
Page 562 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Chapter 9 – Input / Output

We now consider realistic modes of transferring data into and out of a computer. We first

discuss the limitations of program controlled I/O and then explain other methods for I/O.

As the simplest method of I/O, program controlled I/O has a number of shortcomings that

should be expected. These shortcomings can be loosely grouped into two major issues.

1) The imbalance in the speeds of input and processor speeds.

Consider keyboard input. An excellent typist can type about 100 words a minute (the author

of these notes was tested at 30 wpm – wow!), and the world record speeds are 180 wpm (for

1 minute) in 1918 by Margaret Owen and 140 wpm (for 1 hour with an electric typewriter) in

1946 by Stella Pajunas. Consider a typist who can type 120 words per minute – 2 words a

second. In the world of typing, a word is defined to be 5 characters, thus our excellent typist

is producing 10 characters per second or 1 character every 100,000 microseconds. This is a

waste of time; the computer could execute almost a million instructions if not waiting.

2) The fact that all I/O is initiated by the CPU.

The other way to state this is that the I/O unit cannot initiate the I/O. This design does not

allow for alarms or error interrupts. Consider a fire alarm. It would be possible for someone

at the fire department to call once a minute and ask if there is a fire in your building; it is

much more efficient for the building to have an alarm system that can be used to notify the

fire department. An other good example a patient monitor that alarms if either the breathing

or heart rhythm become irregular.

As a result of the imbalance in the timings of the purely electronic CPU and the electro-

mechanical I/O devices, a number of I/O strategies have evolved. We shall discuss these in

this chapter. All modern methods move away from the designs that cause the CPU to be the

only component to initiate I/O.

The first idea in getting out of the problems imposed by having the CPU as the sole initiator

of I/O is to have the I/O device able to signal when it is ready for an I/O transaction.

Specifically, we have two possibilities:

 1) The input device has data ready for reading by the CPU. If this is the case, the CPU

 can issue an input instruction, which will be executed without delay.

 2) The output device can take data from the CPU, either because it can output the data

 immediately or because it can place the data in a buffer for output later. In this case,

 the CPU can issue an output instruction, which will be executed without delay.

The idea of involving the CPU in an I/O operation only when the operation can be executed

immediately is the basis of what is called interrupt-driven I/O. In such cases, the CPU

manages the I/O but does not waste time waiting on busy I/O devices. There is another

strategy in which the CPU turns over management of the I/O process to the I/O device itself.

In this strategy, called direct memory access or DMA, the CPU is interrupted only at the

start and termination of the I/O. When the I/O device issues an interrupt indicating that I/O

may proceed, the CPU issues instructions enabling the I/O device to manage the transfer and

interrupt the CPU upon normal termination of I/O or the occurrence of errors.

Chapter 9 Introduction to Input and Output

Page 563 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

An Extended (Silly) Example of I/O Strategies

There are four major strategies that can be applied to management of the I/O process:

 Program-Controlled, and

 Interrupt-Driven, and

 Direct Memory Access, and

 I/O Channel.

We try to clarify the difference between these strategies by the example of having a party in

one’s house to which guests are invited. The issue here is balancing work done in the house to

prepare it for the party with the tasks of waiting at the front door to admit the guests.

Program-Controlled

The analogy for program-controlled I/O would be for the host to remain at the door, constantly

looking out, and admitting guests as each one arrives. The host would be at the door constantly

until the proper number of guests arrived, at which time he or she could continue preparations for

the party. While standing at the door, the host could do no other productive work. Most of us

would consider that a waste of time.

Interrupt-Driven

Many of us have solved this problem by use of an interrupt mechanism called a doorbell. When

the doorbell rings, the host suspends the current task and answers the door. Having admitted the

guest, the host can then return to preparations for the party. Note that this example contains, by

implication, several issues associated with interrupt handling.

The first issue is priority. If the host is in the process of putting out a fire in the kitchen, he or

she may not answer the door until the fire is suppressed. A related issue is necessary completion.

If the host has just taken a cake out of the oven, he or she will not drop the cake on the floor to

answer the door, but will first put the cake down on a safe place and then proceed to the door. In

this scenario, the host’s time is spent more efficiently as he or she spends little time actually

attending the door and can spend most of the time in productive work on the party.

Direct Memory Access

In this case, the host unlocks the door and places a note on it indicating that the guests should

just open the door and come in. The host places a number of tickets at the door, one for each

guest expected, with a note that the guest taking the last ticket should so inform the host. When

the guest taking the last ticket has arrived, the host is notified and locks the door. In this

example the host’s work is minimized by removing the requirement to go to the door for each

arrival of a guest. There are only two trips to the door, one at the beginning to set up for the

arrival of guests and one at the end to close the door.

I/O Channel

The host hires a butler to attend the door and lets the butler decide the best way to do it. The

butler is expected to announce when all the guests have arrived.

Note that the I/O channel is not really a distinct strategy. Within the context of our silly

example, we note that the butler will use one of the above three strategies to admit guests. The

point of the strategy in this context is that the host is relieved of the duties. In the real world

of computer I/O, the central processor is relieved of most I/O management duties.

Chapter 9 Introduction to Input and Output

Page 564 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

I/O Device Registers

From the viewpoint of the CPU, each I/O device is nothing more than a set of registers. An

Input device is characterized by its input Data register from which the CPU reads data. An

Output device is likewise characterized by its data register.

While the I/O can be based on explicit knowledge of device timings, the more common

methods involve use of the registers to assert and test specific signals. Registers generally

fall into three classes, though simpler I/O devices may have a single register with both

control bits (write only) and status bits (read only).

The contents of the status and control registers are generally treated as a collection of

individual bits. Upon occasion, each register can be treated as if it were holding a signed

two’s–complement integer. In this case, the sign bit may be set to indicate an error.

 Data used for data to be read from or written to the I/O device

 for input devices this is a read-only register

 for output devices this register is usually nor read by the CPU

 Status used to report the device status. If the sign bit is 1, there has been

 a device error. The assignment of the sign bit as an overall

 error bit (other bits for specific errors) is for ease of programming, as a

 status register with the error bit set will be read as a negative number.

 Control used to set options on the I/O device

 Disk drives have control registers to select cylinder, track, sector, etc.

 Extra four registers per device simplifies the address calculations.

 In these designs, we shall ignore the Extra register.

Two Examples to Define Some Issues

Before discussing the details of hardware I/O devices, it will be helpful to give two examples

in a high–level language. Each of these will illustrate issues in the interfacing of software and

hardware as a part of the I/O process. In particular, these examples should lead to a deeper

appreciation of the decision to structure the I/O software as multiple layers.

