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Chapter 4 – Digital Logic and the Control Unit 

This chapter will cover digital logic and its use to build a control unit for a computer.  The  

function of the control unit is to interpret the binary machine language and cause the computer to  

do what each instruction directs, even if it is not what the programmer intended.  We begin this  

chapter with a discussion of Boolean algebra, which has become the basis for all digital logic.   

Boolean algebra, also called “Boolean logic”, was invented by the English mathematician and  

philosopher George Boole.  Boolean algebra is based on Boole’s 1854 book with the rather long  

title “An Investigation of the Laws of Thought, on Which are Founded the Mathematical  

Theories of Logic and Probabilities”.   

Boolean Algebra 

Boolean algebra is the algebra of variables that can assume two values: True and False.   

Conventionally we associate these as follows: True = 1 and False = 0.  This association will  

become important when we consider the use of Boolean components to synthesize arithmetic  

circuits, such as a binary adder.  Formally, Boolean algebra is defined over a set of elements  

{0, 1}, two binary operators{AND, OR}, and a single unary operator NOT.  These operators are  

conventionally represented as follows:  for AND, + for OR, and ’ for NOT, thus X’ is Not(X). 

The Boolean operators are completely defined by Truth Tables. 

AND 00 = 0 OR 0+0 = 0 NOT 0’ = 1 

 01 = 0  0+1 = 1  1’ = 0 

 10 = 0  1+0 = 1 

 11 = 1  1+1 = 1 

Note that the use of “+” for the OR operation is restricted to those cases in which addition  

is not being discussed.  When addition is also important, we use different symbols for the  

binary Boolean operators, the most common being  for AND, and  for OR. 

There is another notation for the complement (NOT) function that is preferable.  If X is a  

Boolean variable, then X  is its complement, so that 0  = 1 and 1  = 0.  The only reason that  

this author uses X’ to denote X  is that the former notation is easier to create in MS-Word. 

There is another very handy function, called the XOR (Exclusive OR) function.  Although it  

is not basic to Boolean algebra, it comes in quite handy in circuit design.  The symbol for the  

Exclusive OR function is .  Here is its complete definition using a truth table. 

 0  0 = 0  0  1 = 1 

 1  0 = 1  1  1 = 0 

Truth Tables 

A truth table for a function of N Boolean variables depends on the fact that there are only 2
N 

 

different combinations of the values of these N Boolean variables.  For small values of N,  

this allows one to list every possible value of the function. 
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Consider a Boolean function of two Boolean variables X and Y.  The only possibilities for  

the values of the variables are: 

 X = 0 and Y = 0 

 X = 0 and Y = 1 

 X = 1 and Y = 0 

 X = 1 and Y = 1 

Similarly, there are eight possible combinations of the three variables X, Y, and Z, beginning  

with X = 0, Y = 0, Z = 0 and going through X = 1, Y = 1, Z = 1.  Here they are. 

 X = 0, Y = 0, Z = 0 X = 0, Y = 0, Z = 1 X = 0, Y = 1, Z = 0 X = 0, Y = 1, Z = 1 

 X = 1, Y = 0, Z = 0 X = 1, Y = 0, Z = 1 X = 1, Y = 1, Z = 0 X = 1, Y = 1, Z = 1 

As we shall see, we prefer truth tables for functions of not too many variables. 

The figure at left is a truth table for a two-variable function.  Note that  

we have four rows in the truth table, corresponding to the four possible  

combinations of values for X and Y.  Note also the standard order in  

which the values are written: 00, 01, 10, and 11.  Other orders can be  

used when needed (it is done below), but one must list all combinations. 

 

 

For another example of truth tables, we consider the figure at  

the left, which shows two Boolean functions of three Boolean  

variables.  Truth tables can be used to define more than one  

function at a time, although they become hard to read if either  

the number of variables or the number of functions is too large.   

Here we use the standard shorthand of F1 for F1(X, Y, Z) and  

F2 for F2(X, Y, Z).  Also note the standard ordering of the  

rows, beginning with 0 0 0 and ending with 1 1 1.  This causes  

less confusion than other ordering schemes, which may be used  

when there is a good reason for them. 

 

 

 

As an example of a truth table in which non-standard ordering might be useful, consider the  

following table for two variables.  As expected, it has four rows. 

A truth table in this non-standard ordering would be used to  

prove the standard Boolean axioms: 

 X  0 = 0 for all X   X + 0 = X for all X 

 X  1 = X for all X X + 1 = 1 for all X 

Note the identity X + 1 = 1.  This is the “strange Boolean axiom”  

that gives rise to many peculiarities in the logic. 

 

X Y F(X, Y) 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

X Y Z F1 F2 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

X Y X  Y X + Y 

0 0 0 0 

1 0 0 1 

0 1 0 1 

1 1 1 1 
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Labeling Rows in Truth Tables 

We now discuss a notation that is commonly used to identify rows in truth tables.  The exact  

identity of the rows is given by the values for each of the variables, but we find it convenient  

to label the rows with the integer equivalent of the binary values.  We noted above that for N  

variables, the truth table has 2
N
 rows.  These are conventionally numbered from 0 through  

2
N
 – 1 inclusive to give us a handy way to reference the rows.  Thus a two variable truth table  

would have four rows numbered 0, 1, 2, and 3.  Here is a truth-table with labeled rows. 

   We can see that G(A, B) = A  B, but 

0  = 02 + 01  this value has nothing to do with the 

1  = 02 + 11  row numberings, which are just the 

2  = 12 + 01  decimal equivalents of the values in  

3  = 12 + 11  the A & B columns as binary. 

