

d5 = d(v5) = 3.  Note that 


n

j
jd

1

= 2 + 4 + 3 + 2 + 3 = 14 = 2m.  This is not a coincidence. 

A vertex of zero degree is called an isolated vertex in that it has no edges incident on it and thus 

is not adjacent to any other vertex.  At this point it will be convenient to state a few lemmas and 

theorems related to vertex degree. 

 

Lemma 2: Let G be an (n, m)-graph and let v  V(G).  Then 0  d(v)  (n – 1). 

Proof: The assertion that d(v)  0 comes from the fact that d(v) is a counting number. 

If v  V(G), there are only (n – 1) other vertices in V(G) to which v may be adjacent, thus it 

follows that d(v)  (n – 1). 

 

Theorem 3: Let G be an (n, m)-graph with V(G) = {v1, v2, …., vn}.  Let the degree of vertex vj be 

given by dj = d(vj).  Then 


n

j
jd

1

= 2m. 

Proof: Every edge in G is incident on two vertices; hence, when the degrees of the vertices are 

summed, each edge is counted twice.  This completes the proof. 

 

Theorem 4: Let G be an (n, m)-graph, with m  n.  Then G has at least two vertices of degree 

d(v)  2. 

Proof: Assume that G has only one vertex with degree d(v)  2.  By Lemma 2, we have  

d(v)  (n – 1), so we let the one vertex of degree greater than 1 have degree (n – 1).  The 

maximum value of 


n

j
jd

1

 is then 1(n – 1) + (n – 1)1 = 2(n – 1), being generated by the one 

vertex of degree (n – 1) and the (n – 1) vertices of degree 1.  As a result of theorem 3, we have  

m  (n – 1), which contradicts the assumption that m  n. 

 

A graph G is called regular if all of its vertices have the same degree and is called 

pseudoregular if the degrees of its vertices differ by at most one.  For a vertex v, define N(v), 

the open neighborhood of v, as the set of vertices adjacent to v.  As each edge incident on a 

vertex v connects it to an adjacent vertex, it follows immediately that |N(v)| = d(v).  The closed 

neighborhood of a vertex, denoted N[v], adds the vertex itself to its open neighborhood; N[v] = 

N(v)  {v}.  Note that {v} is the set containing only one element – the vertex v. 
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A regular graph in which all vertices have degree k is called k-regular.  The 3-regular graphs are 

called cubic and have been studied extensively. 

 

 
Figure 10: A 2-regular and a 3-regular graph 

 

Note that in the above figure, that the 3-regular graph has been drawn so that its vertices appear 

at the corner of a cube.  This is one of the reasons for the name “cubic”.  The next topic to be 

discusses considers the number of vertices that are adjacent to each of two distinct vertices. 

 

Let u and v be two distinct vertices in (n, m)-graph G.  The codegree of the two vertices, denoted 

by codeg(u, v), is the number of vertices adjacent to both u and v.  In set notation, we can write 

codeg(u, v) = |N(u)  N(v)|.  We now give an upper limit on the codegree of two vertices. 

 

Lemma 5: Let u and v be two distinct vertices in (n, m)-graph G. 

  Then 0  codeg(u, v)  (n – 2). 

Proof:  The assertion that codeg(u, v)  0 comes from the observation that it is a counting 

number.  The upper limit comes from the observation that there are only (n – 2) other vertices in 

G, so that |N(u)  N(v)|  (n – 2). 

 

We now place a lower limit on the codegree of two adjacent vertices. 

Lemma 6: Let x and y be two adjacent vertices in an (n, m)-graph G.  Then 

  d(x) + d(y)  Codeg(x, y) + n. 

 

 
Figure 11: The Degrees and Codegree of Two Adjacent Vertices 
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Proof:  Consider the two adjacent vertices x and y in the above diagram.  Other than vertex y, 

there are d(x) – 1 vertices adjacent to vertex x, of which d(x) – Codeg(x, y) – 1 are adjacent to 

vertex x but not vertex y and Codeg(x, y) are adjacent to both x and y.  The number of vertices 

(other than x or y) that are adjacent to either vertex x or vertex y or both is given by 

d(x) – Codeg(x, y) – 1 + Codeg(x, y) + d(y) – Codeg(x, y) – 1 = d(x) + d(y) – Codeg(x, y) – 2.  

But other than vertices x and y there are only (n – 2) other vertices in the graph G, so we have 

d(x) + d(y) – Codeg(x, y) – 2  (n – 2) or d(x) + d(y)  Codeg(x, y) + n. 

 

A subgraph of a graph G us a graph having all of its nodes and edges in G.  Thus, H is a 

subgraph of G if and only if V(H)  V(G) and E(H)  E(G).  A subgraph of G is a spanning 

subgraph if it contains all of the nodes of G.  Thus H is a spanning subgraph of G if V(H) = 

V(G) and E(H)  E(G).  For any sets U of nodes in G, U  V(G), the induced subgraph <U> is 

the maximal subgraph with vertex set U.  Put another way, the induced subgraph <U> is the 

graph with vertex set U  V(G), with any two vertices being adjacent in <U> if and only if they 

are adjacent in G.  We say more on induced subgraphs later in this chapter. 