The examples will focus on input and output of simple integer values. To simplify the

discussion slightly, it will be assumed that the value zero will not be entered or output; all

values are strictly positive or negative. Two more assumptions are significant.

 1. The integer values are stored in 16–bit two’s–complement form.

 2. The digits are encoded as ASCII characters.

The examples will use the decimal numbers 123 and –123 (the negative number).

The binary representation of these two are as follows:

 The positive number 123 is represented as 0000 0000 0111 1011

 The negative number –123 is represented as 1111 1111 1000 0101

Here are the ASCII codes for the decimal digits..

Character ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

Hexadecimal value 30 31 32 33 34 35 36 37 38 39

Decimal value 48 49 50 51 52 53 54 55 56 57

Chapter 9 Introduction to Input and Output

Page 565 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The table above quickly illustrates how to convert between ASCII codes for single

digits and their numeric value. The following pseudocode will be suggestive; in any

modern high–level language the expressions must include explicit type casting.

 ASCII_Code = Numeric_Value + 48 // Decimal

 Numeric_Value = ASCII_Code – 48

As an aside, we note that the conversions might have been accomplished using the bit

manipulations allowed by the Boolean operators AND, OR, and NOT. Here, we have

elected to use the arithmetic operators.

Consider the positive integer 123. Here we must make a distinction between the integer

value and its print representation. This is a distinction that is not normally made, as it

has few practical implications. Within the context of I/O hardware and software, it is a

distinction worth noting. When we read the string “123”, we say that it is the integer.

However, it is a three digit string that represents the integer value.

In our example using 16–bit two’s–complement internal representation, the integer value

that is stored internally as 0000 0000 0111 1011 is converted to the digits ‘1’, ‘2’, and ‘3’

used to build the string “123”. The string is sent to the output device. For input, the process is

reversed. The string “123” will be broken into three digits, and the numeric value of each digit

determined so that the integer value can be computed.

Output of a Non–Zero Integer Value

Here is a pseudocode description for the process, using the values 123 and –123 as illustrations.

The output string is built right to left, with the sign character placed last.

Output 123 Output –123

Binary: 0000 0000 0111 1011 Binary: 1111 1111 1000 0101

This is not negative, set Sign_Char = ‘ ’ This is negative, set Sign_Char = ‘–’

Value to convert is 123 Value to convert is 123.

 Divide 123 by 10 to get the remainder 3, with quotient 12.

 Add 48 to the remainder to get the ASCII code for ‘3’.

 Place ‘3’ in the string. “3”.

 Divide 12 by 10 to get the remainder 2, with quotient 1.

 Add 48 to get the code for ‘2’ and place in the string to get “23”.

 Divide 1 by 10 to get the remainder 1, with quotient 0.

 Add 48 to get the code for ‘1’ and place in the string to get “123”.

 Stop as the quotient is 0.

Place the sign character to get “ 123”. Place the sign character to get “–123”.

 Send the output string to the output device.

Chapter 9 Introduction to Input and Output

Page 566 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Input of a String Representing a Non–Zero Integer Value

The input string is scanned left to right. The scan will detect either the sign ‘–’ or a digit.

The leftmost digit is assumed to begin the print representation of the absolute value of the

integer. Admittedly, an industrial–strength algorithm would do much more.

Input “123” Input “–123”

First character found is a digit. First character found is ‘–’.

The value is not negative. The value is negative.

Set Is_Negative = False. Set Is_Negative = True.

 Scan for next character. It is a digit.

Digit = ‘1’ Digit = ‘1’

 Set Number_Value = 0 to initialize the process.

 Strip the leftmost digit from the input string. Digit = ‘1’.

 Now the input string is String = “23”.

 Subtract 48 from the 49, the ASCII code for ‘1’ to get the value 1.

 Digit_Value = 1

 Set Number_Value = Number_Value 10 + Digit_Value

 Number_Value = 1.

 Strip the leftmost digit from the input string. Digit = ‘2’.

 Now the input string is String = “3”.

 Subtract 48 from the 50, the ASCII code for ‘2’ to get the value 2.

 Digit_Value = 2

 Set Number_Value = Number_Value 10 + Digit_Value

 Number_Value = 12.

 Strip the leftmost digit from the input string. Digit = ‘3’.

 Now the input string is String = “” (the empty string).

 Subtract 48 from the 51, the ASCII code for ‘3’ to get the value 3.

 Digit_Value = 3

 Set Number_Value = Number_Value 10 + Digit_Value

 Number_Value = 123.

 The input string is empty, so stop this process.

The value is not negative. The value is negative.

 Take the two’s complement.

Value stored is 123 Value stored is –123.

Binary: 0000 0000 0111 1011 Binary: 1111 1111 1000 0101

One motivation for this tedious discussion is to point out part of the complexity of the

process of integer value input and output. It is one of the main advantages of a high–level

language and its run–time support system (RTS) that a programmer can ignore these details

and focus on the solution to the problem at hand. One of the goals of this course is to focus

on these details, so that the student will gain an appreciation of the underlying process.

Chapter 9 Introduction to Input and Output

Page 567 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Overview of the Output Process

We continue the discussion of the processes associated with output of a representation of an

integer value to an output device. The purpose of this part of the discussion is to show that

the process naturally suggests layers of software, also called a software stack, in which each

layer performs one specific function. Here is a break–down of the output process.

 1. The output begins with a high–level language statement, as in the following

 fragment of C++ code.

 int c = 123 ;

 cout << c << endl ; // Output the value, then

 // the end of line character.

 The code actually executed for this output is the assembly language

 produced by the C++ compiler for execution on the specific computer.

 2. The value 123 is converted to the string “123”.

 This step is independent of the output device.

 3. An operating system routine is called to handle the output. It is passed the string

 “123” CR LF; in ASCII code this is the five byte values 49 50 51 13 10.

 The operating system calls a generic output routine, and then blocks the executing

 program, awaiting completion of the output. It is likely to schedule another program

 to run until the first program can restart execution.

 4. The generic output routine calls a specific device driver that is customized for the

 output device being used. For example, a device driver for output to a display screen

 would differ from one that managed a USB drive.

 5. The device driver commands the output device with the specific signals required to

 accomplish the output. Steps likely to occur are as follows:

 a) Command the output device to interrupt when it can accept the output.

 b) Send either the entire string or one character at a time, as required.

 c) Process the interrupt that indicates that the output is complete.

The division of the I/O routines into generic and device–specific increases the portability of

an operating system. Recent operating systems, especially MS–Windows, have taken this

division a step farther by virtualizing all hardware. The MS HAL (Hardware Abstraction

Layer) is a virtual machine that presents a uniform interface to the software. Detailed

differences in the hardware are handled in the HAL; it converts control signals and data from

the HAL formats into those required by the specific hardware.