A three variable truth table would have eight rows, numbered 0, 1, 2, 3, 4, 5, 6, and 7.   

Here is a three variable truth table for a function F(X, Y, Z) with the rows numbered. 

Note that the row numbers correspond to the  

decimal value of the three bit binary, thus 

 0 = 04 + 02 + 01 

 1 = 04 + 02 + 11 

 2 = 04 + 12 + 01 

 3 = 04 + 12 + 11 

 4 = 14 + 02 + 01 

 5 = 14 + 02 + 11 

 6 = 14 + 12 + 01 

 7 = 14 + 12 + 11 

Truth tables are purely Boolean tables in which decimal numbers, such as the row numbers  

above do not really play a part.  However, we find that the ability to label a row with a  

decimal number to be very convenient and so we use this.  The row numberings can be quite  

important for the standard algebraic forms used in representing Boolean functions. 

Question: Where to Put the Ones and Zeroes 

Every truth table corresponds to a Boolean expression.  For some truth tables, we begin with  

a Boolean expression and evaluate that expression in order to find where to place the 0’s and  

1’s.  For other tables, we just place a bunch of 0’s and 1’s and then ask what Boolean  

expression we have created.  The truth table just above was devised by selecting an  

interesting pattern of 0’s and 1’s.  The author of these notes had no particular pattern in  

mind when creating it.  Other truth tables are more deliberately generated. 

  

Row A B G(A, B) 

0 0 0 0 

1 0 1 1 

2 1 0 1 

3 1 1 0 

Row 

Number 

X Y Z F(X, Y, Z) 

0 0 0 0 1 

1 0 0 1 1 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 1 

5 1 0 1 0 

6 1 1 0 1 

7 1 1 1 1 
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Let’s consider the construction of a truth table for the Boolean expression. 

F(X, Y, Z) = ZYXZYYX   

Let’s evaluate this function for all eight possible values of X, Y, Z. 

 X = 0 Y = 0 Z = 0 F(X, Y, Z) = 00 + 00 + 010 = 0 + 0 + 0 = 0 

 X = 0 Y = 0 Z = 1 F(X, Y, Z) = 00 + 01 + 011 = 0 + 0 + 0 = 0 

 X = 0 Y = 1 Z = 0 F(X, Y, Z) = 01 + 10 + 000 = 0 + 0 + 0 = 0 

 X = 0 Y = 1 Z = 1 F(X, Y, Z) = 01 + 11 + 001 = 0 + 1 + 0 = 1 

 X = 1 Y = 0 Z = 0 F(X, Y, Z) = 10 + 00 + 110 = 0 + 0 + 0 = 0 

 X = 1 Y = 0 Z = 1 F(X, Y, Z) = 10 + 01 + 111 = 0 + 0 + 1 = 1 

 X = 1 Y = 1 Z = 0 F(X, Y, Z) = 11 + 10 + 100 = 1 + 0 + 0 = 1 

 X = 1 Y = 1 Z = 1 F(X, Y, Z) = 11 + 11 + 101 = 1 + 1 + 0 = 1 

From the above, we create the truth table for the function.  Here it is. 

X Y Z F(X, Y, Z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Consider the truth table given below, with no explanation of the method used to generate the  

values of F1 and F2 for each row. 

Row X Y Z F1 F2 

0 0 0 0 0 0 

1 0 0 1 1 0 

2 0 1 0 1 0 

3 0 1 1 0 1 

4 1 0 0 1 0 

5 1 0 1 0 1 

6 1 1 0 0 1 

7 1 1 1 1 1 

Figure: Our Sample Functions F1 and F2 

Students occasionally ask how the author knew where to place the 0’s and 1’s in the above  

table.  There are two answers to this, both equally valid.  We reiterate the statement that a  

Boolean function is completely specified by its truth table.  Thus, one can just make an  

arbitrary list of 2
N
 0’s and 1’s and then decide what function of N Boolean variables has  

been represented.  In that view, the function F2 is that function specified by the sequence 

(0, 0, 0, 1, 0, 1, 1, 1) and nothing more.  We can use methods described below to assign it a  

functional representation.  Note that F2 is 1 if and only if two of X, Y, and Z are 1.  Given  

this, we can give a functional description of the function as F2 = XY + XZ + YZ. 
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As the student might suspect, neither the pattern of 0’s and 1’s for F1 nor that for F2 were  

arbitrarily selected.  The real answer is that the instructor derived the truth table from a set of  

known Boolean expressions, one for F1 and one for F2.  The student is invited to compute  

the value of F2 = XY + XZ + YZ for all possible values of X, Y, and Z; this will verify  

the numbers as shown in the truth table. 

We have noted that a truth table of two variables has four rows (numbered 0, 1, 2, and 3)  

and that a truth table of three variables has eight rows (numbered 0 through 7).  We now  

prove that a truth table of N variables has 2
N
 rows, numbered 0 through 2

N
 – 1.  Here is an  

inductive proof, beginning with the case of one variable. 

 1. Base case: a function of one variable X requires 2 rows,  

  one row for X = 0 and one row for X = 1. 

 2. If a function of N Boolean variables X1, X2, …., XN requires 2
N
 rows, then 

  the function of (N + 1) variables X1, X2, …., XN, XN+1 would require 

   2
N
 rows for X1, X2, …., XN when XN+1 = 0 

   2
N
 rows for X1, X2, …., XN when XN+1 = 1 

 3. 2
N
 +2

N
 = 2

N+1
, so the function of (N + 1) variables required 2

N+1
 rows. 