 

Let u and v be vertices in a graph G, with u and v not necessarily distinct.  A u-v walk of G is a 

finite, alternating sequence of vertices and edges starting with u and ending with v: thought of as 

u = u0, e1, u1, e2, …., us-1, es, us = v, such that ei = (ui-1, ui).  The number s, the number of edges in 

the sequence, is called the length of the walk.  A u-v path is a u-v walk in which no vertex is 

repeated.  A cycle is a u-v walk in which all vertices are distinct with the sole exception that  

u = v.  Paths and cycles, as special cases of walks, have obvious definitions for their lengths.  A 

graph G is said to be connected if there exists a path between every pair of distinct vertices in 

the graph, otherwise it is disconnected.  For a connected graph G, we define the distance d(u, v) 

as the minimum of the lengths of all u-v paths connecting the 2 vertices u and v.  A path of 

minimum length between two vertices is sometimes called a geodesic. 

 

A connected component, or simply a component, of a graph G is a maximal connected 

subgraph of G.  If a graph is connected, it has only one component; otherwise it has two or more 

components.  For any vertex v  V(G), the component containing v is formed by adding v to the 

set of all vertices reachable by a path from v. 

 

The following figure shows a graph with three components. 

 
Figure 12: A Disconnected Graph With Three Components 

 

The three components of the graph in this example are {1, 2, 3, 4}, {5, 6, 8}, and {7}.  Note that 

there is a path from vertex 1 to vertex 3, so the two vertices are in the same component of the 

graph.  Since there is no path from vertex 1 to vertex 5, they are in different components. 

 

Recalling that a cycle is a path through a graph beginning and ending on the same vertex, we 

give the following definition of a graph without cycles. 

Definition: An acyclic graph is a graph that does not contain a cycle. 
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Definition: A tree is a connected acyclic graph. 

 

Definition: A rooted tree is a tree in which one vertex has been distinguished and called the 

  root.  Most trees of interest in computer science are rooted trees. 

 

Trees play only a small part in the analysis of networks.  The one tree of greatest importance for 

networks is the star graph, also called K1,n-1 (see below).  The next figure shows two of the 

smaller star graphs K1,2 (also called a P3, see below) and K1, 4.  Note that we, as computer science 

people, see each tree as a rooted tree with the root vertex (or root node) being vertex 1. 

 
Figure 13: Two Star Graphs 

 

Recalling that a subgraph H of graph G is a spanning subgraph if V(H) = V(G) and E(H)  E(G).  

If H is a spanning subgraph of G and H happens to be a tree, then H is said to be a spanning tree 

of the graph G. 

 

Upon reflection, one should realize that a graph G may have many distinct spanning trees; indeed 

it is almost obvious that a graph G has a unique spanning tree if and only if G is itself a tree.  The 

next figure shows a graph and its three spanning trees. 

 

 
Figure 14: A Graph G and Its Spanning Trees 

 

In the example above, we see a (4, 4)-graph G (4 vertices and 4 edges) and its 3 spanning trees 

T1, T2, and T3.  As we shall prove soon, a tree on four vertices must have exactly three edges.  In 

the above example there are three edges that can be removed to yield a tree; removal of edge (1, 

4) will cause the graph to be disconnected.  Note that each of T1 and T3 is isomorphic to the 

graph P4 – a path on four vertices, while T2 is isomorphic to K1,2 – the star graph on three 

vertices. 

 

We will soon quote one of the basic theorems regarding trees, but need to begin with a definition 

and a simple lemma.  The definition serves to eliminate trivial exceptions from our theorems on 

trees. 

 

Definition: A nontrivial tree is a tree with at least two vertices. 
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Lemma 7:  Every nontrivial tree has at least two vertices of degree 1. 

Proof: Let P be a longest path in a nontrivial tree T and let u and v be the end-nodes of the path 

P.  Since T is acyclic, u and v each have only one neighbor in P, and since P is a longest path 

each has no neighbors in T – P (else the path could be extended).  Thus there must be at least two 

vertices of degree one in a nontrivial tree. 

 

Before we quote the “big theorem” we must explain a new bit of terminology.  Let G be an  

(n, m)-graph on at least two vertices, and let u and v be vertices that are not adjacent in G.  Then 

by G + (u, v) we denote the (n, m + 1)-graph formed from G by adding making the two vertices u 

and v to be adjacent by adding the edge (u, v).  Another term often used is G + e, denoting the 

addition of a new edge to a graph G. 

 

Theorem 8:  The following statements are equivalent. 