As a historical note, a number of software designers on the team for Microsoft Windows NT

were hired from the Digital Equipment Corporation (DEC). These designers had previously

been part of the team that developed the highly successful VAX/VMS operating system. It was

duly noted that many of the features in Windows NT were sufficiently close to those in

VAX/VMS to constitute copyright infringement. As a part of the settlement of the lawsuit,

Microsoft agreed that Windows NT would run on the DEC Alpha as well as the Intel Pentium.

This necessitated the development of the HAL, with one version adapting Windows NT to run

on the Pentium and another allowing it to run on the very different Alpha.

Chapter 9 Introduction to Input and Output

Page 568 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Some Comments on Device Driver Software

The difference between a generic output routine and the output part of a device driver is

rather similar to the difference between a high–level language and assembly language. The

high–level language is centered on the logic of the problem; the assembly language is centered

on the structure of the particular CPU. A generic output routine might focus on commands

such as “Convert a LF (Line Feed) into a CR/LF (Carriage Return/Line Feed) combination” and

“Enable the Device to Interrupt when ready for data”. The device driver deals with setting

individual bits in the command register.

NOTE: The goal of this discussion is to lead to an appreciation of the complexities of a

 typical device driver. The reader will never be called to program at this level, and

 so is not expected to remember the details of what follows just below.

The examples used to illustrate the operation of driver software will be based on the PDP–11, a

small computer manufactured by the Digital Equipment Corporation from 1970 into the 1990’s.

It was possibly the last design of the PDP (Programmed Data Processor) series, evolving into

the VAX (Virtual Architecture Extension) series. The first VAX was the VAX–11/780,

introduced on October 25, 1977. It remained popular until the mid 1990’s.

The PDP–11 was a 16–bit computer, with 16–bit control and status registers [R_027]. The

PDP–11 was chosen to for these discussions because its design is considerably simpler than

more modern computers, such as the Intel IA–32 series or Pentium series. Each register

associated with a given I/O device is identified by some sort of address. As hinted

in the previous paragraph, there are two main strategies for addressing these registers.

 Isolated I/O There is a dedicated I/O bus with its own address space. I/O registers

 are accessed through dedicated I/O instructions, such as the IN and

 OUT instructions used by the IA–32 and Pentium designs.

 Memory mapped I/O There is a single bus with a unified address space. Part of the

 addresses are allocated to I/O and the rest to memory. In the PDP–11

 the top 4K of addresses is allocated for I/O registers. In a PDP–11/70

 there were 256 KB (262, 144 bytes) of memory allocated as follows:

 0 – 258,047 Memory addresses

 258, 048 – 262, 143 I/O register addresses

Our examples will focus on the PDP–11 paper tape reader, an input device, and paper tape

punch, an output device. To your author’s knowledge, these devices are totally obsolete; no

current computer uses paper tape for external data storage. However, these are quite simple.

The PDP–11 style calls for addresses to be expressed in octal. Here are the addresses for the

four key registers associated with paper tape I/O, given in both octal and decimal. Each 16-bit

register comprises two bytes, and is located at an even byte address.

Register Address (Octal) Address (Decimal)

Paper Tape Reader Control & Status Register (TKS) 777560 262,000

Paper Tape Reader Data Register (TKB) 777562 262,002

Paper Tape Punch Control & Status Register (TPS) 777564 262,004

Paper Tape Punch Data Register (TPB) 777566 262,006

Chapter 9 Introduction to Input and Output

Page 569 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Some I/O devices, such as disks, have multiple control registers and multiple status registers.

Some I/O devices have a single control register and a single status register. The very simple

devices, such as the paper tape reader and punch, have a single register devoted to both

control and status. It is these devices that shall form the focus of our discussion here.

We begin with a discussion of a generic control/status register.

Here is a diagram of a generic control and status register. Many of these features are

seen in the control and status registers of actual I/O devices, especially the simpler ones.

The significance of bit 15 being the ERROR bit is that, in 16–bit arithmetic, it is the sign

bit. Thus, the contents of the register could be transferred to a general purpose register and

tested as if it represented a signed integer. If negative, an error has occurred.

All devices set bit 15 if an error occurred. Some devices used bits 14 – 12 to indicate

specific errors; in this case bit 15 was the logical OR of bits 14–12.

Bit 11 was generally used to indicate that the unit was busy. For output devices, this indicated

that the device could not accept data for output just at that time.

Bits 10 – 8 were used when the device controller was attached to multiple units. For example,

a disk controller might control multiple disks. The 3 bits would select up to 8 devices.

Bit 7 is the DONE/READY bit. If set, the device is ready for another data transfer.

Generally speaking, bits 11 and 7 should not both be set at the same time.

Bit 6 is the Interrupt Enable bit. When set, the device will raise an interrupt when it has

completed a function or whenever an error condition occurs. An interrupt allows an I/O device

to signal the CPU. We shall discuss interrupts and interrupt driven I/O very soon.

Bits 5 and 4 were used when the device would transfer data directly to or from main memory.

This was required to support the memory management unit.

Bits 3 – 1 were used to specify the specific function to be executed.

Bit 0, when set, enables the device to perform I/O.

Chapter 9 Introduction to Input and Output

Page 570 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Sample Code for Paper Tape Input

The following is a sketch of code for reading a single character from the standard paper tape

reader on a PDP–11. For those very few in the know, this is the paper tape reader associated

with the Teletype device, not the high–speed paper tape reader.

This is written in a pseudocode, using all upper case letters. We follow the C++ and Java

convention in using the double slash “//” to denote comments. The prefix “0X” is used to

denote hexadecimal values; thus 0X41 is the hexadecimal representation of decimal 65.

#DEFINE TKS 0X3FF70 // DECIMAL 262,000

 // ADDRESS OF STATUS REGISTER

#DEFINE TKB 0X3FF72 // DECINAL 262,002

 // ADDRESS OF DATA BUFFER

// IN WHAT FOLLOWS, WE MANIPULATE BITS 0, 6, AND 7 OF THE

// STATUS REGISTER TKS. THE FOLLOWING HEX VALUES ARE USED

// 0X41 (BINARY 0100 0001) SETS BITS 0 AND 6

// 0X80 (BINARY 1000 0000) ISOLATES BIT 7

READ: MOV 0X41, TKS // SET READER ENABLE AND

 // INTERRUPT ENABLE

LOOP: MOV TKS, R0 // GET STATUS VALUE INTO REGISTER 0

 AND R0, 0X80 // EXAMINE BIT 7 OF TKS, NOW IN R0

 BZ LOOP // IF VALUE IS 0, BIT 7 IS NOT SET

 // AND CHARACTER NOT IN BUFFER

 MOVB TKB, RO // MOVE THE BYTE IN BITS 7 – 0 OF

 // THE BUFFER TKB INTO REGISTER R0

 RET // AND RETURN.