While we are at it, we show that the number of Boolean functions of N Boolean variables is  

2
R
 where R = 2

N
, thus the number is 22

N

.  The argument is quite simple.  We have shown  

that the number of rows in a truth table is given by R = 2
N
.  The value in the first row could  

be a 0 or 1; thus two choices.  Each of the R = 2
N
 rows could have two choices, thus the total  

number of functions is 2
R
 where R = 2

N
. 

For N = 1, R = 2, and 2
2
 = 4.  A truth table for the function F(X) would have two rows, one  

for X = 0 and one for X = 1.  There are four functions of a single Boolean variable. 

 F1(X) = 0, F2(X) = 1, F3(X) = X, and F4(X) = X . 

It might be interesting to give a table of the number of rows in a truth table and number of  

possible Boolean functions for N variables.  The number of rows grows quickly, but the  

number of functions grows at an astonishing rate. 

N R = 2
N
 2

R
 

1 2 4 

2 4 16 

3 8 256 

4 16 65 536 

5 32 4 294 967 296 

6 64 2
64

  1.84510
19

 

 

Note on computation: log 2 = 0.30103, so 2
64

 = (10
0.30103

)
64

 = 10
19.266 

. 

   log 1.845 = 0.266, so 10
0.266

  1.845 and 10
19.266

  1.84510
19
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The number of Boolean functions of N Boolean variables is somewhat of interest.  More to  

interest in this course is the number of rows in any possible truth–table representation of a  

function of N Boolean variables.  For N = 2, 3, and 4, we have 2
N
 = 4, 8, and 16 respectively,  

so that truth tables for 2, 3, and 4 variables are manageable.  Truth tables for five variables  

are a bit unwieldy and truth tables for more than five variables are almost useless. 

Evaluation of Boolean Expressions 

Here is another topic that this instructor normally forgets to mention, as it is so natural to  

one who has been in the “business” for many years.  The question to be addressed now is:  

“What are the rules for evaluating Boolean expressions?” 

Operator Precedence 

The main question to be addressed is the relative precedence of the basic Boolean operators:  

AND, OR, and NOT.  These rules are based on the algebraic model, which does not use the  

XOR function; its precedence is not defined.  The relative precedence in any programming  

language is specified by that language. 

The relative precedence of the operators is: 

 1) NOT  do this first 

 2) AND 

 3) OR  do this last 

Consider the Boolean expression AB + CD, often written as AB + CD.  Without the  

precedence rules, there are two valid interpretations: either (AB) + (CD) or A(B + C)D.   

The precedence rules for the operators indicate that the first is the correct interpretation; in  

this Boolean algebra follows standard algebra as taught in high-school.  Consider now the  

expression DCBA  ; according to our rules, this is read as      DCBA  . 

Note that parentheses and explicit extension of the NOT over–bar can override the precedence  

rules, so that A(B + C)D is read as the logical AND of three terms: A, (B + C), and D.   

Note also that the two expressions BA   and BA   are different.  The first expression, better  

written as  BA  , refers to the logical NOT of the logical AND of A and B; in a language  

such as LISP it would be written as NOT (AND A B).  The second expression, due to the  

precedence rules, refers to the logical AND of the logical NOT of A and the logical NOT  

of B; in LISP this might be written as AND( (NOT A) (NOT B) ). 

Evaluation of Boolean expressions implies giving values to the variables and following the  

precedence rules in applying the logical operators.  Let A = 1, B = 0, C = 1, and D = 1. 

  AB + CD = 10 + 11 = 0 + 1 = 1 

  A(B + C)D = 1(0 + 1)1 = 1  1  1 = 1 

  DCBA   = 1101   = 0  0 + 1  0 = 0 + 0 = 0 

  BA   = 01   = 0  = 1 

  BA   = 01   = 0  1 = 0 

Also A(B + CD) = 1(0 + 11) = 1  (0 + 1) = 1  1 = 1 

  (AB + C)D = (10 + 1)1 = (0 + 1)  1 = 1 
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In Boolean algebra we have the distributive postulate A(B + C) = AB + AC, which looks  

familiar.  We also have the rather strange postulate A + BC = (A + B)(A + C) must also be  

true.  We prove the second statement using a method unique to Boolean algebra.  This method  

depends on the fact that there are only two possible values for A: A = 0 and A = 1.  We consider  

both cases using a proof technique much favored by this instructor: consider both possibilities for  

one variable.  Again, the statement is that the following is a Boolean identity 

A + BC = (A + B)(A + C). 

If A = 1, the statement becomes 1 + BC = (1 + B)(1 + C), or 1 = 11, obviously true. 

If A = 0, the statement becomes 0 + BC = (0 + B)(0 + C), or BC = BC. 

Just for fun, we offer a truth–table proof of the second distributive postulate. 

A B C BC A + BC  (A + B) (A + C) (A + B)(A + C) 

0 0 0 0 0  0 0 0 

0 0 1 0 0  0 1 0 

0 1 0 0 0  1 0 0 

0 1 1 1 1  1 1 1 

1 0 0 0 1  1 1 1 

1 0 1 0 1  1 1 1 

1 1 0 0 1  1 1 1 

1 1 1 1 1  1 1 1 

Figure: A + BC = (A + B)(A + C) 

Note that to complete the proof, one must construct the truth table, showing columns for  

each of the two functions A + BC and (A + B)(A + C), then note that the contents of the  

two columns are identical for each row. 

Implementation of Boolean Logic by Circuitry 

We now turn to a study of the digital gates used to implement the standard Boolean functions.  

