

Page 143 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Chapter 6 – Basics of the Memory System

We now give an overview of RAM – Random Access Memory. This is the memory called

“primary memory” or “core memory”. The term “core” is a reference to an earlier memory

technology in which magnetic cores were used for the computer‟s memory. This discussion

will pull material from a number of chapters in the textbook.

Primary computer memory is best considered as an array of addressable units. Addressable units

are the smallest units of memory that have independent addresses. In a byte-addressable

memory unit, each byte (8 bits) has an independent address, although the computer often groups

the bytes into larger units (words, long words, etc.) and retrieves that group. Most modern

computers manipulate integers as 32-bit (4-byte) entities, so retrieve the integers four bytes

at a time.

In this author‟s opinion, byte addressing in computers became important as the result of the use

of 8–bit character codes. Many applications involve the movement of large numbers of

characters (coded as ASCII or EBCDIC) and thus profit from the ability to address single

characters. Some computers, such as the CDC–6400, CDC–7600, and all Cray models, use word

addressing. This is a result of a design decision made when considering the main goal of such

computers – large computations involving integers and floating point numbers. The word size in

these computers is 60 bits (why not 64? – I don‟t know), yielding good precision for numeric

simulations such as fluid flow and weather prediction.

Memory as a Linear Array

Consider a byte-addressable memory with N bytes of memory. As stated above, such a memory

can be considered to be the logical equivalent of a C++ array, declared as

byte memory[N] ; // Address ranges from 0 through (N – 1)

The computer on which these notes were written has 512 MB of main memory, now only an

average size but once unimaginably large. 512 MB = 5122
20

 bytes = 2
29

 bytes and the memory

is byte-addressable, so N = 5121048576 = 536,870,912.

The term “random access” used when discussing computer memory implies that memory can be

accessed at random with no performance penalty. While this may not be exactly true in these

days of virtual memory, the key idea is simple – that the time to access an item in memory does

not depend on the address given. In this regard, it is similar to an array in which the time to

access an entry does not depend on the index. A magnetic tape is a typical sequential access

device – in order to get to an entry one must read over all pervious entries.

There are two major types of random-access computer memory. These are: RAM

(Read-Write Memory) and ROM (Read-Only Memory). The usage of the term “RAM” for the

type of random access memory that might well be called “RWM” has a long history and will be

continued in this course. The basic reason is probably that the terms “RAM” and “ROM” can

easily be pronounced; try pronouncing “RWM”. Keep in mind that both RAM and ROM are

random access memory.

Chapter 6 Basics of the Memory System

Page 144 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Of course, there is no such thing as a pure Read-Only memory; at some time it must be possible

to put data in the memory by writing to it, otherwise there will be no data in the memory to be

read. The term “Read-Only” usually refers to the method for access by the CPU. All variants of

ROM share the feature that their contents cannot be changed by normal CPU write operations.

All variants of RAM (really Read-Write Memory) share the feature that their contents can be

changed by normal CPU write operations. Some forms of ROM have their contents set at time

of manufacture, other types called PROM (Programmable ROM), can have contents changed by

special devices called PROM Programmers.

Pure ROM is more commonly found in devices, such as keyboards, that are manufactured in

volume, where the cost of developing the chip can be amortized over a large production volume.

PROM, like ROM, can be programmed only once. PROM is cheaper than ROM for small

production runs, and provides considerable flexibility for design. There are several varieties

of EPROM (Erasable PROM), in which the contents can be erased and rewritten many times.

There are very handy for research and development for a product that will eventually be

manufactured with a PROM, in that they allow for quick design changes.

We now introduce a new term, “shadow RAM”. This is an old concept, going back to the early

days of MS–DOS (say, the 1980‟s). Most computers have special code hardwired into ROM.

This includes the BIOS (Basic Input / Output System), some device handlers, and the start–up, or

“boot” code. Use of code directly from the ROM introduces a performance penalty, as ROM

(access time about 125 to 250 nanoseconds) is usually slower than RAM (access time 60 to 100

nanoseconds). As a part of the start–up process, the ROM code is copied into a special area of

RAM, called the shadow RAM, as it shadows the ROM code. The original ROM code is not

used again until the machine is restarted.

The Memory Bus

The Central Processing Unit (CPU) is connected to the memory by a high–speed dedicated

point–to–point bus. All memory busses have the following lines in common:

 1. Control lines. There are at least two, as mentioned in Chapter 3 of these notes.

 The Select# signal is asserted low to activate the memory and the R/W# signal

 indicates the operation if the memory unit is activated.

 2. Address lines. A modern computer will have either 32 or 64 address lines on the

 memory bus, corresponding to the largest memory that the design will accommodate.

 3. Data Lines. This is a number of lines with data bits either being written to the memory

 or being read from it. There will be at least 8 data lines to allow transfer of one byte at

 a time. Many modern busses have a “data bus width” of 64 bits; they can transfer eight

 bytes or 64 bits at one time. This feature supports cache memory, which is to be

 discussed more fully in a future chapter of this text.

 4. Bus clock. If present, this signal makes the bus to be a synchronous bus. Busses

 without clock signals are asynchronous busses. There is a special class of RAM

 designed to function with a synchronous bus. We investigate this very soon.

Modern computers use a synchronous memory bus, operating at 133 MHz or higher. The bus

clock frequency is usually a fraction of the system bus; say a 250 MHz memory bus clock

derived from a 2 GHz (2,000 MHz) system clock.