 1. G is a tree with n vertices and m edges. 

 2. Every two distinct vertices of G are connected by a unique path. 

 3. G is connected and m = n – 1. 

 4. G is acyclic and m = n – 1. 

 5. G is acyclic and if any two nonadjacent vertices of G are joined by an edge 

  e, then G + e, the graph with one edge added, has exactly one cycle. 

 

Proof: This is a well-known result.  The theorem as stated is a slight rewording of Theorem 1.2 

in reference [R01].  We shall adapt the proof from that reference and show the proof as an 

example of how graph theorists think.  If the statements are all equivalent, then they must either 

be all true or all false for a given graph.  The strategy for a proof of equivalence is quite simple; 

we just prove that any one statement implies all of the other statements.  In this case we shall 

show a circular equivalence; thus 1  2, 2  3, 3  4, 4  5, and 5  1. 

 

Proof that 1  2 

Since G is a tree, it is a connected graph without cycles.  Since G is connected, every two distinct 

nodes in G are connected by a path.  Suppose two distinct nodes u and v in G that are connected 

by two distinct paths P and P*.  Let w be the first node of path P (as we traverse from u to v) 

such that w is on both P and P*, but its successor on P is not on P*.  Note that w = v is allowed in 

this proof.  We then follow path P from u to w and path P* backwards from w to u to form a 

cycle.  Thus the assumption of two distinct paths between any two vertices implies that the graph 

contains cycles and cannot be a tree. 

 

Proof that 2  3 

If every distinct pair of nodes in G is connected by a unique path, then G is connected by 

definition.  We prove that n = m + 1 by induction.  Reference to figures 7 and 8 of this work will 

show that the statement is true for n = 2, 3, and 4.  It is also vacuously true for n = 1.  Now 

assume that the result is true for all graphs with fewer than n vertices. 

 

Suppose that G is a graph with n nodes (n  2), m edges, and let v be one of the nodes of degree 

one in G (see Lemma 6).  Then G – v, the graph obtained by removing the vertex v and the edge 

incident on it from G, has (n – 1) vertices, one less than G, and still satisfies property 2.  By the 

inductive hypothesis G – v has m = (n – 1) – 1, thus the number of edges in G is m = (n – 1). 
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Proof that 3  4 
Assume that G has a cycle of length p.  Then there are p vertices and p edges on the cycle, and 

for each of the (n – p) vertices not on the cycle there is an incident edge on a geodesic from that 

vertex to a vertex in the cycle.  Each such edge is different, so (n – p) + p = n  m, which is a 

contradiction. 

 

Proof that 4  5 
Since G is acyclic, each component of G is a tree.  If there are k components, then each 

component has one more vertex than edge and n = m + k, so the assumption that  

n = m + 1 implies that k = 1 and that G is connected.  Thus G is a tree and there is exactly one 

path connecting any two nodes in G.  If we add an edge (u, v) to G, that edge together with the 

unique path in G joining u and v forms a cycle.  The cycle is unique because the path is unique. 

 

Proof that 5  1 
For this proof, we need a new notation.  Let u and v be two non-adjacent vertices in a graph G.  

The graph G + (u, v) is the graph created by adding the edge (u, v) to G.  If G is an (n, m)-graph, 

then G + (u, v) is an (n, m + 1)-graph.  In general, we use the notation  

G + e to indicate the graph generated from G by adding some new edge to G. 

 

The graph G must be connected, for otherwise an edge e could be added joining two nodes in 

different components, and the graph G + e would be acyclic.  Thus G is connected and acyclic, 

thus G is a tree. 

 

We use the above theorem on trees to derive a result of importance to this work. 

Lemma 9: Let G be an (n, m)-graph with m < (n – 1).  Then G is disconnected. 

Proof: Let G be an (n, m)-graph with m = (n – k), with k  2.  If G is connected, then there is a 

path between any two distinct vertices u, v  V(G).  Select u and v as non-adjacent vertices and 

add the edge e = (u, v).  We now have an (n, (n – k + 1))-graph that contains a cycle, beginning at 

u, going to v, and returning to u by the existing path.  If k > 2, repeat the above step (k – 2) times, 

noting only that the addition of new edges does not remove the first cycle created.  We then have 

an (n, (n – 1))-graph that is connected but contains a cycle.  This contradicts Theorem 8 and thus 

we conclude that the original graph G could not have been a connected graph.  The interested 

reader will find another proof of this lemma in the discussion of Theorem 1.3.1 in [R02].  It is 

important to note that m < (n – 1) does not require that the graph have isolated vertices.  The 

reader should examine the two (4, 2)-graphs shown in Figure 8, only one of which has an 

isolated vertex.  A graph with an isolated vertex must be disconnected, but there are very many 

disconnected graphs that have no isolated vertices. 

 

For a connected graph G, we define e(v), the eccentricity of vertex v, as the maximum of the 

distances from v to the other vertices in the graph.  The radius of a connected graph G, denoted 

rad(G), is the minimum value of the eccentricity of its vertices, while the diameter of the graph, 

denoted diam(G), is the maximum value of the eccentricity of its vertices.  Before we quote a 

familiar theorem relating the radius and diameter of a graph, we give an example. 
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Figure 15: A Graph with Radius 3 and Diameter 5 

 

In order to compute the radius and diameter of the graph, we first compute the eccentricity of 

each vertex.  We construct the distance matrix for the graph. 