This is a pseudo–assembly language representation of polled input. This is very inefficient.

This is the polling mechanism that Rob Williams [R004, p194] calls “dedicates spin polling”.

While the program waits for the input character to become ready in the input data buffer, it

does nothing else. This is a great waste of resources.

Rob Williams [R004, p194] suggests another polling mechanism that is somewhat less

inefficient. This he calls “intermittent timed polling”, referring to a mechanism in which the

CPU will spend some time in the dedicated polling loop and then execute another program for

a fixed amount of time before resuming the polling loop. The advantage of this is that the CPU

does some useful work while waiting for very slow input. The disadvantage of this method is

that the processing of the input might be delayed until the polling resumes following the

execution of other code.

What is needed is a method by which the I/O device can signal the CPU when it is ready to

transfer data. This will be developed in the mechanism called an interrupt.

Before we leave this discussion, we should mention two more topics: one serious and related to

all polled input, and another frivolous and related to paper tape readers,

Chapter 9 Introduction to Input and Output

Page 571 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The serious topic is based on some code taken verbatim from Rob Williams’s textbook

[R004, p 192]. This relates to a number of serious topics in C or C++ coding, and possibly

in Java coding. Here is the code fragment.

do {

 while (!(*(BYTE *)RXSTATUS & RXRDY)) {} //wait until data arrives

 } while (*pch++ = *(BYTE *)RXDATA) ; //check for NULL

The first comment has to do with the stylistics of “sophisticated” C and C++ programming.

In this nested pair of while loops, the body of the loop is { }; it does nothing. The action is

to be found in the while conditions.

The curious notation (*(BYTE *) in each of the while loops is required by the compiler to

convert data types. The (BYTE *) converts from an integer type to a pointer to a byte, as the

registers in this example are all 8–bit registers. The leading * in the (*(BYTE *) converts

the pointer to its reference value, a byte, by a process called dereferencing.

A similar example of dereferencing can be seen in the *pch++ construct in the outer loop.

The pointer value pch is incremented and the character defined by *(BYTE *)RXDATA) is

stored at that address. Note that the expression (*pch++ = *(BYTE *)RXDATA) returns a

value, the ASCII code for the character just retrieved. When this character is NULL, with ASCII

value 0, the end of input has been reached and the while loop terminates.

The function of the embedded while loop is to delay until the status register RXSTATUS

indicates that there is another character in the data buffer, ready to be read. For the PDP–11,

this would be the same as TKS & 0x80, masking and testing the DONE bit. For a proper

reading of this embedded loop, one should refer to a C++ book, such as the textbook by

D. S. Malik [R028, pp. 1175 – 1176]. The expression to consider is repeated in the line below,

just below an extra comment line used in pairing the parentheses.

// 1 2 3 3 2 1

 (!(*(BYTE *)RXSTATUS & RXRDY))

In this light, the expression is of the form !(Something), looping as long as the expression

evaluates to TRUE (not 0). This is equivalent to looping as long as Something is FALSE (0).

This Something expression is *(BYTE *)RXSTATUS & RXRDY). A proper interpretation

of this expression is based on the relative precedence of the operators. In this expression,

 1. The type cast operator (BYTE *) has the highest priority, so that the integer represented

 by RXSTATUS is first converted to a pointer to a byte.

 2. The dereference operator has the next priority, so that *(BYTE *)RXSTATUS is

 interpreted as a byte value. We might call it bStatus.

 3. The bitwise AND operator & has the lowest priority. It is the mask for the

 READY bit in the RXSTATUS register.

 If 0 == bStatus & RXRDY, there is no character ready to be read. In this case,

 !(*(BYTE *)RXSTATUS & RXRDY) evaluates to True, and the loop continues.

 When a character is ready for transfer, the expression bStatus & RXRDY evaluates

 to 1, and !(*(BYTE *)RXSTATUS & RXRDY) evaluates to 0, terminating the loop.

Chapter 9 Introduction to Input and Output

Page 572 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The reader will note one major difference between C++ and Java. In each of C and C++,

the Boolean values are interchangeable with integer values; 0 is evaluated as FALSE and

(not zero) is evaluated as TRUE. The Java programming language makes a distinction between

Boolean and integer values. The construct above, abbreviated as

do while (!(*(BYTE *)RXSTATUS & RXRDY)) {}

would not compile in Java. It would have to be rewritten something like the following.

do while (0 != (*(BYTE *)RXSTATUS & RXRDY)) {}

To a casual reader, neither of the above constructs makes any sense, above and beyond the

fact that the identifiers RXRDY and RXSTATUS are written in all capital letters. The standard

usage in both C++ and Java is to use lower case letters for variables. The point here is that

neither RXSTATUS nor RXRDY is a variable in the strict sense.

Consider either of the loops above under the assumption that both RXRDY and RXSTATUS are

variables. Note that nothing in the code within the loop changes the value of either. How then

can the loop exit, if it is even entered. One of the standard compiler optimizations is the removal

of loop invariants from a loop, to avoid needlessly repetitious evaluations. Consider this loop.

for (j = 0, j <= 10, j++)

{ x = 5 ;

 y = 7 ;

 a[j] = x*a[j] + y;

} ;

Any standard compiler would replace that loop with the following. Note that the loop

invariant code has been moved to statements before the loop.

x = 5 ;

y = 7 ;

for (j = 0, j <= 10, j++)

{ a[j] = x*a[j] + y ;

} ;

But neither RXSTATUS nor RXRDY is a variable. A true variable receives its value as a result

of execution of the program and assignment by the CPU. Here each of RXRDY and RXSTATUS

represents a register that has values set by I/O hardware. In other words, the loop
do while (!(*(BYTE *)RXSTATUS & RXRDY)) {}

is likely to terminate despite the fact that no program statement will cause either value to change.

Identifiers with this property are classified as volatile in both C and C++. This informs the

compiler that these two identifiers may appear to be program constants, but in fact are being

changed by external action. The compiler will emit code to cause each of the identifiers to be

evaluated for each execution of the body of the loop.

Silly Paper Tape Story

Is it possible to destroy a compiler? Yes, if the compiler is stored on paper tape. In 1964,

your author was running a FORTRAN program on an IBM 1620. Part of that required

loading the compiler from paper tape and then loading the text of the program likewise.