Chapter 6 Basics of the Memory System

Page 145 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Memory Registers

Memory is connected through the memory bus to the CPU via two main registers, the MAR

(Memory Address Register) and the MBR (Memory Buffer Register). The latter register is

often called the MDR (Memory Data Register). The number of bits in the MAR matches the

number of address lines on the memory bus, and the number of bits in the MBR matches the

number of data lines on the memory bus. These registers should be considered as the CPU‟s

interface to the memory bus; they are logically part of the CPU.

Memory Timings

There are two ways to specify memory speed: access time and the memory clock speed. We

define each, though the access time measure is less used these days. Basically the two measures

convey the same information and can be converted one to the other. The memory access time is

defined in terms of reading data from the memory. It is the time between the address

becoming stable in the MAR and the data becoming available in the MBR. In modern memories

this time can range from 5 nanoseconds (billionths of a second) to 150 nanoseconds, depending

on the technology used to implement the memory. More on this will be said very soon.

When the memory speed is specified in terms of the memory clock speed, it implies an upper

limit to the effective memory access time. The speed of a modern memory bus is usually

quoted in MHz (megahertz), as in 167 MHz. The actual unit is inverse seconds (sec
–1

), so

that 167 MHz might be read as “167 million per second”. The bus clock period is the inverse

of its frequency; in this case we have a frequency of 1.6710
8
 sec

–1
, for a clock period of

 = 1.0 / (1.6710
8
 sec

–1
) = 0.610

–8
 sec = 6.0 nanoseconds.

Memory Control

Just to be complete, here are the values for the two memory control signals.

Select# R/W# Action

1 0 Memory contents are not changed

or accessed. Nothing happens. 1 1

0 0 CPU writes data to the memory.

0 1 CPU reads data from the memory.

Chapter 6 Basics of the Memory System

Page 146 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Registers and Flip–Flops

One basic division of memory that is occasionally useful is the distinction between registers and

memory. Each stores data; the basic difference lies in the logical association with the CPU.

Most registers are considered to be part of the CPU, and the CPU has only a few dozen registers.

Memory is considered as separate from the CPU, even if some memory is often placed on the

CPU chip. The real difference is seen in how assembly language handles each of the two.

Although we have yet to give a formal definition of a flip–flop, we can now give an intuitive

one. A flip–flop is a “bit box”; it stores a single binary bit. By Q(t), we denote the state of the

flip–flop at the present time, or present tick of the clock; either Q(t) = 0 or Q(t) = 1. The student

will note that throughout this textbook we make the assumption that all circuit elements function

correctly, so that any binary device is assumed to have only two states.

A flip–flop must have an output; this is called either Q or Q(t). This output indicates the current

state of the flip–flop, and as such is either a binary 0 or a binary 1. We shall see that, as a result

of the way in which they are constructed, all flip–flops also output tQ , the complement of the

current state. Each flip–flop also has, as input, signals that specify how the next state, Q(t + 1),

is to relate to the present state, Q(t). The flip–flop is a synchronous sequential circuit element.

The Clock

The most fundamental characteristic of synchronous sequential circuits is a system clock. This is

an electronic circuit that produces a repetitive train of logic 1 and logic 0 at a regular rate, called

the clock frequency. Most computer systems have a number of clocks, usually operating at

related frequencies; for example – 2 GHz, 1GHz, 500MHz, and 125MHz. The inverse of the

clock frequency is the clock cycle time. As an example, we consider a clock with a frequency

of 2 GHz (210
9
 Hertz). The cycle time is 1.0 / (210

9
) seconds, or

0.510
–9

 seconds = 0.500 nanoseconds = 500 picoseconds.

Synchronous sequential circuits are sequential circuits that use a clock input to order events.

The following figure illustrates some of the terms commonly used for a clock.

The clock input is very important to the concept of a sequential circuit. At each “tick” of the

clock the output of a sequential circuit is determined by its input and by its state. We now

provide a common definition of a “clock tick” – it occurs at the rising edge of each pulse. By

definition, a flip–flop is sensitive to its input only on the rising edge of the system clock.

Chapter 6 Basics of the Memory System

Page 147 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

There are four primary types of flip–flop: SR (Set Reset), JK, D (Data) and T (Toggle). We

concern ourselves with only two: the D and the T. The D flip–flop just stores whatever input

it had at the last clock pulse sent to it. Here is one standard representation of a D flip–flop.

When D = 0 is sampled at the rising edge of the clock,

the value Q will be 0 at the next clock pulse.

When D = 1 is sampled at the rising edge of the clock,

the value Q will be 1 at the next clock pulse.

This D flip–flop just stores a datum.

The next question is how to prevent this device

from loading a new value on the rising edge of

each system clock pulse. We want it to store a

value until it is explicitly loaded with a new one.

The answer is to provide an explicit load signal,

which allows the system clock to influence the

flip–flop only when it is asserted.

It should be obvious that the control unit must

synchronize this load signal with the clock.

The T flip–flop is one that retains its state when T = 0 and changes it when T = 1.

Here is the standard circuit diagram for a T flip–flop.

When T = 0 is sampled at the rising edge of the clock,

the value Q will remain the same; Q(t + 1) = Q(t).

When T = 1 is sampled at the rising edge of the clock,

the value Q will change; Q(t + 1) = NOT (Q(t)).

In this circuit, the input is kept at T = 1. This causes the value of the output to change at

every rising edge of the clock. This causes the output to resemble the system clock, but at

half of the frequency. This circuit is a frequency divider.