The Boolean values are represented by specific voltages in the electronic circuitry.  As a  

result of experience, it has been found desirable only to have two voltage levels, called High  

and Low or H and L.  This leads to two types of logic 

 Negative Logic High = 0 Low = 1 

 Positive Logic High = 1 Low = 0 

This course will focus on Positive Logic and ignore Negative Logic.  As a matter of fact, we  

shall only occasionally concern ourselves with voltage levels.  There are several varieties of  

positive logic, depending on the voltage at which the chip is run.  The logic low is always  

specified as 0 volts, but the logic high might be 5 volts, 3.5 volts, 1.8 volts, or whatever the  

voltage to the CPU chip is set at.  This text will follow the TTL standard voltages established  

by Texas Instruments, in which the logic high level is specified to be 5.0 volts.  In reality,  

voltage ranges are specified.  The range for output is stricter than that for input to allow for  

voltage degradation during transmission. 

 Output of Logic Gate Input to Logic Gate 

Logic High 2.4 – 5.0 volts  2.0 – 5.0 volts 

Logic Low 0.0 – 0.4 volts  0.0 – 0.8 volts 
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Basic Gates for Boolean Functions 

We now discuss a number of basic logic gates used to implement Boolean functions.  The  

gates of interest at this point are AND, OR, NOT, NAND (NOT AND), NOR (NOT OR) and  

XOR (Exclusive OR).  The Exclusive OR gate is the same as the OR gate except that the  

output is 0 (False) when both inputs are 1 (True).  The symbol for XOR is . 

The first gate to be discussed is the OR gate.  The truth table for a two-input OR gate is  

shown below.  In general, if any input to an OR gate is 1, the output is 1. 

 A B A + B 

 0 0 0 

 0 1 1 

 1 0 1 

 1 1 1 

The next gate to be discussed is the AND gate.  The truth table for a two-input AND gate is  

shown now.  In general, if any input to an AND gate is 0, the output is 0. 

 

 A B A  B 

 0 0 0 

 0 1 0 

 1 0 0 

 1 1 1 

The third of the four basic gates is the single input NOT gate.  Note that there are two ways  

of denoting the NOT function.  NOT(A) is denoted as either A’ or A .  We use A  as often as  

possible to represent NOT(A), but may become lazy and use the other notation. 

 

A A  

0  1 

1  0 

The last of the gates to be discussed at this first stage is not strictly a basic gate.  We include  

it at this level because it is extremely convenient.  This is the two-input Exclusive OR (XOR)  

gate, the function of which is shown in the following truth table. 

 A B A  B 

 0 0 0 

 0 1 1 

 1 0 1 

 1 1 0 
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We note immediately an interesting and very useful connection between the XOR function  

and the NOT function.  For any A, A  0 = A, and A  1 = A .   

The proof is by truth table. 

 A B A  B Result 

 0 0 0 A 

 1 0 1 A This result is extremely useful when designing 

 0 1 1 A  a ripple carry adder/subtractor. 

 1 1 0 A  

The basic logic gates are defined in terms of the binary Boolean functions.  Thus, the basic  

logic gates are two-input AND gates, two-input OR gates, NOT gates, two-input NAND  

gates, two-input NOR gates, and two-input XOR gates. 

It is common to find three-input and four-input varieties of AND, OR, NAND, and NOR  

gates.  The XOR gate is essentially a two-input gate; three input XOR gates may exist but  

they are hard to understand. 

Consider a four input AND gate.  The output function is described as an easy generalization  

of the two input AND gate; the output is 1 (True) if and only if all of the inputs are 1,  

otherwise the output is 0.  One can synthesize a four-input AND gate from three two-input  

AND gates or easily convert a four-input AND gate into a two-input AND gate.  The student  

should realize that each figure below represents only one of several good implementations. 

 

Figure: Three 2-Input AND Gates Make a 4-Input AND Gate 

 
Figure: Another Way to Configure Three 2-Input AND Gates as a 4-Input AND Gate 

 

Figure: Two Ways to Configure a 4-Input AND Gate as a 2-Input AND Gate 
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Here is the general rule for N-Input AND gates and N-Input OR gates. 

 AND Output is 0 if any input is 0.  Output is 1 only if all inputs are 1. 

 OR  Output is 1 if any input is 1.  Output is 0 only if all inputs are 0. 

 XOR For N > 2, N-input XOR gates are not useful and will be avoided. 

 NOT By definition, the NOT gate has only one input. 

“Derived Gates” 

We now show 2 gates that may be considered as derived from the above: NAND and NOR. 

 

The NOR gate is the  

same as an OR gate  

followed by a NOT  

gate. 

 

The NAND gate is the  

same as an AND gate  

followed by a NOT  

gate. 

From a viewpoint of basic electronics, in which we consider the fabrication of the basic logic  

gates from CMOS transistors, the two gates are not to be considered as derived.  They are more  

basic than the logically simpler gates we discussed above.  Indeed, it takes fewer transistors to  

fabricate a NAND gate than an AND gate; furthermore the typical implementation of an AND  

gate is as a NOT (NAND).   

As an exercise in logic, we show that the NAND (Not AND) gate is fundamental in that it  

can be used to synthesize the AND, OR, and NOT gates.  We begin with the basic NAND. 

The basic truth table for the NAND is given by 

 X Y XY  YX   

 0 0 0 1 

 0 1 0 1 

 1 0 0 1 

 1 1 1 0 

From this truth table, we see that 00   = 1 and 11   = 0, so we conclude that XX   = X   

and immediately have the realization of the NAND gate as a NOT gate. 