 
Vertex d(v, 1) d(v, 2) d(v, 3) d(v, 4) d(v, 5) d(v, 6) d(v, 7) d(v, 8) d(v, 9) e(v) 

1 0 1 1 2 2 3 4 4 5 5 

2 1 0 2 1 1 2 3 3 4 4 

3 1 2 0 2 1 2 3 3 4 4 

4 2 1 2 0 1 1 2 2 3 3 

5 2 1 1 1 0 1 2 2 3 3 

6 3 2 2 1 1 0 1 1 2 3 

7 4 3 3 2 2 1 0 1 1 4 

8 4 3 3 2 2 1 1 0 1 4 

9 5 4 4 3 3 2 1 1 0 5 

 

Note that the maximum of the vertex eccentricities is 5; this is the diameter of the graph.  The 

minimum of the vertex eccentricities is 3; this is the radius of the graph.  A central vertex is a 

vertex with eccentricity equal to the radius of the graph.  The center of a graph, denoted Z(G), 

is the set of all central vertices; here Z(G) = {4, 5, 6}.  Since the radius of the graph is defined to 

be the minimum of the eccentricities of the vertices, it should be obvious that there is at least one 

vertex of minimum eccentricity, and thus the center Z(G) has at least one element. 

 

Theorem 10: For every connected graph G, rad(G)  diam(G)  2  rad(G). 

Proof:  The inequality rad(G)  diam(G) arises from the definition that the radius is the 

minimum of a set of numbers while the diameter is the maximum of the same set of numbers.  In 

order to verify the second inequality, select vertices u and v in G such that d(u, v) = diam(G).  

Let w be any vertex in Z(G), the center of G.  Then d(u, w)  e(w) and d(v, w)  e(w), where  

e(w) = rad(G).  It can be shown that d(u, v)  d(u, w) + d(w, v) for any three vertices u, v, and w, 

so we have d(u, v)  d(u, w) + d(w, v) = 2  e(w) = 2  rad(G). 

 

An (n, m)-graph G is called k-partite, 1 < k  n, if the vertices of G can be partitioned into k 

vertex sets V1, V2, ... , Vk such that no two vertices in the same set are connected by an edge in 

G.  The vertex sets are called parts of V(G).  For k = 2, we have a 2-partite graph, more 

commonly called a bipartite graph.  A 3-partite graph is also called a tripartite graph. 
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Figure 16: Some Bipartite Graphs and a Tripartite Graph 

 

Fig 16a is K2, 3.  Both fig 16b and 16c are K3,4 – fig 16c is just drawn funny.  Note that the 

vertices on the left and right side in fig 16c are not adjacent.  Fig 16d is not a complete graph. 

 

Before continuing, we note that any tree is also a bipartite graph.  We show this fact by 

constructing the two vertex parts of the graph.  Let T be a tree on n vertices and hence (n – 1) 

edges.  Select one vertex, call it u, and place it in the vertex part called V1.  Place every vertex at 

distance 1 from u into vertex part V2, every vertex distance 2 from u into vertex part V1, and in 

general every vertex at odd distance from u into V2 and at even distance from u into V1.  Since 

Theorem 8 assures us that the path from any vertex to u is unique, we do not try to place any 

vertex into both V1 and V2.  We now show that no two vertices in a vertex part can be adjacent.  

Suppose that v and w are two vertices in a vertex part that are adjacent.  We have paths from u to 

both v and w, thus creating the cycle from the path from u to w, the edge (w, v) and the path from 

v to u.  But the tree T is acyclic, so that vertices in the same vertex part cannot be adjacent and T 

is bipartite.  In a rooted tree, think of one vertex part as all vertices at an odd distance from the 

root vertex and the other vertex part as the rest of the vertices. 

 

A graph G is called complete if every pair of its vertices is connected by an edge.  By Kn we 

denote a complete graph on n vertices.  Cn denotes the cycle on n vertices, and Pn denotes the 

path on n vertices. Note that for n  2, Kn has n(n – 1)/2 edges, Cn has n edges and Pn has  

(n – 1) edges.  K3, which is isomorphic to C3, is called the triangle graph, or triangle.  K1 

denotes the empty graph on one vertex, it is a graph with one isolated vertex and no edges. 

 

G is called a complete k-partite graph if it is k-partite and whenever two vertices are in different 

parts of the graph they are connected by an edge in E(G).  A complete 2-partite graph is called 

complete bipartite and is denoted by Ka,b, where the number of vertices in the two vertex parts 

is a and b respectively.  K1,n-1 denotes a star graph on n vertices with (n – 1) edges.  K1,n-1 is a 

complete bipartite graph; it is also a tree.  Note that K1,2 is isomorphic to P3.  Note that there is 

only one connected graph on two vertices; it can be called either K1,1 or K2 or P2, but not C2 as a 

cycle must have at least three vertices. 