The next circuit suggests the general strategy for a frequency divider.

Chapter 6 Basics of the Memory System

Page 148 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The circuit at left shows two T flip–flops, in

which the output of T1 is the input to T2.

When the output of T1 goes high, T2 changes

at the rise of the next clock pulse.

Here is the timing for this circuit.

Note that Q1 is a clock signal at half the frequency of the system clock, and Q2 is another

clock signal at one quarter the frequency of the system clock. This can be extended to produce

frequency division by any power of two. Frequency division by other integer values can be

achieved by variants of shift registers, not studied in this course.

The Basic Memory Unit

All computer memory is ultimately fabricated from basic memory units. Each of these devices

stores one binary bit. A register to store an 8–bit byte will have eight basic units. Here is a

somewhat simplified block diagram of a basic memory unit.

There are two data lines: Input (a bit to be stored in the

memory) and Output (a bit read from the memory).

There are two basic control lines. S# is asserted low to

select the unit, and R/W# indicates whether it is to be read

or written to. The Clock is added to be complete.

At present, there are three technologies available for main RAM. These are magnetic core

memory, static RAM (SRAM) and dynamic RAM (DRAM). Magnetic core memory was much

used from the mid 1950‟s through the 1980‟s, slowly being replaced by semiconductor memory,

of which SRAM and DRAM are the primary examples.

At present, magnetic core memory is considered obsolete, though it may be making a comeback

as MRAM (Magnetic RAM). Recent product offerings appear promising, though not cost

competitive with semiconductor memory. For the moment, the only echo of magnetic core

memory is the occasional tendency to call primary memory “core memory”

Chapter 6 Basics of the Memory System

Page 149 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Here is a timing diagram for such a memory cell, showing a write to memory, followed by an

idle cycle, then a read from memory. Note the relative timings of the two control signals S#

and R/W#. The important point is that each has its proper value at the rising edge of the clock.

Here they are shown changing values at some vague time before the clock rising edge.

At the rising edge of clock pulse 1, we have R/W# = 0 (indicating a write to memory) and

S# = 0 (indicating the memory unit is selected). The memory is written at clock pulse 1.

At the rising edge of clock pulse 2, S# = 1 and the memory is inactive. The value of R/W#

is not important as the memory is not doing anything.

At the rising edge of clock pulse 3, R/W# = 1 (indicating a read from memory) and S# = 0.

The memory is read and the value sent to another device, possibly the CPU.

As indicated above, there are two primary variants of semiconductor read/write memory. The

first to be considered is SRAM (Static RAM) in which the basic memory cell is essentially a

D flip–flop. The control of this unit uses the conventions of the above timing diagram.

When S# = 1, the memory unit is not active. It has a present state, holding one bit. That bit

value (0 or 1) is maintained, but is not read. The unit is disconnected from the output line.

When S# = 0 and R/W# = 0, the flip–flop is loaded on the rising edge of the clock. Note that

the input to the flip–flop is always attached to whatever bus line that provides the input. This

input is stored only when the control signals indicate.

When S# = 0 and R/W# = 1, the flip–flop is connected to the output when the clock is high.

The value is transferred to whatever bus connects the memory unit to the other units.

Chapter 6 Basics of the Memory System

Page 150 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

The Physical View of Memory

We now examine two design choices that produce easy-to-manufacture solutions that offer

acceptable performance at reasonable price. The basic performance of DRAM chips has not

changed since the early 1990s‟; the basic access time is in the 50 to 80 nanosecond range, with

70 nanoseconds being typical. The first design option is to change the structure of the main

DRAM memory. We shall note a few design ideas that can lead to a much faster memory.

The second design option is to build a memory hierarchy, using various levels of cache memory,

offering faster access to main memory. As mentioned above, the cache memory will be faster

SRAM, while the main memory will be slower DRAM.

In a multi–level memory that uses cache memory, the goal in designing the primary memory is

to have a design that keeps up with the cache closest to it, and not necessarily the CPU. All

modern computer memory is built from a collection of memory chips. These chips are usually

organized into modules. In a byte–addressable memory, each memory module will have eight

memory chips, for reasons to be explained. The use of memory modules allows an

efficiency boost due to the process called “memory interleaving”.

Suppose a computer with byte-addressable memory, a 32–bit address space, and 256 MB

(2
28

 bytes) of memory. Such a computer is based on this author‟s personal computer, with the

memory size altered to a power of 2 to make for an easier example. The addresses in the MAR

can be viewed as 32–bit unsigned integers, with high order bit A31 and low order bit A0. Putting

aside issues of virtual addressing (important for operating systems), we specify that only

28–bit addresses are valid and thus a valid address has the following form.

The memory of all modern computers comprises a number of modules, which are combined to

cover the range of acceptable addresses. Suppose, in our example, that the basic memory chips

are 4Mb (megabit) chips, grouped to form 4MB modules. The 256 MB memory would be built

from 64 modules and the address space divided as follows:

 6 bits to select the memory module as 2
6
 = 64, and

 22 bits to select the byte within the module as 2
22

 = 42
20

 = 4M.

The question is which bits select the module and which are sent to the module. Two options

commonly used are high-order memory interleaving and low-order memory interleaving.

Other options exist, but the resulting designs would be truly bizarre. We shall consider only

low-order memory interleaving in which the low-order address bits are used to select the

module and the higher-order bits select the byte within the module. The advantage of

low–order interleaving over high–order interleaving will be seen when we consider the

principle of locality. Memory tends to be accessed sequentially by address.