 
Figure: A NAND Gate Used as a NOT Gate 

Here is the AND gate as implemented from two NAND gates. 

 
Figure: Two NAND Gates to Make an AND Gate 
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Notation and DeMorgan’s Laws 

We now consider two Boolean equalities that go by the name DeMorgan’s laws, and use these  

as an introduction to the notation used for negating inputs to a logic gate.  DeMorgan’s laws are  

often quoted in terms of set theory using the union and intersection operators.  We shall quote  

these versions of the laws first and give the standard demonstration.  The two laws are: 

 

Here the symbol “” denotes set intersection, and the symbol “” denotes set union.  Here is 

the standard demonstration of these two equalities in terms of Venn diagrams. 

 

In Boolean algebra, these laws are stated in terms of logical OR and logical AND. 

 

Using the standard notation for negated inputs and outputs, these figures become the following. 

 

Here is a truth–table proof of DeMorgan’s laws. 

A B   A + B A  B 
    

0 0 1 1 0 0 1 1 1 1 

0 1 1 0 1 0 1 1 0 0 

1 0 0 1 1 0 1 1 0 0 

1 1 0 0 1 1 0 0 0 0 
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Circuits and Truth Tables 

We now address an obvious problem – how to relate circuits to Boolean expressions.   

The best way to do this is to work an example.  Here is the circuit diagram to be analyzed. 

 

The method to get the answer is to label each gate and determine the output of each.  The  

following diagram shows the gates as labeled and the output of each gate. 

 

The outputs of each gate are as follows: 

 The output of gate 1 is (X + Y), 

 The output of gate 2 is (Y  Z), 

 The output of gate 3 is X’, 

 The output of gate 4 is X’ + (Y  Z), and 

 The output of gate 5 is (X + Y)  [X’ + (Y  Z)] 

We now produce the truth table for the function. 

X Y Z X + Y (Y  Z) X’ X’ + (Y  Z) (X + Y)  [X’+(Y  Z)] 

0 0 0 0 0 1 1 1 

0 0 10 0 1 1 1 1 

0 1 0 1 1 1 1 0 

0 1 1 1 0 1 1 0 

1 0 0 1 0 0 0 1 

1 0 1 1 1 0 1 0 

1 1 0 1 1 0 1 0 

1 1 1 1 0 0 0 1 

Some Boolean algebra can simplify this to F(X, Y, Z) = X’Y’ + Y’Z’ + XYZ. 
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The Non–Inverting Buffer 

We now investigate a number of circuit elements that do not directly implement Boolean  

functions.  The first is the non–inverting buffer, which is denoted by the following symbol. 

 

Logically, a buffer does nothing.  Electrically, the buffer serves as an amplifier converting a  

degraded signal into a more useable form; specifically it does the following in TTL. 

 A logic 1 (voltage in the range 2.0 – 5.0 volts) will be output as 5.0 volts. 

 A logic 0 (voltage in the range 0.0 – 0.8 volts) will be output as 0.0 volts. 

While one might consider this as an amplifier, it is better considered as a “voltage adjuster”.   

We shall see another use of this and similar circuits when we consider MSI (Medium Scale  

Integrated) circuits in a future chapter. 

Tri–State Buffers 

We have now seen all of the logic gates to be used in this course.  There is one more gate  

type that needs to be examined – the tri-state buffer.  We begin with the examination of a  

simple (non-inverting buffer) and comment on its function.  We discuss two basic types:  

enabled–high and enabled–low.  The circuit diagrams for these are shown below. 

 

The difference between these two circuits relates to how the circuits are enabled.  Note that  

the enabled-low tri–state buffer shows the standard use of the NOT dot on input. 

The following figure shows two ways of implementing an Enabled–Low Tri-State buffer,  

one using an Enabled-High Tri-State with a NOT gate on the Enable line.  The significance  

of the over–bar on the Enable input is that the gate is active when the control is logic 0. 

 
Figure: Two Views of an Enabled-Low Tri-State Buffer 
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A tri-state buffer acts as a simple buffer when it is enabled; it passes the input through while  

adjusting its voltage to be closer to the standard.  When the tri-state buffer is not enabled, it  

acts as a break in the circuit or an open switch (if you understand the terminology).  A gate  

may be enabled high (C = 1) or enabled low (C = 0).  Consider an enabled–high tri-state. 

 
Figure: Circuits Equivalent to an Enabled Tri–State and a Disabled Tri-State 

When the enable signal is C = 1, the tri-state acts as a simple buffer and asserts its input as an  

output.  When the enable signal is C = 0, the tri-state does not assert anything on the output. 

The Third State 

The definition of this “third state” in a tri–state buffer is both obvious and subtle.  Compare  

the two circuits in the figure below.  One is a buffer; the other is a tri–state buffer. 

 

For the circuit on the left, either F = 0 (0 volts) or F = 1 (5 volts).  There is no other option. 

For the circuit on the right, when C = 1 then F = A, and takes a value of either 0 volts or 5  

volts, depending on the value of the input.  When C = 0, F is simply not defined.  One of  

the better ways to understand the tri-state buffer is to consider the following circuit with  

two Boolean inputs A and B, one output F, and an enable signal C. 

 

 
Note that the two tri–state buffers are enabled differently, so that the top buffer is enabled if  

and only if the bottom buffer is not enabled, and vice versa.  The design insures that at no  

time are both of the tri–state buffers enabled, so that there is no conflict of voltages. 