 

For an arbitrary graph G, nG denotes n copies of the graph G.  Let nK1 denote the empty graph 

on n vertices.  Then we have m(nK1) = 0; nK1  (n,0).  The maximum number of edges in a 

graph in (n) equals m(Kn) = n(n – 1)/2. 
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There are many ways to combine graphs to produce new graphs.  We shall consider only one 

binary operator – the union.   This is defined as follows. 

Definition:  The union of two graphs G1 and G2, denoted G = G1  G2, is that graph with  

V(G) = V(G1)  V(G2) and E(G) = E(G1)  E(G2). 

 

Note that one can use this union operator as an alternate definition of the graph nG, based on a 

recursive definition: 2G = G  G, and nG = (n – 1)G  G.  One important graph for our 

consideration will be G = K1,n-j  (j – 1)K1.  For n = 6 and j = 3, we have the graph in the 

following figure.  The graph has two isolated vertices. 

 

 
Figure 17: The (6, 3)-Graph K1,3  2K1. 

 

The vertex connectivity or simply connectivity of a connected graph G, denoted (G) is the 

minimum number of vertices the removal of which from G yields either an isolated vertex or a 

disconnected graph.  If (G)  r, then the graph G is said to be r-connected.  The edge 

connectivity of a graph G, denoted (G) is the minimum number of edges the removal of which 

results in a disconnected graph. 

 

Let G be an (n, m)-graph with vertices v1, v2, ... , vn having degrees d1, d2, ... dn, where  

di = d(vi).  We label the vertices so that d1  d2  …  dn to get a sequence called the degree 

sequence of G, denoted by D(G) = (d1, d2, ... , dn).  By (G) we denote the maximum degree in 

G, and by (G) we denote the minimum degree in G.  If the degree sequence D(G) is presented 

in the as above, then (G) = d1 and (G) = dn.  By DSS(G) we denote the sum of the squares of 

the vertex degrees of a graph G.  In other words, for an (n, m)-graph G with degree sequence 

given by D(G) = (d1, d2, …, dn), we have DSS(G) =  
n

d j
1

2
. 

 

We now consider two degree sequences, both for (n, m)-graphs and define a useful concept, 

called degree sequence dominance. 

Definition:  Let D(G) = (d1, d2, …, dn) and D(H) = (d'1, d'2, …, d'n) denote the degree sequences 

of (n, m)-graphs G and H, respectively.  D(G) is said to dominate D(H) if 


j

i
i

j

i
i 'dd

11

for all  

j = 1, 2, …, n with strict inequality for at least one value of j. 

 

The importance of degree sequence dominance arises from its relation to the sum of the squares 

of the degrees of the vertices, as seen in the following proposition. 



Chapter 1  Terminology & Basic Theory 

Page 17 of 23 CPSC 3115 Version of June 6, 2013 

 Copyright © 2005 by Ed Bosworth 

Proposition 11: Let G and H be two (n, m)-graphs such that the degree sequence of G dominates 

the degree sequence of H.  Then DSS(G) > DSS(H). 

 

Proof:  Let D(G) = (d1, d2, …, dn) and D(H) = (d'1, d'2, …, d'n) denote the degree sequences of  

(n, m)-graphs G and H, respectively.  Since the degree sequence of G dominates that of H, there 

must be at least one index k, 1  k  n, such that dk > d’k.   

Let k be the smallest index for which dk > d’k and let dk = d’k + d, with d > 0.   

 

Since the degree sequence is ordered, we have d’k  d’j for all j > k.  Since the two degree 

sequences add to the same sum, we must have d'dd

n

1ki
i

n

1ki
i 



.   

 

We alter the degree sequence of H by adding the value to d to d’k, increasing DSS(H) by  

2dd’k+ d
2
.  Decreasing d’k+1 to balance the sum then decreases the new value of DSS(H) by  

d
2
 – 2dd’k+1, yielding a net change of 2dd’k+ 2dd’k+1, which is a positive number.  Thus by 

modifying the degree sequence of H to make it look more like that of G, we have increased the 

value of DSS(H).  One can easily see that these changes to make the degree sequence of H 

identical to that of G continually increase DSS(H).  Thus we must have started with DSS(H) < 

DSS(G). 

 

A sparse graph is an (n, m)- graph for which m  n
2
/4, and a dense graph is an (n, m)-graph 

for which m > n
2
/4, where x is the largest integer not greater than the real number x.   

n
2
/4 = (n

2
/4) if and only if n is an even integer. 

 

For graphs G and H, let *H(G) denote the number of induced subgraphs of G which are 

isomorphic to H and #H(G) denote the number of (not necessarily induced) subgraphs of G 

which are isomorphic to H.  Thus #P3(G) and *P3(G) denote the number of subgraphs and the 

number of induced subgraphs, respectively, of G isomorphic to P3, the path on three vertices. 