Chapter 6 Basics of the Memory System

Page 151 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

This low-order interleaving has a number of performance-related advantages. These are due to

the fact that consecutive bytes are stored in different modules, thus byte 0 is in chip 0,

byte 1 is in chip 1, etc. In our example

 Module 0 contains bytes 0, 64, 128, 192, etc., and

 Module 1 contains bytes 1, 65, 129, 193, etc., and

 Module 63 contains bytes 63, 127, 191, 255, etc.

Suppose that the computer has a 64 bit–data bus from the memory to the CPU. With the above

low-order interleaved memory it would be possible to read or write eight bytes at a time, thus

giving rise to a memory that is close to 8 times faster. Note that there are two constraints on the

memory performance increase for such an arrangement.

 1) The number of chips in the memory – here it is 64.

 2) The width of the data bus – here it is 8, or 64 bits.

In this design, the chip count matches the bus width; it is a balanced design.

To anticipate a later discussion, consider the above memory as connected to a cache memory that

transfers data to and from the main memory in 64–bit blocks. When the CPU first accesses an

address, all of the words (bytes, for a byte addressable memory) in that block are copied into the

cache. Given the fact that there is a 64–bit data bus between the main DRAM and the cache, the

cache can be very efficiently loaded. We shall have a great deal to say about cache memory later

in this chapter.

There is a significant speed advantage to low–order interleaving that is best illustrated with

a smaller number of memory modules. Consider the above scheme, but with an eight–way

low–order interleaved memory. The memory modules are identified by the low–order three

bits of the address: A2, A1, A0. The modules can be numbered 0 through 7. Suppose that the

memory is fabricated from chips with 80 nanosecond cycle time. Unlike the access time, which

measures the delay from the address assertion to the data being loaded in the data buffer, the

cycle time represents the minimum time between independent accesses to the memory. The

cycle time has two major components: access time and recharge time. The recharge time

represents the time required to reset the memory after a read operation. The precise meaning

of this will become clear when we discuss DRAM.

Here is a timeline showing the access time and cycle time for a DRAM element. Here, the

timings are specified for memory READ operations.

Suppose that this is an 8–chip module with the 80 nanosecond cycle time. The maximum

data rate for reading memory would be one byte every 80 nanoseconds. In terms of frequency

this would connect to a 12.5 MHz data bus. Recall that even a slow CPU (2 GHz) can issue

one memory READ request every nanosecond. This memory is about 80 times too slow.

Chapter 6 Basics of the Memory System

Page 152 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

We now implement the 8–way low order interleaving, using the memory with an cycle time of

80 nanoseconds and an access time of 40 nanoseconds (a bit fast). Suppose that the CPU reads

in sequence the bytes from address 1000 through 1008. As is seen in the diagram below, the

CPU can issue a READ command every 10 nanoseconds.

At T = 0, the CPU issues a READ command for address 1000 in module 0.

At T = 10, the CPU issues a READ command for address 1001 in module 1.

At T = 20, the CPU issues a READ command for address 1002 in module 2.

At T = 30, the CPU issues a READ command for address 1003 in module 3.

At T = 40, the CPU issues a READ command for address 1004 in module 4.

 Note that the data for address 1000 are ready to be transferred to the CPU.

At T = 50, the CPU issues a READ command for address 1005 in module 5.

 The data for address 1001 can be transferred to the CPU.

At T = 60, the CPU issues a READ command for address 1006 in module 6.

 The data for address 1002 can be transferred to the CPU.

At T = 70, the CPU issues a READ command for address 1007 in module 7.

 The data for address 1003 can be transferred to the CPU.

At T = 80 module 0 has completed its cycle time and can accept a read from address 1008.

 The data for address 1004 can be transferred to the CPU.

Here we have stumbled upon another timing issue, which we might as well discuss now. Note

that the first value to be read is not ready for transfer until after 40 nanoseconds, the access time.

After that one value can be transferred every ten nanoseconds.

This is an example of the two measures: latency and bandwidth. The latency for a memory is

the time delay between the first request and the first value being ready for transfer; here it is forty

nanoseconds. The bandwidth represents the transfer rate, once the steady state transfer has

begun. For this byte–addressable memory, the bandwidth would be one byte every ten

nanoseconds, or 100 MB per second.

Low–order memory interleaving was one of the earliest tricks to be tried in order to increase

memory performance. It is not the only trick.

Chapter 6 Basics of the Memory System

Page 153 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Selecting the Memory Word

In this paragraph, we use the term “word” to indicate the smallest addressable unit of primary

memory. For most modern computers, this would be an eight–bit byte. We now revisit the

mechanism by which the individual word (addressable unit) is selected.

Recall from our discussion of data formats that an N–bit unsigned binary number can represent

a decimal number in the range from 0 through 2
N
 – 1 inclusive. As examples, an 8–bit unsigned

binary number can range from 0 through 255, a 12–bit can range from 0 through 4095, a 20–bit

can range from 0 through 1,048,575 (2
20

 = 1,048,576), and a 32 bit number from 0 through

4,294,967,295 (232 = 4,294,967,296).

Recall also our earlier discussion of decoders. A typical decoder is an N–to–2
N
 device, basically

converting the unsigned binary code to its decimal equivalent. The example for this discussion

will be a 4–to–16 decoder. While rather small, it is large enough to make the point. When used

as a decoder for memory addresses, such a device is called an address decoder.