 C = 0  Only the top buffer is enabled  F = A 

 C = 1  Only the bottom buffer is enabled F = B 
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The reader will note that the above circuit is logically equivalent to the one that follows. 

 

Given only this simple example, one might reasonably question the utility of tri–state buffers.   

It appears that they offer a novel and complex solution to a simple problem.  The real use of  

these buffers lies in placing additional devices on a common bus, a situation in which the use  

of larger OR gates might prove difficult. 

Multiplexers – The Data Selectors 

We now turn to a circuit element that allows the selection of one of its inputs to be passed on to  

the output.  This is called the multiplexer.  One common multiplexer would be the 8–to–1  

multiplexer, which will output one of the eight inputs, as selected by the control logic.  A  

multiplexer, also called a “MUX”, is a sample of a small scale integrated circuit.  Typically of  

many such circuits, the MUX could easily be fabricated from more basic gates; indeed our  

discussion will show the basic circuitry.  In actual practice though, the MUX is treated as a  

single circuit element. 

A multiplexer has a number of inputs (usually a power of two), a number of control signals, and  

one output.  A demultiplexer has one input signal, a number of control signals, and a number of  

outputs, also usually a power of two.  We consider here a 2
N
–to–1 multiplexer and a 1–to–2

N
  

demultiplexer. 

 Circuit Inputs Control Signals Outputs 

 Multiplexer 2
N
 N 1 

 Demultiplexer 1 N 2
N
 

Specific numbers for each of the multiplexers and demultiplexers are given in the table  

below, which is indexed by the number of control signals to each device. 

 Multiplexer Demultiplexer 

Control Signals Inputs Outputs Inputs Outputs 

1 2 1 1 2 

2 4 1 1 4 

3 8 1 1 8 

4 16 1 1 16 

5 32 1 1 32 

Multiplexers are quite useful in connecting a number of inputs to a single output.  Quite  

often, the output of a multiplexer will be fed through a tri–state buffer, so that there is the  

additional option of not placing anything on the bus. 

Demultiplexers are interesting, but of less use to us at the moment. 
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The action of each of these circuits is determined by the control signals.  For a multiplexer, the  

output is the selected input.  In a demultiplexer, the input is routed to the selected output.  As  

examples, we show the diagrams for both a four–to–one multiplexer (MUX) and a  

one–to–four demultiplexer (DEMUX). 

 

Note that each of the circuits has two control signals.  For a multiplexer, the N control signals  

select which of the 2
N
 inputs will be passed to the output.  For a demultiplexer, the N control  

signals select which of the 2
N
 outputs will be connected to the input. 

In this diagram, we examine the construction of a typical 4–to–1 multiplexer from basic gates. 

 

When the tri–state buffer is enabled, the output of this circuit is determined by the selected input. 

C1 C0 Output 

0 0 X0 

0 1 X1 

1 0 X2 

1 1 X3 

One can also view the output, equivalently M, as a Boolean expression. 

 

When the tri–state is not enabled, the output, M, of the multiplexer is not connected to the output  

of the circuit.  This is likely connected to a common bus line, which can have its input specified  

by a number of sources. 



Chapter 4  Digital Logic and the Control Unit 

Page 105 CPSC 2105 Revised July 22, 2011 

 Copyright © 2011 by Edward L. Bosworth, Ph.D.  All rights reserved. 

Decoders 

An N–to–2
N
 decoder takes an N bit binary code and activating the output labeled with the  

corresponding number.  Consider a 3–to–8 decoder with outputs labeled Z0, Z1, …, Z7.   

Suppose the input is I3 = 1, I2 = 0, I1 = 0, and I0 = 1 for the binary code 101.  Then output Z5 is  

active and the other outputs are not active. 

With one common exception, we have only N–to–2
N
 decoders.  This one exception is the  

4–to–10 decoder.  Note that it takes 4 bits to encode 10 items, as 3 bits will encode only 8.  This  

author’s preference would be to use a 4–to–16 decoder and ignore some of the outputs, but this  

author does not establish commercial practice.  The main advantage is that the 4–to–10 decoder  

chip would have 6 fewer pins than a 4–to–16 decoder; a 16–pin chip is standard and cheaper to  

manufacture than a 22–pin chip. 

Another issue is whether the signals are active high or active low.  Our first example has been  

constructed for active high circuits.  Consider the 3–to–8 decoder as an example.  If the input  

code is 101, then the output Z5 is a logic 1 (+5 volts) and all other outputs are logic 0 (0 volts).   

This approach is active high.  We shall handle the more realistic active low on the next page. 

All decoders are based on the association of binary numbers to decimal numbers.  Since this is a  

3–to–8 decoder, we have three inputs, labeled X2, X1, and X0; and eight outputs, labeled Y7,  

Y6, Y5, Y4, Y3, Y2, Y1, and Y0.  The observation that leads to the design of the decoder is the  

obvious one that the values of X2, X1, and X0 determine the output selected.  The following  

Boolean equations determine this 3–to–8 decoder. 

 
Here is the circuit diagram for the 3–to–8 active–high decoder. 
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The Enable Input 

We now consider another important input to the decoder chip.  This is the enable input.  If the  

decoder enable signal is active high, then the decoder is active when enable is 1 and not active  

when enable = 0.  We shall consider enabled–high decoders just for the moment.  The enable  

input allows the decoder to be either enabled or disabled.  For an active high decoder that is  

enabled high (Enable = 1 activates it) we have the following. 

 Enable = 0 All outputs of the decoder are 0 

 Enable = 1 The selected output of the decoder is 1, all other outputs are 0. 