#K3(G) denotes the number of subgraphs isomorphic to K3, the triangle.  Because all triangles as 

subgraphs are induced, #K3(G) = *K3(G); we use *K3(G) to denote the number of triangles in a 

graph G.  Any graph for which *K3(G) = 0 is said to be triangle-free or K3-free.  We shall see 

that bipartite graphs are K3-free. 

 

Recall that a bipartite graph is an (n, m)-graph G with the property that V(G) can be broken 

into two disjoint sets V1 and V2, such that a vertex in V1 is adjacent only to vertices in V2 and a 

vertex in V2 is adjacent only to vertices in V1.  We now prove one result of major importance to 

our work: that bipartite graphs do not contain a K3.  We do this by first proving the more general 

result and then applying an obvious definition. 

 

Theorem 12: A graph G is bipartite if and only if all of its cycles are even. 

 

Proof: This proof is quite important, so is quoted almost verbatim from Theorem 1.3 in 

Distances in Graphs [R01].  If G is bipartite, then its vertex set V can be partitioned into two sets 

V1 and V2 so that every edge of G joins a vertex in V1 with a vertex in V2.  Thus every cycle [of 

length k] v1, v2, …, vk, v1 in G necessarily has its oddly subscripted vertices in V1, say, and the 

others in V2, and so its length is even.  [Otherwise, we would have the edge (vk, v1) connecting 

two vertices in V1, contradicting our hypothesis.] 



Chapter 1  Terminology & Basic Theory 

Page 18 of 23 CPSC 3115 Version of June 6, 2013 

 Copyright © 2005 by Ed Bosworth 

 

For the converse, we assume without loss of generality that G is connected (for otherwise we can 

consider the components of G separately).  Take any vertex v1  V(G) and let [vertex set] V1 

consist of v1 and all vertices at even distance from v1, while [vertex set] V2 = V – V1.  Since all 

cycles of G are even, every edge of G joins a vertex of V1 with a vertex of V2.  For suppose there 

is an edge (u, v) joining two vertices of V1.  Then the union of geodesics [shortest paths] from v1 

to v and from v1 to u together with the edge (u, v) contains an odd cycle, a contradiction. 

 

We now present the important result as a corollary to the above theorem. 

Corollary 13: A bipartite graph does not contain a K3 (triangle). 

Proof: We have just shown that a bipartite graph does not contain any cycle of odd length.  

Specifically, it does not contain a C3 (a cycle on three vertices), which is isomorphic to a K3 

(complete graph on three vertices). 

 

In terms that we shall use later, we have just shown that if G is a bipartite graph then  

*K3(G) = #K3(G) = 0. 

 

We now link sparse and dense graph to graphs containing triangles by use of a famous theorem 

due to Turan.  Turan’s work is considered the first theorem in an important area of graph theory, 

called extremal graph theory, which we now discuss briefly. 

 

Extremal Graph Theory 

The study of extremal graphs is generally the study of the largest or smallest graphs that have 

certain properties.  The best reference on the topic is the book Extremal Graph Theory by 

Bollobas [R03], a book that is rare and hard to find.  The book contains references to many of the 

original papers in the subject; unfortunately many of them were written in Hungarian and have 

yet to be translated. 

 

For these notes, we focus on extremal graph theory of complete subgraphs; that is subgraphs that 

are isomorphic to a complete graph Kn.  We quote from chapter VI of Bollobas [R03] to 

introduce the subject. 

 

Given a graph F1, what is ex(n; F1), the maximum number of edges of a graph of 

order n [having n vertices] not containing F1 as a subgraph. … [The] best known 

extremal result of graph theory [is] Turan’s theorem.  This result, proved in 1940 

and always considered to be the first extremal theorem, answers this question 

above in the case F1 = Kr. 

 

Turan’s theorem is based on specific complete q-partite graphs, denoted Tq(n). 

Definition: Given natural numbers n and q, denote by Tq(n) the complete q-partite graph with 

n/q, (n + 1)/q, … (n + q – 1)/q vertices in each of the vertex sets.  Note that Tq(n) is the 

unique complete q-partite graph of order n whose vertex sets have size as equal as possible.  For 

convenience, we number the vertex parts beginning with 0, so that vertex part k has size  

(n + k)/q, 0  k  (q – 1). 
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It is a standard result that a q-partite graph of order n having n0, n1, .. nq-1 vertices in its vertex 

parts has at most 











2

n
 –  









1q

0

k

2

n
 edges.  Tq(n) is the unique q-partite graph of order n, denoted 

by tq(n).  Turan also proved in 1941 that every other graph of order n and size tr-1(n) contains a 

Kr as a subgraph. 

 

For this research the most important Turan graph will be T2(n), the complete bipartite graph with 

vertex parts of size n/2 and (n + 1)/2. 