Suppose that the 4–bit address 1011 is issued to the memory. The decoder output Y11 is

asserted and the eight memory elements associated with that address are activated. Eight bits

are either transferred to the selected byte or read from the byte. Note that the structure of the

decoder is the reason that memory size is given in powers of 2; 1KB = 2
10

 bytes, etc.

While the above is a perfectly good implementation of a 16–word memory, the single

decoder scheme does not scale well. Consider a memory that is rather small by today‟s

standards. A 64MB memory would require a 26–to–67,108,864 decoder, as 64 MB =

641048576 bytes = 262
20

 bytes = 2
26

 bytes. While such a decoder could be built, it would

be rather large and unacceptably slow. Memories with fewer addressable units have smaller

address decoders, which tend to be faster.

When we revisit SRAM in the chapter on the memory hierarchy, we shall comment on the fact

that the cache memories tend to be small. This is partly due to the fact that address decoding

for small memories is faster. A standard Pentium has a split L1 cache (note error in Williams‟

text on page 125), with two 16 KB caches each requiring a 14–to–16,384 decoder. As we shall

see, even this is probably implemented as two 7–to–128 decoders.

Chapter 6 Basics of the Memory System

Page 154 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Capacitors and DRAM

While it is quite possible to fabricate a computer using SRAM (Static RAM, comprising

flip–flops), there are several drawbacks to such a design. The biggest problem is cost, SRAM

tends to cost more than some other options. It is also physically bigger than DRAM, the

principle alternative. Here are the trade–offs.

 SRAM is physically bigger, more costly, but about ten times faster.

 DRAM is physically smaller, cheaper, and slower.

Note that memory options, such as mercury delay lines, that are bigger, more costly, and slower

have quickly become obsolete. If the memory is slower, it must have some other advantage

(such as being cheaper) in order to be selected for a commercial product.

We are faced with an apparent choice that we do not care for. We can either have SRAM

(faster and more expensive) or DRAM (slower and cheaper). Fortunately, there is a design trick

that allows the design to approximate the speed of SRAM at the cost of DRAM. This is the

trick called “cache memory”, discussed later in our chapter on the memory hierarchy.

DRAM (Dynamic RAM) employs a capacitor as its key storage element. A capacitor is a

device that stores electronic charge. The flow of electronic charge is called “current”. There

are many uses for capacitors in alternating current circuits and radios; our interest here is

focused on its ability to store charge.

Introductory physics courses often discuss electric charge and current in terms borrowed from

water flow in pipes. There is a very familiar hydraulic analog of a capacitor; it is the tank on a

standard flush toilet. During normal operation, the tank holds water that can be released as a

significant flow into the toilet bowl. The tank is then slowly refilled by a current of water

through the feed lines. Another example is seen in the electronic flashes found on most

cameras and many cell phones. The battery charges the capacitor with a small current. When

the capacitor is charged it may be quickly discharged to illuminate the flash bulb.

All toilet tanks leak water; the seal on the tank is not perfect. At intervals, the float mechanism

detects the low water level and initiates a refilling operation. There is an analogous operation

for the capacitor in the DRAM; it is called “refresh” which occurs during the refresh cycle.

The basic mechanism is simple. Each capacitor can hold a charge up to a fixed maximum,

determined by a measure called its capacitance. While the charge on a capacitor is hard to

measure directly, it is easy to measure indirectly. Capacitance is defined as the charge stored

per unit voltage. If the capacitor has capacitance C, stores a charge Q, and has a voltage V, then

C = Q/V by definition. Since the capacitance of the DRAM memory cell is known, measuring

the voltage across the capacitor can determine the charge stored.

Since the DRAM cell is a binary unit, there are only two values stored: 0 volts (no charge) and

full voltage (full charge). The refresh cycle measures the voltage across the capacitor in every

memory cell. If above a certain value, it must have been fully charged at some point and lost its

charge. The refresh circuitry then applies full voltage to the memory cell and brings the charge

back up to full value. Below a given value, the charge is taken as zero, and nothing is done.

Chapter 6 Basics of the Memory System

Page 155 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

All modern memory is implemented as a series of modules, each of which comprises either

eight or nine memory chips of considerable capacity. Each module now has the refresh logic

built into it, so that the CPU does not need to manage the DRAM.

Another DRAM Organization

The apparently simple memory organization shown a few pages back calls for a single large

decoder. As mentioned at the time, this large decoder would present problems both in size and

time delays. One way to solve this problem is to treat the memory as a two–dimensional array,

with row and column indices. This reduces the problem of an N to 2
N
 decoder to two (N/2) to

2
(N/2)

 decoders; as in one 26–to–67,108,864 decoder vs. two 13–to–8,192 decoders.

There is a bit of a problem with this organization, but that is easily solved. Consider the figure

presented a few pages back. It shows a 16–by–8 memory. A 64 MB memory in that style would

be implemented as a singly dimensioned array of 67,108,864 entries of 8 bits each. How can this

be represented as a number of square arrays, each 8,192 by 8,192, requiring two 13–to–8,192

decoders? The answer is to have a 67,108,864 byte (64MB) memory module comprising eight

67,108,864 bit (64 Mb) memory chips, along with the control circuitry required to manage the

memory refresh. The figure below, copied from an earlier chapter in this textbook, shows the

arrangement of such a module. Note that there are nine chips in this module: one controller

chip and eight memory chips.

In order to use this modular array of single bit chips, we must modify the basic memory cell to

accept two select signals, a row select and a column select. This is done easily.