 

The action of the above decoder is described in the following truth table. 

Enable X1 X0 Y0 Y1 Y2 Y3 

0 d d 0 0 0 0 

1 0 0 1 0 0 0 

1 0 1 0 1 0 0 

1 1 0 0 0 1 0 

1 1 1 0 0 0 1 

The top row in the above truth table has “d” as an entry for both X1 and X0.  Each of these  

entries is read as “don’t care”, indicating that when Enable = 0, all outputs are 0 without  

regard to the values of the two inputs, X1 and X0. 

In real commercial circuits, we often have outputs as active low, in which case the above decoder  

would have output Z5 as a logic 0 (0 volts) and all other outputs as logic 1 (+5 volts).  The truth  

table of a 2–to–4 commercial decoder would be as follows. 

Enable# X1 X0 Y0 Y1 Y2 Y3 

1 d d 1 1 1 1 

0 0 0 0 1 1 1 

0 0 1 1 0 1 1 

0 1 0 1 1 0 1 

0 1 1 1 1 1 0 
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The following is a screen shot from the circuit emulator used in association with this course.  The  

diagram on the left has E# = 0, so that X1 = 1 and X0 = 0 causes the output Y2 to be asserted low. 

When E# = 1, none of the outputs are asserted low; all are at logic high. 

 

There are two standard approaches to building an enabled–low, active–low decoder.  The next  

figure shows both of them.  The circuit on the left resembles the one in Rob Williams’s book; the  

one on the right can be shown by simple Boolean algebra to be equivalent. 

 

There are a few commercial practices reflected in the circuit on page 85 of the textbook by Rob  

Williams.  Your author will comment on these now.  The first is the use of NAND gates, rather  

than the equivalent AND gates followed by NOT gates.  By definition NAND is NOT AND.  In  

terms of basic electronics, the NAND gate is simpler and faster than the AND gate, hence it is  

much faster than a two gate combination of AND followed by NOT.  Your author’s circuit above  

to the left is designed that way to make the logic clear. 

The second has to do with the double NOTs on the inputs.  Consider the 3–to–8 version of the  

decoder above to the left and look at one of the input lines. 

 

The diagram to the left shows what the input would be for a 3–to–8 version of the above  

decoder.  Each input would drive five gates, four AND gates directly and one NOT gate.   

The circuit on the right follows commercial practice, each input drives only one gate.  The cost  

of this design modification is that there are two NOT gates, the first producing NOT(X) and the  

second one producing X again.  It has been the commercial experience that it is preferable to  

limit the number of gates driven by any one input; the count of one is the minimum. 
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The Control Unit 

The control unit is the central subsystem in any computer.  It functions to interpret the binary  

machine language and cause the computer to execute the indicated instructions.  As input, the  

control unit has the contents of the IR (Instruction Register), the system clock, and status bits  

from the ALU indicating the results of the last computation. 

The control unit is one of the four major components of the CPU (Central Processing Unit).  It 

issues control signals to the ALU, the datapath (placing data on CPU busses, and routing the  

ALU output to its destination), the memory, and all I/O units.  The internal structure of the CPU,  

with the control unit, is shown below. 

 

The one critical design decision here is how to generate the control signals.  We know the inputs,  

we know the rules to follow, and we know what the outputs must be.  But, how are these outputs  

to be generated from the inputs and state?  There are two primary ways to do this. 

All modern stored program computers execute programs that are a sequence of binary machine– 

language instructions.  This sequence of instructions are translations of either  an assembly  

language program or a program in a higher–level language, such as C++ or Java.  Each  

instruction to be executed is fetched from memory and deposited in the Instruction Register,  

which is a part of the control unit.  The control unit interprets this machine instruction and  

issues the signals that cause the computer to execute it. 

 

Figure: Schematic of the Control Unit 

There are two ways in which a control unit may be organized.  The most efficient way is to build  

the unit entirely from basic logic gates (AND, OR, NOT, and Exclusive OR).  For a moderately– 

sized instruction set with the standard features expected, this leads to a very complex circuit that  

is difficult to test. 
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In 1951, Maurice V. Wilkes (designer of the EDSAC, see above) suggested an organization for  

the control unit that was simpler, more flexible, and much easier to test and validate.  This was  

called a “microprogrammed control unit”.  The basic idea was that control signals can be  

generated by reading words from a micromemory and placing each in an output buffer. 

In this design, the control unit interprets the machine language instruction and branches to a  

section of the micromemory that contains the microcode needed to emit the proper control  

signals.  The entire contents of the micromemory, representing the sequence of control signals  

for all of the machine language instructions is called the microprogram.  All we need to know is  

that the microprogram is stored in a ROM (Read Only Memory) unit. 

While microprogramming was sporadically investigated in the 1950’s, it was not until about  

1960 that memory technology had matured sufficiently to allow commercial fabrication of a  

micromemory with sufficient speed and reliability to be competitive.  When IBM selected the  

technology for the control units of some of the System/360 line, its primary goal was the creation  

of a unit that was easily tested.  Then they got a bonus; they realized that adding the appropriate  

blocks of microcode could make a S/360 computer execute machine code for either the IBM  

1401 or IBM 7094 with no modification.  This greatly facilitated upgrading from those machines  

and significantly contributed to the popularity of the S/360 family, as many of their commercial  

customers had a very large installed base of machine code and did not want to change. 

Here is the design for a typical microprogrammed control unit.  This functions by copying one  

micro–word at a time from the micromemory, also called the CROM (Control ROM) into a set  

of registers that actually emit the control signals.  The only function of the Select circuitry is to  

select the address of the next micro–word to be read. 