Your author stepped on the paper tape, and the high speed reader tore the tape into shreds;

the compiler was destroyed. Fortunately, we had many back–up copies.

Chapter 9 Introduction to Input and Output

Page 573 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Bus Signaling

The next logical step in the presentation of input and output will be the discussion of interrupt

processing, also called “interrupt driven I/O”. This is an evolution of polled I/O in which the

device will signal the CPU when it is prepared to transfer data (either in or out). This discussion

will be greatly facilitated by a brief, and possibly duplicative, discussion of bus signaling.

We first ask about signal assertion; how is a signal placed on a bus line. The most common

method involves some sort of D flip–flop, either a latch or a true flip–flop. While there may be

some obscure timing issues that favor the use of a latch over a flip–flop, we shall assume and

explain the use of a D flip–flop.

The basic idea of a flip–flop was discussed in Chapter 6 of these notes. As noted then, the

flip–flop is a synchronous sequential circuit element. As a synchronous circuit element, it

changes states in response to a clock signal. As a sequential circuit element, it represents

memory, as it is a form of data storage. Here are two figures, copied from Chapter 6.

The D flip–flop just stores whatever input it had at the last clock pulse sent to it. Here is one

standard representation of a D flip–flop. The design scenario for which this is used is simple:

the CPU asserts a value for a brief time, and the flip–flop stores that value until it is changed.

When D = 0 is sampled at the rising edge of the clock,

the value Q will be 0 at the next clock pulse.

When D = 1 is sampled at the rising edge of the clock,

the value Q will be 1 at the next clock pulse.

This D flip–flop just stores a datum, a single bit.

The next question is how to prevent this device

from loading a new value on the rising edge of

each system clock pulse. We want it to store a

value until it is explicitly loaded with a new one.

The answer is to provide an explicit load signal,

which allows the system clock to influence the

flip–flop only when it is asserted.

It should be obvious that the control unit must

synchronize this load signal with the clock.

In keeping with standard design practice, we shall use the Q(t) output of the flip–flop to

drive a bus line, and not use the other output. We just do not need the complement.

The set of D flip–flops form part of the interface between the CPU and the I/O bus. These

flip–flops allow the CPU to assert addresses that will be permanently available on the bus

until used. There are D flip–flops used for input to the CPU. For these the input device will

place data into the set of flip–flops for later use by the CPU, which will access the data when

the program allows.

Chapter 9 Introduction to Input and Output

Page 574 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

We begin our discussion of an output interface D flip–flop with the simplest possible case. This

is a D flip–flop without a load signal. It accepts input on the rising edge of each clock pulse.

Here is a figure showing the action of a flip–flop that is triggered on the rising edge of the clock.

We now examine a very simplistic, almost inaccurate, figure to make a point about the relative

timings of the clock and the data input. Consider the following timing diagram.

The problem arises from the fact that the input (D) to the flip–flop changes at the same time

as the rising edge of the clock. This can give rise to a race condition, in which there is no

guarantee which value will be stored. To say that the results of storing the wrong value can be

deadly may seem dramatic, but this has happened.

What is required is to have the input to the flip–flop stable for a time before the rising edge of the

clock and for a specific time after that rising edge. The next figure suggests a proper timing.

Chapter 9 Introduction to Input and Output

Page 575 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The proper timing, with the use of the LOAD signal, is shown below.

The first thing to note in this timing diagram is that the signal Flip–Flop Clock (the clock input

to the flip–flop) is the logical AND of the Load Signal and the System Clock. The high part of

the Load signal must overlap the high part of the clock signal for a time sufficient to cause the

flip–flop to load. Note the relative timing of the input and the Flip–Flop clock. The input must

be stable for some time before the Flip–Flop Clock goes high and remain stable for some time

after that signal goes high. Note that the contents of the D flip–flop will remain constant until

such time as the Load signal is again asserted.

Timing Considerations

Most introductions to computer organization do not cover timing considerations, as they can be

quite complex with subtle race conditions. As noted above, a race condition might occur when

the relative timing of two or more signals is important and not possible to guarantee. We have

seen in the above a case with three signals: System Clock, Load, and Input. The strategy here

is to allow generous overlap, so that the input is properly stored in the flip–flop.

The goal of this course is to lead to an appreciation of the importance of timing in digital circuit

design and to indicate some simple solutions. A complete study of timing considerations would

be the subject for a more advanced course.

Assertion of Signals on Bus Lines

Consider any device with output connected to a bus line. Our example of this is a D flip–flop

with Q output connected to a bus line. The output will be either logic 1 or logic 0. When the

output of a D flip–flop is connected to a line, it is said to be asserted on that line. We now

discuss two methods for signal assertion by a source, such as a flip–flop.

 1. Direct connection of the output.

 2. Connection through a tri–state buffer.

Chapter 9 Introduction to Input and Output

Page 576 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

In direct connection, the output of the source is directly connected to the bus lines. For a single

bit value being asserted on a single bus line, we have the following diagram.

This design is useable only in those cases in which there is exactly one source of value to be

placed on the bus line. An example of this might be a set of address lines in the case in which

there is only one bus master (a device that controls the bus) allowed to set the address.

In the case in which there are two or more sources possibly driving the bus line, each is

connected to the bus via a tri–state buffer. Recall that a tri–state buffer either passes its input

to its output, or does not assert anything on its output line. Here each of the tri–states is shown

as enabled high; when A Bus = 1, the value in the flip–flop for Source A is asserted on the

bus. When A Bus = 0, the output for the top tri–state is not defined.

The action of this circuit is described by the following table.

A Bus B Bus Action

0 0 Neither source asserts a value; the bus “floats”; i.e., no value is defined.

0 1 Source B determines the value asserted on the bus.

1 0 Source A determines the value on the bus.

1 1 This is an error condition, possibly a short–circuit.

Chapter 9 Introduction to Input and Output

Page 577 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

There is another, more specialized, use of tri–state buffers to define a signal on a bus line. The

situation above contemplates connection of the output of a flip–flop to a bus line; the binary

value stored in the flip–flop is asserted onto the bus. In this next example, taken from design

of I/O interrupt circuitry, the goal is to assert a logic 0 on the bus line.

In order to understand this use of tri–state buffers, it is helpful to begin with the following

circuit, which is more fully explained in the appendix to this chapter.

What is the voltage at points 1 and 2 in each circuit? In each circuit, the voltage at point 1

is the full voltage of the battery, let’s call it V. But what about point 2?

In the circuit at left, the switch is closed and connects point 2 directly to ground. The voltage at

this point is 0, with the entire voltage drop across the resistor. The resistor is sized so that only a

small current flows through it in this situation.