The figure at the left shows the new logical depiction of the memory cell, with its two

select signals. The figure at right shows the modification of the simple memory cell to

accommodate this design. If RS# = 0 and CS# = 0, then the cell is selected; otherwise not.

Chapter 6 Basics of the Memory System

Page 156 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Here is a diagram of a 16–bit memory array, organized in the two–dimensional structure. Note

that the R/W# and memory cell I/O lines have been omitted for the sake of clarity.

Imagine a 4 MB (megabyte) memory module. It would hold eight 4 Mb (megabit) memory

chips, each organized as a 2,048 by 2,048 array of single bits. Note the 2048 bit array at the

top of the square array. This will be explained shortly. There are two 11–to–2048 decoders.

We now come to a standard modification that at first seems to be a step back. After describing

this modification, we show that it does not lead to a decrease in memory performance. The

modification is a result of an attempt to reduce the pin count of the memory chip.

Each chip is attached to a mounting board through a series of pins. For a memory chip, there

would be one pin for the bit input/output, pins for the address lines, pins for the power and

ground lines, and pins for the control lines.

Chapter 6 Basics of the Memory System

Page 157 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Consider now the two–dimensional memory mentioned above. What pins are needed?

Pin Count

 Address Lines 22 Address Lines 11

 Row/Column 0 Row/Column 2

 Power & Ground 2 Power & Ground 2

 Data 1 Data 1

 Control 3 Control 3

 Total 28 Total 19

Separate row and column addresses reduce the number of pins required from 28 to 19, but

require two cycles to specify the address. First RAS# is asserted and the 11–bit row address

is placed on the address lines. Then CAS# is asserted and the 11–bit column address is placed

on the address lines. The following table describes the operation of some of the control signals.

CS# RAS# CAS# WE# Command / Action

1 d d d Deselect / Continue previous operation

0 1 1 d NOP / Continue previous operation

0 0 1 1 Select and activate row

0 1 0 1 Select column and start READ burst

0 1 0 0 Select column and start WRITE burst

0 0 0 d Error condition. This should not occur.

In the above table, “d” stands for “don‟t care”. For example, when CS# = 1, the action does

not depend on the values of RAS#, CAS#, or WE#. When CS# = 0, RAS# = 1,

and CAS# = 1, the action does not depend on the value of WE#.

The CPU sends the 11–bit row address first and then send the 11–bit column address. At first

sight, this may seem less efficient than sending 22 bits at a time, but it allows a true speed–up.

We merely add a 2048–bit row buffer onto the chip and when a row is selected; we transfer all

2048 bits in that row to the buffer at one time. The column select then selects from this

on–chip buffer. Thus, the access time now has two components:

 1) The time to select a new row, and

 2) The time to copy a selected bit from a row in the buffer.

Definition: A strobe is a signal used to indicate that an associated signal or set of values

is valid. RAS# stands for Row Address Strobe; CAS# stands for Column Address Strobe.

When RAS# is asserted, the address lines contain a valid row address. When CAS# is

asserted, the address lines contain a valid column address. Recall that each of these

signals is asserted low.

Chapter 6 Basics of the Memory System

Page 158 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Parity Memory

In a byte–addressable memory, each addressable unit has eight data bits. Each data bit is

stored in the basic memory cell in some electrical form. For modern DRAM, the bit is

stored as a charge on a capacitor. Because of this, the value stored can be changed randomly

by environmental factors such as cosmic rays or discharge of static electricity.

Suppose that you, as a student had a course grade stored in the computer as 0100 0001 (ASCII

code for „A‟), and that a random event changed that to 0100 0011 (ASCII code for „C‟). As

a student, you might not be pleased at the random drop in your otherwise perfect 4.0 average.

Such an event is called a “single bit error”, because one bit in the 8–bit entry has been

unintentionally changed. Double bit errors can also occur, but simple probability arguments

show that these are much less likely.

Memory parity is a simple mechanism for detecting single–bit errors. In fact, this mechanism

will detect any odd number of errors, and fail to detect any even number of errors. As the

one–error case is most common, this is often a sufficient protection. We also note that parity

memory is most often seen on large server computers that are expected to remain running for

considerable periods of time. Your author recently spoke with a manager of an IBM mainframe

that had been running for over seven years without a problem.

The idea behind simple parity is to add a ninth bit to every byte, called the parity bit. The

number of 1 bits in the 9–bit entry is then set according to the desired policy. For even parity

memory, the count of 1 bits should be an even number (including 0). For odd parity memory,

the count of 1 bits should be an odd number. Odd parity is often favored, because this requires

there to be at least one 1 bit in the 9–bit entry.

Consider the above example. The value to be stored in the 8–bit byte is 0100 0001 (ASCII

code for „A‟). As that is, it has two bits with value 1. The parity bit must be set to 1, so that

there are an odd number of bits in the 9–bit entry. Here is a depiction of what is stored.

Bit P 7 6 5 4 3 2 1 0
 1 0 1 0 0 0 0 0 1

Suppose now that the 9–bit entry 1 0100 0001 has a single bit changed. For the bit error

discussed above, the value becomes 1 0100 0011, which has an even number of 1 bits. An

error has occurred and the value stored is probably corrupted. Note that the simple parity

scheme cannot localize the error or even insure that it is not the parity bit that is bad; though

the odds are 8–to–1 that it is a data bit that has become corrupted.