 

The microcoded (or microprogrammed) control unit shows its utility in the management of  

virtual memory, which we shall consider in Chapter 12.  The processes for this management  

are quite easy to describe in coding terms, but hard to imagine in terms of pure digital gates. 

Microprogramming became quite popular as a design tool in the 1970’s and remained popular  

through the 1980’s and into the early 1990’s.  It is still used today, though in moderation with  

somewhat less enthusiasm than before.   

The use of microcoding allowed the management of very complex assembly language  

instructions by a fairly simple, and easily tested, control unit.  As a result, the instruction sets  

of computers of the time became quite complex, leading to some designs being classified as  

CISC (Complex Instruction Set Computers).  The primary example of CISC was the VAX,  

developed by the Digital Equipment Corporation in the late 1970’s. 
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Reduced Instruction Set Computers 

The acronym RISC stands for “Reduced Instruction Set Computer”.  RISC represents a design  

philosophy for the ISA (Instruction Set Architecture) and the CPU microarchitecture that  

implements that ISA.  RISC is not a set of rules; there is no “pure RISC” design.  The acronym  

CISC, standing for “Complex Instruction Set Computer”, is a term applied by the proponents  

of RISC to computers that do not follow that design. 

The first designed called “RISC” date to the early 1980’s.  The movement began with two  

experimental designs, the IBM 801 in 1980 and the RISC 1, developed by UC Berkeley in 1981. 

We should note that the original RISC machine was probably the CDC–6400 designed and built  

by Mr. Seymour Cray, then of the Control Data Corporation.  In designing a CPU that was  

simple and very fast, Mr. Cray applied many of the techniques that would later be called “RISC”  

without himself using the term. 

Why CISC? 

Early CPU designs could have followed the RISC philosophy, the advantages of which were  

apparent early.  Why then was the CISC design followed?  Here are two reasons: 

1. CISC designs make more efficient use of memory.  In particular, the “code density” is better,  

more instructions per kilobyte.  After all, memory was very expensive and prone to failure. 

In 1973, memory costs were about $400,000 per megabyte, and the average memory size was 

on the order of 8 to 32 KB. 

2. CISC designs close the “semantic gap”; they produce an ISA with instructions that  

more closely resemble those in a higher–level language. This should provide better  

support for the compilers. 

The two assumptions above are no longer true.  Beginning with the use of VLSI for memory  

chips in the late 1980’s, memory prices began to drop, from $2,000 per megabyte in 1983 to  

less than $50 per gigabyte in 2010. 

The second reason did not hold up to experimental scrutiny.  While it was thought that more  

complex assembly languages would provide better support for compilers, it was discovered that  

compilers did not use those complex features.  

Beginning in the early 1980’s, computer designers began to suspect that simpler instruction set  

architectures would lead to simpler and faster control units, hence to faster computers.  This was  

the beginning of the RISC movement.  The basic RISC principle: “A simpler CPU is a faster  

CPU”.  A number of the more common strategies include: 

 1) Fixed instruction length, generally one word.  This simplifies instruction fetch. 

 2) Simplified addressing modes. 

 3) Fewer and simpler instructions in the instruction set. 

 4) Only load and store instructions access memory;  no add memory to register, add  

  memory to memory, etc.  Memory access is the slow part of computation, so limiting  

  such access will speed up the computer. 

 5) Let the compiler do it.  Use a good compiler to break complex high-level language  

  statements into a number of simple assembly language statements. 
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As indicated above, the primary noticeable difference between a RISC design and a CISC  

design will be found in the structure of the assembly language.  The easiest way to illustrate  

this difference is to examine the handling of a single (fairly silly) Java statement by each of  

the two designs.  The Java statement is as follows. 

    x[k++] = y[m++] + z[n++] ;  // Don’t ask what this does. 

By assumption, this single statement is posited to be equivalent to the following block of code. 

    x[k] = y[m] + z[n] ; 

    k = k + 1 ; 

    m = m + 1 ; 

    n = n + 1 ; 

Most compilers for the VAX–11/780 would compile the above statement into one VAX  

assembly language instruction, which could handle both the addition and the adjustment of  

all three array indices.  Of course, there was no Java compiler in 1980. 

A less conventional CISC design might compile the first Java statement into four lines of  

assembly language, one for each of the Java lines in the equivalent code block. 

Most modern RISC machines are load/store devices, in which arithmetic operations are done  

only on values in registers and never directly on memory addresses.  What now follows is  

pseudo–Pentium assembly language, written in the style of a load/store RISC machine.  This  

uses two registers, EAX and EBX, that are true 32–bit Pentium registers. 

    LOAD  EAX, Y[M] 

    LOAD  EBX, Z[N] 

    ADD   EAX, EBX     // EAX GETS THE SUM 

    STORE EAX, Z[K] 

    LOAD  EAX, K 

    INC   EAX          // EAX IS INCREMENTED BY 1 

    STORE EAX, K       // K++ 

    LOAD  EAX, M 

    INC   EAX 

    STORE EAX, M       // M++ 

    LOAD  EAX, N 

    INC   EAX 

    STORE EAX, N       // N++ 

What might take one very complex VAX assembly language instruction takes 13 instructions  

on our hypothetical, but realistic, load/store RISC design.  This is one consideration to keep in  

mind when comparing execution rates of RISC and CISC designs.  It is true that the RISC  

design will execute more instructions per second that the CISC design, but each RISC  

instruction does less work than the CISC instruction.  What is the total work per unit time? 