In the circuit at right, the switch is open and acts as if it were a very large resistor. The result,

explained in the appendix to this chapter, is that the voltage at point 2 is also the full battery

voltage. Because the switch acts as such a large resistor, there is no voltage drop across R1.

We now consider another circuit, also explained in the appendix to the chapter. This connects

a number of switches to the circuit above.

If all of the switches are open, as shown in the figure above, the voltage at the monitor is the

full battery voltage. If one or more of the switches is closed, then the voltage monitor is

connected directly to ground, and the voltage at that spot is zero.

The key design feature for this and similar circuits is that there can be no conflict between any

two switches. Either a switch is connecting the reference point to ground, or it is doing nothing.

Specifically, no switch is connecting the reference point to any voltage source. If the resistor R

is sized properly, this circuit cannot cause any problems.

Chapter 9 Introduction to Input and Output

Page 578 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Realizing that the tri–state buffer is just a fancy switch that is electronically operated,

we come to the following circuit for driving a bus line to ground. Each box is associated

with some sort of I/O device, and controls one of the tri–state buffers. When one control

box is active and enables its tri–state buffer, the voltage at the reference point is driven to

zero; this can be tested by the monitor and used as a signal.

The same thing happens when two or more of the control boxes are active. When there are

no control boxes active, and no tri–states enabled, the voltage at the reference point is the full

battery voltage. This also can be tested by the monitor and used as a signal.

Strobed Signaling

By definition, a bus transaction requires a data source asserting signals on a bus and a data

consumer copying those data from the bus. For a data input, the data source (say, a paper tape

reader) will place data onto the bus and the CPU will copy those bits into an internal buffer. A

necessary part of this transaction is the determination of when the data are valid.

Consider the paper tape reader example, under the very unrealistic assumption that it can

produce data upon command. Assume 8 data lines on the I/O bus. For a synchronous bus,

the design is such that the data can be assumed to be on the data lines after a fixed known delay

following the assertion of the read command on the bus.

For an asynchronous bus, the data source must assert a strobe signal to indicate that valid data

have been placed on the data lines. Here, we assume a signal DS#, asserted low by the reader,

to signal the CPU that it may accept the data as valid. Here is a timing diagram, with

timing marks shown for the sake of discussion.

Some time after T = 2 and before T = 3, the reader asserts valid data onto the data lines, D7–0.

At T = 3, the reader asserts the data strobe DS# by driving it to 0. This signals the CPU that

the data on the data lines are valid. At T = 4, the reader ceases to assert the data strobe, and it

returns to logic 1. This indicates that the data lines very soon will no longer be valid.

Consider the notation for the data lines. Unlike the DS# line, it is not possible to specify the

binary value on any data line. Our only concern is that valid data are present; hence the notation.

Chapter 9 Introduction to Input and Output

Page 579 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Interrupt Processing

It should be obvious that I/O would be more efficient if the CPU did not have to wait for the

I/O device to become available. If it were possible for the I/O device to signal the CPU when

it was available for data transfer, the code for the actual transfer could be executed efficiently.

An interrupt is almost always an externally generated signal to the CPU that causes it to

suspend normal processing and execute code to handle the interrupt. Interrupts arise naturally

within the context of input and output; this is the context within which we shall discuss them.

Other types of interrupts include page faults (see Chapter 12 – The Memory Hierarchy) and

execution traps, such as arithmetic overflow or division by zero.

At the top level, interrupt processing is managed by two components of the computer: the

CPU and an ICH (Interrupt Controller Hub). On designs built around the Pentium, this

control hub is generally called the PIC (Programmable Interrupt Controller). The division

of work is suggested by the figure below.

The normal design allows for many devices that might interrupt the CPU and cause special

code to be executed. To allow for proper handling of urgent processing, each device is assigned

an interrupt priority. This design prevents low priority tasks from preempting high level tasks.

On the PDP–11, interrupts are assigned eight priority levels: 0 through 7. The disk is assigned

priority level 7 and asserts its interrupt on the line INT7, the line for that priority. The keyboard,

paper tape reader, and paper tape punch are assigned priority level 4. Other devices are assigned

priority levels 5 and 6; by design all I/O interrupts have priority at least 4.

One basic mechanism for managing I/O interrupts is based on CPU execution priority. The

CPU has an entry in the PSR (Program Status Register) indicating the priority of the program it

is executing at the time. User programs, by definition, execute at priority level 0. The standard

practice calls for running a device handler at the priority for the device; thus the device driver for

the disk (priority level 7) executes at priority level 7, and that for the keyboard (priority level 4)

executes at priority level 4.

One standard design rule for handling interrupts is that the CPU will process an interrupt if and

only if the interrupt priority exceeds the CPU execution priority. Thus, a user program may be

interrupted by either a keyboard interrupt or disk interrupt, the keyboard device driver (handler)

may be interrupted by a disk interrupt (but not a paper tape reader interrupt – same priority), and

the disk device driver may not be interrupted, as it has the highest priority.

The division of work between the ICH (Interrupt Control Hub) and the CPU is illustrated by the

two signals between the two. These are the INT signal raised by the ICH and the ACK signal

raised by the CPU. The INT signal is asserted by the ICH if and only if there is a device

interrupt of sufficient priority to be handled. The CPU responds to this signal by completing

execution of some code, starting a general interrupt handling routine, and asserting the ACK.

The ACK allows the ICH to send an acknowledge signal to the appropriate device.

Chapter 9 Introduction to Input and Output

Page 580 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

In what follows, we again use the PDP–11 as an example. As mentioned above, there are four

priority levels reserved for I/O devices: 4, 5, 6, and 7. Each priority level has an associated INT

(device interrupt) line and ACK (device acknowledge) line; INT7 and ACK7 for level 7, etc.

This discussion will also use the PDP–11 assertion levels; all interrupts are asserted low, and

all acknowledge signals are asserted high. In the more modern notation: INT7# and ACK7.

The main function of the ICH is to process at most one interrupt at a time. The ICH may be

considered to have a number of components to facilitate this processing. The first is the priority

ranker for incoming interrupt signals. The following circuit shows its function.

In this part of the ICH, there are four possible outputs – one for each hardware priority level.

The job of this is to handle multiple inputs and produce at most one output. If one of the outputs

of this bottom row of OR gates is asserted low, then that interrupt has passed the first test.

We begin with the fact that the CPU will enable interrupts by setting bit 3 of the PSR (Program

Status Register) to 1 and disable interrupts by setting the bit to 0. Suppose that PSR bit 3 is set

to 0. The output of the NOT gate is then 1, which is input to each of the four OR gates causing

each to output a logic 1. In other words, no interrupt can pass the first filtering level if the CPU

has disabled interrupts.