Notice that any bit error can be corrected if it can be located. In the above example, bit 1 in

the word as assumed the wrong value. As there are only two possible bit values, knowing that

bit 1 is wrong immediately leads to its correct value; the corrupted value is 1, so the correct

value must be 0.

Modern commercial systems, such as the IBM z/Series Mainframes, adopt a more complex

error detection strategy, called SECDEC (Single Error Correcting, Double Error Detection),

which performs as advertised by localizing any single bit error, allowing it to be corrected. The

SECDED strategy assigns four parity bits to each 8–bit datum, requiring 12 bits to be stored.

This course will not cover this strategy; we just mention it to be complete.

Chapter 6 Basics of the Memory System

Page 159 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Evolution of modern SDRAM

The earliest personal computer (the IBM PC) had a CPU with a clock frequency of 4.77 MHz,

corresponding to a clock period of somewhat over 200 nanoseconds. This was about the cycle

time of the existing semiconductor memory. As the CPU accesses memory on average every

two clock pulses, there was a fairly good match between CPU speed and memory speed.

Beginning in the 1980‟s, CPU speeds began to increase markedly while the speed of the basic

memory unit remained the same. Most early experiments with dramatically different memory

implementations, such as GaAs (Gallium Arsenide) showed some promise but, in the end,

presented significant difficulties and were not adopted. The only solution to the problem was

to change the large–scale architecture of the memory system. The big changes occurred in the

interface between the CPU and the memory; the DRAM core (pictured below) did not change.

At the time that we pick up the narrative of memory evolution, the memory chips were already

organized as two–dimensional arrays, as seen in the figure above copied from a few pages

earlier. Most of the nature of the evolution relates to the top box labeled “2048 bits”. As always,

the memory chips will be mounted in an 8–chip or 9–chip (for parity memory) module. In what

follows, we assume no parity, though that does not change the basics of the discussion.

We begin by examining addresses issued to this chip. These range from 0 through 4,194,303.

We want to consider four consecutive memory accesses, beginning say at address 10,240. The

addresses are 10240, 10241, 10242, and 10243. Each of these addresses is sent to all eight

chips in the module to cause access to the corresponding bit. If we assume a standard split

between row and column addresses, all four addresses reference row 5 (each row in a chip

contains 2048 bits and 10240/2048 = 5). The references are to columns 0, 1, 2, and 3. In

two–dimensional coordinates, the references are (5,0), (5,1), (5,2), and (5,3).

We shall now examine the timings for a sequence of memory READ operations; in each of

these the CPU sends an address to the memory and reads the contents of that byte.

Chapter 6 Basics of the Memory System

Page 160 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

We begin with a description of the standard DRAM access. Note the delay after each access.

This serves to allow the bit lines from the memory cells in the row selected by the row address

to the sense amplifiers in the output buffer to recharge and be ready for another read cycle.

A sense amplifier serves to convert the voltages internal to the memory chip to voltages that can

be placed on the memory bus and read by the CPU. Here is the sequence.

Byte 10240 is accessed.

 1. The row address is set to 5, and RAS# is asserted.

 2. The column address is set to 0, and CAS# is asserted.

 3. The value of byte 10240 is made available on the output lines.

 4. The memory waits for the completion of the cycle time before it can be read again.

Byte 10241 is accessed.

 1. The row address is set to 5, and RAS# is asserted.

 2. The column address is set to 1, and CAS# is asserted.

 3. The value of byte 10241 is made available on the output lines.

 4. The memory waits for the completion of the cycle time before it can be read again.

Byte 10242 is accessed.

 1. The row address is set to 5, and RAS# is asserted.

 2. The column address is set to 2, and CAS# is asserted.

 3. The value of byte 10242 is made available on the output lines.

 4. The memory waits for the completion of the cycle time before it can be read again.

Byte 10243 is accessed.

 1. The row address is set to 5, and RAS# is asserted.

 2. The column address is set to 3, and CAS# is asserted.

 3. The value of byte 10243 is made available on the output lines.

 4. The memory waits for the completion of the cycle time before it can be read again.

One will note a lot of repetitive, and useless, work here. The same row is being read, so why

should it be set up every time? The answer is that the early memory access protocols required

this wasted effort. As a result, the memory interface was redesigned.

One of the earliest adaptations was called page mode. In page mode, the array of 2048 bits

above our sample chip would hold 2048 sense amplifiers, one for each column. In page mode,

data from the selected row are held in the sense amplifiers while multiple column addresses are

selected from the row. In a 16 MB DRAM with 60 nanosecond access time, the page mode

access time is about 30 nanoseconds. Most of the speed up for this mode is a result of not having

to select a row for each access and not having to charge the bit lines to the sense amplifiers.

In hyperpage devices, also called EDO (Extended Data–Out) devices, a new control signal was

added. This is OE# (Output Enable, asserted low), used to control the memory output buffer.

As a result, read data on the output of the DRAM device can remain valid for a longer time;

hence the name “extended data–out”. This results in another decrease in the cycle time.

Chapter 6 Basics of the Memory System

Page 161 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

In EDO DRAM, the row address is said to be “latched in” to the memory chip‟s row address.

Basically, a latch is a simpler variant of a flip–flop, and an address latch is one that holds an

address for use by the memory chip after it is no longer asserted by the CPU. With the row

address latched in, the EDO can receive multiple column addresses and remain on the same row.