 

Theorem 14:  Let r and n be natural numbers, r  2.  Then every graph of order n and size 

greater than tr-1(n) contains a Kr, a complete graph of order r.  Furthermore, Tr-1(n) is the only 

graph of order n and size tr-1(n) that does not contain a Kr. 

Proof: See the proof of theorem 1.1 in chapter VI of reference [R03]. 

 

Of special interest to much research is the largest graph that contains no K3. 

Lemma 15: The largest graph with n vertices that contains no triangle is the complete bipartite 

graph Ka,b, with n = a + b and |a – b|  1. 

 

Proof:  See Theorem 4.1.2 in the book Pearls in Graph Theory [R02].  This is also a special case 

of Theorem 14, just above. 

 

Remark:  The complete bipartite graph Ka,b has m = ab edges.  If a > b, then we have two 

possibilities for graphs satisfying theorem 15: a = b and a = b + 1.  If a = b, then  

n = 2b and m = b
2
 = n

2
/4.  If a = b + 1, then n = 2b + 1 and m = b(b + 1) = b

2
 + b.  Also we 

have n
2
 = (2b + 1)

2
 = 4b

2
 + 4b + 1, so m = n

2
/4.  The graph Ka,b, as described above is the 

largest sparse graph and we conclude that all dense graphs must contain triangles. 

 

Corollary 16: If G is an acyclic graph, it must be a sparse graph. 

Proof:   If G is not a sparse graph, it is a dense graph that must contain a triangle or 

  K3  C3, which is a cycle.  Hence G is not acyclic. 

 

We add another interesting result that might be of use in later work. 

Theorem 17: If n  (r + 1) then every (n, m)-graph with m = tr-1(n) + 1 contains a 

Kr+1 from which an edge as been omitted. 

Proof:  See the proof of theorem 1.2 in Chapter VI of reference [R03]. 

 

Another Count of Subgraphs 

Another important count is S3(G), the number of induced three-vertex connected subgraphs of G.  

P3, the path on three vertices, and K3, the triangle, are the only connected graphs on three 

vertices, so S3(G) = *P3(G) + *K3(G) for any graph G. 

 

An (n, m)-graph is said to be #P3-optimal if it maximizes #P3(G) for all G  (n, m), the set of 

all (n, m)-graphs.  *P3-optimal and S3-optimal graphs are those graphs which maximize the 

counts *P3(G) and S3(G) respectively. 
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Figure 18: A Graph and Its 3-Vertex Induced Subgraphs 

 

In the example above, we see a (4, 4)-graph and the subgraphs induced on the three distinct 

three-vertex subsets of {1, 2, 3, 4}.  The subgraph <1, 2, 3> is a K3, which contains three non-

induced P3’s, one centered on each of its vertices.  The graph <1, 2, 4> is K1  K2, also called a 

K1K2.  The subgraph <2, 3, 4> is an induced P3. 

 

As was mentioned above, there are three non-induced P3’s in the above graph – one centered at 

vertex 1, one centered at vertex 2, and one centered at vertex 3.  As a result we have one induced 

P3 and three non-induced P3’s, for a total of four.  Thus, for this graph we have *P3(G) = 1, 

*K3(G) = 1, S3(G) = 2, and #P3(G) = 4. 

 

Proposition 18: For any graph G, #P3(G) = *P3(G) + 3*K3(G). 

Proof:  Let u, v, and w be the vertices of a triangle in G.  There is a P3 centered on each of the 

vertices u, v, and w.  Since none of these is an induced P3, each triangle contributes 3 to the count 

#P3(G) but 0 to the count *P3(G).  The conclusion then follows by noting that each induced P3 

contributes 1 to the count of #P3(G) and 1 to the count of *P3(G).  In order to drive this point 

home, let’s take another look at figure 18, presented above, focusing on the triangle induced by 

vertices 1, 2, and 3.  Note that none of the P3’s defined on these 3 vertices is induced, as each 

lacks one edge incident only on vertices in the set {1, 2, 3}. 

 

 
Figure 19: A Graph and Some of Its 3-Vertex Subgraphs 
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WEIGHTED GRAPHS 

We now introduce the concept of a weighted graph – a graph in which there are weights 

associated with the edges.  These weights can represent distances, costs, capacities, or any 

other measure that is associated with an edge and that can be quantified as a real number.  

For most weighted graphs, the weights are represented as non-negative integers, although 

negative edge weights appear to be used for some applications.  To this author’s knowledge, 

no work has been done on graphs with edge weights represented as complex numbers. 

 

We begin with a formal definition of a weighted graph, and then move on to a more natural 

discussion of the concept in terms of drawings and adjacency matrices. 

 

Definition: A weighted graph G is a triple (V, E, W) in which V is a non-empty set of 

vertices, E  V  V is a set of edges (the graph can be directed or undirected), and W is a 

function from the edge set E into R, the set of real numbers.  For any edge e  E, w(e) is the 

weight of e.  In networks, the edge weights often represent the link transmission capacities. 