Suppose now that PSR bit 3 is set to 1. This causes a logic 0 to be input to each of the OR gates,

allowing the output of each to depend on the values on the incoming INT lines. The task at this

time is to pass at most one interrupt level. If interrupts are asserted as two or more priority levels

only the highest priority will be passed. Here are two cases to consider.

 1. Suppose no interrupt is being asserted. Then each of INT4, INT5, INT6, and INT7 will

 be set to logic 1. This causes the output of each of the four OR gates to be 1. As no

 output from this level is set to 0, no interrupt is processed.

 2. Supposes that two interrupts are being asserted, one by a device at level 4 and another by

 a device at level 6. The inputs are INT4 = 0, INT5 = 1, INT6 = 0, and INT7 = 1. Follow

 the signals INT7 and INT6 through the circuit component. As INT7 = 1, the output of

 the OR gate at this level is set to 1, no interrupt is asserted at this level. In addition, the

 output of the NOT gate attached to INT7 is 0, allowing lower priority interrupts.

 Now we look at the INT6 input. It is set to 0. The inputs to the priority level 6 OR gate

 at the bottom are INT6 (logic 0) and NOT(INT7), also logic 0. Thus, the output of this

 logic gate is 0 and the interrupt at this level can be processed. Note that NOT(INT6) is

 logic 1; this is input to the OR gates for level 4 and 5, forcing the output of each to 1.

 Specifically, the output of OR gate 4 is 1 and the INT4 is ignored for the moment. The

 device will continue to assert the interrupt, which will be handled when INT6 goes to 1.

Chapter 9 Introduction to Input and Output

Page 581 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The next step compares the priority of any interrupt passed to the execution priority of the CPU.

The execution priority of the CPU is stored as a 3–bit unsigned integer in bits 2, 1, and 0 of the

PSR. If the incoming priority is greater than the execution priority, the interrupt is allowed.

Here is a conceptual schematic of this stage.

Suppose the execution priority is 5, stored as 101 in the PSR. If the output of OR gate 6 is 0,

indicating an admissible interrupt at that level, it will be allowed. If the output of OR gate 5 is

0, then the interrupt is not allowed, as the CPU is executing at that priority already. Note that

the first circuit is designed so that at most one of the OR gates will have an output of 0. By

design if the output of OR gate 5 is 0, then the output of the other OR gates must be 1.

If the interrupt passes muster at this level, the INT signal to the CPU is generated. When the

ACK signal returns from the CPU, the ICH (Interrupt Control Hub) passes down the appropriate

ACK line and the interrupt processing begins.

There is only one more detail to handle at this level. There may be more than one device on a

given level. For example, priority level 4 on the PDP–11 is used by the keyboard, paper tape

reader, and paper tape punch. How does the appropriate device get selected.

Multiple devices at a given level are handled by what is called a “daisy chain”.

In the daisy chain, the ACK signal is sent to each device on that priority level in turn. If

the device has raised an interrupt, it captures the ACK and begins interrupt processing. If

the device has not raised an interrupt, it passes the ACK to the next device.

As an example, assume four devices with DEV 1 closest to the CPU. Suppose that DEV 2

and DEV 4 have raised an interrupt. The ACK at this level is passed down.

 1. It is passed first to DEV 1. As this has not raised an interrupt, it passes it to DEV 2.

 2. The ACK is passed to DEV 2. This captures the ACK and does not pass it on to

 DEV 3. Thus DEV 4 does not get the ACK until DEV 2 has processed its interrupt

 and dropped its INT.

There is one caution here: do not place too many devices on a given level.

Chapter 9 Introduction to Input and Output

Page 582 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Identifying the Device

When the CPU accepts the INT signal from the ICH (Interrupt Control Hub), the next step

is to identify the device that raised the signal so that it might be handled. At this point, the

only information available to the CPU is that some device raised the interrupt, and that it

had the proper priority to do so.

We have traced the first steps in this process in the above discussion. Here is what happens.

 1. The CPU issues the ACK (Acknowledge) signal to the ICH.

 2. The ICH converts the ACK to an acknowledge on the proper line, say ACK4.

 3. The interface hardware for the device captures the ACK on its line.

 Here, let us suppose it is the keyboard.

How is the device identified to the CPU so that the proper device handler software can be run?

There are a number of methods possible, but we describe the one that is most commonly used.

It is called a “vectored interrupt”. In this design, the hardware interface that captures the ACK

responds by placing its vector onto the data lines.

The vector is an address; more specifically, it is an offset into the IVT (Interrupt Vector Table).

In some of the earlier computers, such as the PDP–11 and Intel 8086, this vector was an absolute

address, commonly in low memory. Typically, it might have a value such as 0x18, referencing

address 0x18 or decimal 24 in primary memory. In other words, this was an offset into the IVT,

which was loaded at address 0 in primary memory; offsets became actual addresses.

More modern operating systems are built upon tables of data that can be loaded anywhere in

main memory. For interrupt processing, the base address of the IVT must be tracked so that the

absolute address of the word indicated by the offset can be computed. In the Pentium designs,

the base address of the IVT is stored in the IDTR (Interrupt Descriptor Table Register).

As an example, consider a possible IA–32 configuration, in which each entry in the IVT is a

32–bit (four byte) address. All byte addresses in this table must be multiples of 4.

Suppose that the base address of the IVT is 0x0260, and that the device vector is 0x18. This

references an entry in the IVT at offset 0x60 (0x18 4 = 0x60, in decimal 24 4 = 96). What

we have is seen in this calculation. In hexadecimal 6 + 6 = C; in decimal 6 + 6 = 12.

 Contents of the IDTR 0x260

 Offset address 0x060

 Computed address 0x2C0.

The 32–bit value stored at address 0x2C0 is the address of the software to handle the interrupt.

In vectored interrupts, the device does not identify itself directly, but points to the device handler

software to process the interrupt.

The general software for handling interrupts has at least three parts.

 1. The software to load the interrupt handler into main memory and to initialize the

 address in the vector. This is done by the OS loader.

 2. The operating system I/O routine that is called by the user program, and initiates the I/O.

 3. The interrupt handler routine that actually processes the I/O.

Chapter 9 Introduction to Input and Output

Page 583 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

Note that the software associated with any given I/O device is divided into parts that are

not commonly located in adjacent memory or executed sequentially. This makes reading the

system code more difficult; a task made tolerable only because it is so rarely necessary.

It is possible to give examples of old PDP–11 code at this point, but such an example would

obscure the main point of interrupt processing. The example code available in the handbooks

calls for the user process to stall awaiting the input, and for the CPU to do nothing else while

awaiting the input interrupt. Such a situation is hardly better than dedicated spin polling.