The next step in DRAM evolution is the BEDO (Burst Extended Data–Out) design. This builds

on EDO DRAM by adding the concept of “bursting” contiguous blocks of data from a given row

each time a new column address is sent to the DRAM device. The BEDO chip can internally

generate new column addresses based on the first column address given. By eliminating the

need to send successive column addresses over the bus to drive a burst of data in response to

each CPU request, the BEDO device decreases the cycle time significantly.

Most BEDO timings are given in terms of memory bus cycles, which we have yet to discuss

fully. A typical BEDO device might allow for a four–word burst. One a standard EDO device

each access might take five bus clock cycles; we denote the four accesses by “5–5–5–5” to

indicate that each of the four accesses takes the same amount of time. In a BEDO device, the

burst timing might be “5–2–2–2”; the first access takes five memory bus clock cycles, but

initiates a burst of three more words, each available two clock cycles after the previous word.

Another step in memory development, taken about the same time as the above designs, has to

do with the basic structure of the memory chip. The memory chip illustrated twice above holds

a square array of single bits. This is called a single bank. The chip delivers one bit at a time.

With the increase of transistor density on a memory chip, it became possible to have multiple

banks within the chip. Each memory bank is an independent array with its own address latches

and decoders (though using the same row and column addresses). Consider a memory chip with

four internal banks. This chip will deliver four bits per access. A module holding eight of

these chips can deliver 32 bits per access; that is four bytes.

The use of multiple banks per chip is not to be confused with burst mode, as in BEDO. The

two design options can complement each other. Consider a BEDO module with two chips,

each having four banks. The module would deliver 8 bits, or 1 byte, per access. Now suppose

that the byte at address 10240 is requested. The appropriate memory bank will be accessed. For

a 5–2–2–2 memory, this would happen:

 After 5 memory bus clock cycles, the byte at address 10240 would be available.

 After 2 more memory bus clock cycles, the byte at address 10241 would be available.

The entire burst of four bytes would have been delivered in 11 clock cycles.

The next design, SDRAM (Synchronous DRAM), is considered the first device in a line of

commodity DRAM devices. This design differs from the EDO and BEDO devices in three

significant ways: the SDRAM has a synchronous device interface, all SDRAM devices

contain multiple internal banks, and the SDRAM device is programmable as to burst length

and a few other advanced parameters allowing for faster access under special conditions.

One of the advantages of a synchronous DRAM unit is that it operates on a standard internal

clock. The CPU can latch the address, control signals, and (possibly) data into the input latches

of the memory device and then continue other processing, returning to access the memory if

needed. On a write to memory, the CPU just latches the address, control signals, and output

data into the memory unit and moves on.

Chapter 6 Basics of the Memory System

Page 162 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

In SDRAM, the memory is synchronized to the system bus and can deliver data at the bus speed.

The earlier SDRAM chips could deliver one data item for every clock pulse; later designs called

DDR SDRAM (for Double Data Rate SDRAM) can deliver two data items per clock pulse.

Double Data Rate SDRAM (DDR–SDRAM) doubles the bandwidth available from SDRAM

by transferring data at both edges of the clock.

Figure: DDR-SDRAM Transfers Twice as Fast

There are two newer versions of DDR SDRAM, called DDR2 and DDR3. Each of these adds

new features to the basic DDR architecture, while continuing to transfer twice per memory bus

clock pulse. The DDR3 design has become quite popular, appearing on a commodity netbook

device by Acer that retails for $300 to $600 depending on the wireless plan chosen. As indicated

these devices are sold at stores, such as AT&T and Sprint, that sell cell phones.

Some manufacturers have taken another step in the development of SDRAM, attaching a SRAM

buffer to the row output of the memory chip. Consider the 4Mb (four megabit) chip discussed

earlier, now with a 2Kb SRAM buffer.

In a modern scenario for reading the chip, a Row Address is passed to the chip, followed

by a number of column addresses. When the row address is received, the entire row is

copied into the SRAM buffer. Subsequent column reads come from that buffer.

JEDEC Standards

Modern computer memory has become a commercial commodity. In order to facilitate

general use of a variety of memory chips, there have been evolved a number of standards for

the memory interface. One of the committees responsible for these standards is JEDEC.

Originally, this stood for “Joint Electron Device Engineering Council” [R008, page 332], but

now it is used as a name itself. DRAM standardization is the responsibility of the JEDEC

subcommittee with the exciting name “JC–42.3”.

Chapter 6 Basics of the Memory System

Page 163 CPSC 2105 Revised August 2, 2011

 Copyright © 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

One Commercial Example

As an example, we quote from the Dell Precision T7500 advertisement of June 30, 2011. The

machine supports dual processors, each with six cores. The standard memory configuration

calls for 4GB or DDR3 memory, though the system will support up to 192 GB. The memory

bus operates at 1333MHz (2666 million transfers per second). If it has 64 data lines to the

L3 cache (following the design of the Dell Dimension 4700 of 2004), this corresponds to

2.66610
9
 transfers/second 8 bytes/transfer 2.1310

10
 bytes per second. This is a peak

transfer rate of 19.9 GB/sec. Recall that 1GB = 2
30

 bytes = 1,073,741,824 bytes.

References

[R008] Bruce Jacob, Spencer W. Ng, and David T. Wang, Memory Systems: Cache,

 DRAM, Disk, Morgan Kaufmann, 2008, ISBN 978 – 0 – 12 – 379751 – 3.

[R009] Betty Prince, High Performance Memories, John Wiley & Sons, Ltd.,

 1999, ISBN 0 – 471 – 98610 – 0.