 

We shall immediately revert to the standard practice of representing all edge weights as non-

negative integers, most commonly using only positive integers.  It can be proven that for 

most cases, this restriction does not present any difficulties.  We shall begin with a simple 

undirected graph, in which all edges can be said to have a weight of one and then develop an 

example of the same graph with weighted edges.  This example is taken, almost verbatim, 

from an excellent textbook [R04] by Sara Baase and Alan Van Gelder. 

 

 1 2 3 4 5 6 7 

1 0 1 1 0 0 0 0 

2 1 0 1 1 0 0 0 

3 1 1 0 1 0 1 0 

4 0 1 1 0 0 1 0 

5 0 0 0 0 0 1 0 

6 0 0 1 1 1 0 1 

7 0 0 0 0 0 0 1 

 

 

 

 

Figure 20: An Undirected Graph and Its Adjacency Matrix 

 

We now add edge weights to this example, making it a weighted graph.  Note that the only 

change to the adjacency matrix representation is to replace the 1 by the weight of the edge.  

Suppose that A is the adjacency matrix of a graph.  We have two cases. 

 

Unweighted Graph Weighted Graph 

 AIJ = 0 if no edge  AIJ = 0 if no edge 

 AIJ = 1 if (I, J) is an edge  AIJ = weight(I, J) if (I, J) is an edge 
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We now present a weighted graph that has the same underlying undirected graph as the 

example in the figure above.  Note that the adjacency matrix is different, it now has the 

weights. 

 

 

 1 2 3 4 5 6 7 

1 0 25 5 0 0 0 0 

2 25 0 10 14 0 0 0 

3 5 10 0 18 0 16 0 

4 0 14 18 0 0 32 0 

5 0 0 0 0 0 42 0 

6 0 0 16 32 42 0 11 

7 0 0 0 0 0 11 0 

 

 

 

Figure 21: A Weighted Graph and Its Adjacency Matrix. 

 

 
Figure 22: The Adjacency List Representation of the Same Weighted Graph 

Note that the vertices in the list are kept in sorted order.  This is a convention only and is not 

necessary.  Ordered lists are easier to search, but take more time for insertion. 

 

At this point we should note that the above adjacency matrix will cause some graph 

algorithms to malfunction.  The problem arises when the edges represent distances or costs or 

some such quantity that one might want to minimize.  The problem, which does not occur in 

the adjacency list representation, is due to the fact that a 0 is used to represent an edge that is 

not present.  Consider a silly algorithm attempting to develop a minimum cost Hamiltonian 

circuit of the above graph.  It might select 1  4  5  3  7  2  6  1 as the route 

with a total weight of 0.  This is, of course, an impossible route as none of these edges exist. 

 

It is easy to see that the problem does not occur when one uses the adjacency list 

representation of the graph.  Edges that are not present simply do not have entries in the 

linked lists representing the open neighborhoods of each vertex.  The problem is avoided. 
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It is also easy to see that the problem does not occur when one is using a graph to model 

some problem in which the edges represent flow capacities, available communication 

circuits, or some other measure to be maximized.  In that case an edge that does not exist is 

identical to an edge of zero capacity; neither can be used to solve the problem.   

 

When one is considering an adjacency matrix representation of a graph modeling a problem 

for which sums of edge weights are to be minimized, it is necessary to place a large value in 

the matrix elements that indicate non-existent edges between distinct vertices.  Note that 

almost all algorithms will detect that a diagonal element A[K][K] of a matrix is not to be 

used as the graph contains no loops, so only the entries for non-existent edges must be 

adjusted. 

 

Many books suggest placing  as an element in the adjacency matrix to represent the weight 

for the non-existent edges.  This is great for drawings, but presents problems in the 

application of an algorithm, because most computers lack a consistent representation for .  

The approach commonly suggested is to take a very large number and use that.  Here is 

another suggestion that will work for most algorithms. 

 1) Beginning with the adjacency matrix having 0’s represent each non-existent edge, 

  sum all the edge weights.  The sum is twice the total of the edge weights, as every 

  edge is summed twice. 

 2) Multiply that number by two and use that value to represent non-existent edges. 

In the above example, the sum of the values of the adjacency matrix is 346, indicating a total 

edge weight of 173.  We double the value of 346 to get 692 and use either that value or any 

larger value to represent a non-existent edge.  The use of this number is based on the 

observation that no path through the graph will have a total distance greater than the sum of 

all the weights of all the edges, so here we use a number four times as big to keep the 

algorithms from picking any of these non-existent edges.  The array below is the adjacency 

matrix using this approach. 

 

 0 25 5 692 692 692 692 

 25 0 10 14 692 692 692 

 5 10 0 18 692 16 692 

 692 14 18 0 692 32 692 

 692 692 692 692 0 42 692 

 692 692 16 32 42 0 11 

 692 692 692 692 692 11 0 

Figure 23: The Adjusted Adjacency Matrix 

 

 