In order to understand the significance of interrupt–driven I/O, it is helpful to place it within

the context of process management by the operating system. Because the concept is so basic

to the execution of a program, the concept of a process is a bit hard to define exactly. One good

definition is that a process is a program in execution; when a program is executing, its process is

active. One may also define a process as the collection of data structures necessary for the

associated program to execute, but that leads to topics that are not relevant here.

Process Management

The best way to illustrate process management by a modern operating system is to discuss a

strategy, called “time sharing”, used in computers with many users. One example of this is

the IBM Mainframe used for teaching at Columbus State University. At any time, there are

a few tens, perhaps hundreds, of users each using a video terminal to run a program on the

computer. Each user gets good service, appearing to be the only one using the computer.

In the Time Sharing model, we have

 1. A single computer with its CPU, memory, and sharable I/O resources,

 2. A number of computer terminals attached to the CPU, and

 3. A number of users, each of whom wants to use the computer.

In order to share this expensive computer more fairly, we establish two rules.

1. Each user process is allocated a “time slice” or “quantum” during which it can be run.

 At the end of this time, it must give up the CPU, go to the “back of the line” and

 await its turn for another time slice.

2. When a process is blocked and waiting on completion of either input or output,

 it must give up the CPU and cannot run until the I/O has been completed.

Here is the standard process diagram for a program being executed in a time sharing mode.

Chapter 9 Introduction to Input and Output

Page 584 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

The ready state contains process information on all programs that are ready to run, but have

not yet been given control of the CPU. When a program is dispatched, it begins execution.

There are two ways in which a program can leave the running state. For each of these options,

the goal of the operating system is to dispatch another process in order to keep the CPU busy.

If the running process reaches its time allocation, and there is another process ready to run, the

operating system times it out and the process reverts to the ready state. The process still has all

of the resources necessary to run, but the operating system must “play fair”.

The situation of interest here occurs when the process requests I/O or some other resource that

cannot immediately be granted. At that point, the process is marked as blocked, and another

process is allocated the CPU. During this time in which the process is blocked, the operating

system will be managing the I/O, using interrupts. When the I/O is finished, the process is

marked as ready to run, and will run as soon as its turn arrives.

There are three “players” in this game: the user program, the I/O management system of the

operating system, and the device driver for the I/O hardware. The following scenario shows

possible interactions for the three, when the string “INPUT” is input via a standard read.

 1. The user program uses a predefined system routine, perhaps scanf(), to

 begin the I/O process. On modern operating systems, I/O is managed by the operating

 system running in privileged mode, so the user program cannot do this directly.

 2. The executing code creates a data structure representing the request and issues a SVC

 (Supervisor Call) or trap to invoke the services of the operating system. On an IA–32

 system, this might be interrupt 21H (33 decimal) with the AH register set to code

 07H or 0AH. The main difference between a SVC and standard procedure call is that

 the SVC allows the called code to run in privileged or kernel mode.

 3. The user program is blocked. The I/O management system creates a buffer for storage

 of the input, enables the appropriate interrupt, and then blocks itself.

 4. The process manager schedules another process to run on the CPU, awaiting the

 completion of I/O for the blocked process.

As each of the six characters (five alphabetical and the EOL character), the following occurs.

 5. The input device raises an interrupt, causing the operating system to suspend the

 executing program and run a process to retrieve the character. It is placed in the

 buffer managed by the blocked I/O process for the blocked user process.

 6. The I/O management system re–enables the input interrupt. The suspended

 process is resumed. The blocked user process remains blocked.

When the EOL character (ASCII code decimal 13) is entered, the processing is as above,

except that the I/O management process remains unblocked and delivers the string “INPUT”

to the blocked user process.

 7. The blocked user process is marked as ready to run.

It is important to note that the CPU is directly involved in the transfer of each of the six

characters. There are six input interrupts, six invocations of the handler software, and six

invocations of the I/O management process.

Chapter 9 Introduction to Input and Output

Page 585 CPSC 2105 Last Revised on December 26, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved

One way to examine interrupt–driven I/O as opposed to program managed (polling) I/O is

to examine the amount of code executed for each. It will soon become obvious that the

interrupt–driven approach involves more code, and more complex code, than the polled

method. The advantage is that the CPU does not stall, awaiting the I/O.

Put another way, the user program stalls, but the CPU is kept busy executing other processes.

This approach increases productivity in a time–sharing mode, in which the main measure is

number of programs competed per time unit. Each program might take longer to execute than

if it were run with program controlled I/O, but a reasonable system makes the difference small.

DMA (Direct Memory Access)

In interrupt–driven I/O, each character is directly transferred by the CPU. The next step would

be to provide the I/O device hardware with the ability to manage main memory directly, and

thus accomplish the I/O with very little involvement from the CPU.

As we have seen, the CPU interacts with main memory via two registers (MAR and MBR) and

a pair of control signals. In DMA, the I/O device hardware can place an address in the MAR,

possibly data into the MBR, and then issue the appropriate memory commands. On a balanced

system, the CPU and I/O devices share control of the memory.

Suppose that a disk drive is set to transfer a 512–byte block of data. This is the size of a disk

sector on many disks. Were this transfer managed by interrupt–driven I/O, there would be

513 interrupts generated, one to start the process and one for each of the 512 characters. DMA

does the same job with only two interrupts. Here is the scenario.

 1. The disk asserts an interrupt indicating that data are ready to transfer.

 2. The operating system responds by activating the disk handling software.

 3. The disk handling software sends the following to the disk managing hardware

 a) A starting memory address for a 512–byte buffer to hold the data.

 b) The expected byte count for the transfer, here it is 512.

 c) A signal to begin the I/O.

 4. When the I/O competes or an unrecoverable error occurs, the disk hardware

 asserts the second interrupt.

 5. The operating system interprets the completion code and responds accordingly.

I/O Channels and Such

The last strategy to mention is not really a true strategy, it is the assignment of another computer

to manage all of the I/O. On the CDC series of supercomputers, such a device was called a PPU

(Peripheral Processing Unit). On an IBM Mainframe, it is an I/O Channel.

One early example is seen in the 1960’s with the IBM 1401/7094 combination. The IBM 7094

was the supercomputer of its day. It was very fast on numerical computations, but lacked most

I/O facilities. The IBM 1401 was a poor number cruncher, but it excelled at I/O. The two were

paired together to form a complete computing system.

The IBM I/O Channel concept reflects a style of computing called “enterprise computing”. In

this scenario, large volumes of data are processed using rather simple algorithms. Efficiency in

I/O is the key, hence the dedicated I/O processors.

