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Chapter 1 – Introduction: What Is a Computer? 

This is a textbook for a course on computer organization.  It is then proper to begin with the  

simple question with the apparently simple answer “What is a computer?”  There are a number  

of answers to this question.  All are good, correct, and serviceable.  Which of them to use  

depends, as almost always, on the context in which the question is asked. 

We can begin with an answer that a mathematician might give.  A computer can be viewed as a  

physical implementation of mathematical logic.  This subject devotes much time and thought to  

discussion of what functions are computable and how efficiently they can be computed.  In the  

sense of mathematical logic, computers are merely devices to test these theories.  Those students  

interested in this approach to understanding computers are encouraged to take the course  

CPSC 5128 (Theory of Computation) to learn of the numerous practical achievements of this  

apparently esoteric field. 

Computers have been seen, and frequently used to be seen, merely as hardware.  Again, this is a  

valid approach; it just does not cover the whole picture for a modern computer.  As an example  

of this hardware only view, we consider a 1970’s-vintage computer. 

The PDP–11 was a 16–bit processor introduced by the Digital  

Equipment Corporation in 1970.  The first two models released, the  

PDP–11/20 and PDP–11/15, were elegant designs, but rather  

primitive by modern standards. 

The picture is that of a PDP–11/20.  From top to bottom in the  

picture, we see three main components: a pair of small tape readers,  

a paper tape reader/punch, and the front panel of the CPU.  Note the  

front panel switches; these allowed one to examine directly the  

contents of any memory location, and to change the value in that  

location.  The computer could be programmed directly in machine  

language via the front panel switches; your instructor has done this  

frequently. 

The point of this little detour down memory lane is that this  

computer could be sold as hardware only, with no software at all.   

It was possible to enter a primitive boot program through the front  

panel switches, and then read a more sophisticated loader that one  

had prepared on paper tape.  This was put into the paper tape reader,  

near the center of the center unit.  The part of this unit that appears to  

have paper tape coming out is the paper tape punch. 

As configured here, all input and output was either through the paper  

tape reader/punch or through a teletype.  At that time, the term  

“GUI” had yet to be invented.  This is just a piece of hardware,  

albeit a very nice one.  It even has a fan club (www.pdp11.org). 

The point to be made here is that the modern computer is to be viewed as a complete system.   

This system comprises hardware, software, network access, and a graphical user interface.  The  

most obvious software on modern computers is the Operating System, which is commonly some  

variant of Windows such as Windows/XP or Windows–7.
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The Modern Computer 

The modern computer has become almost an appliance, to be used by a variety of people for a  

number of tasks.  Admittedly, one of the tasks is to be programmed and execute those programs;  

in this it shares the heritage of the PDP–11/20 shown above.  Your author’s first acquaintance  

with computers was as equation solvers.  We had numerical problems to solve, and the easiest  

way to do that was to use a computer.  The typical output was pages and pages of printed data;  

the danger being that one would fall asleep from boredom before understanding the results. 

In addition to serving as a number cruncher, the modern computer has many additional tasks.   

These illustrate the idea of a computer as a complete system with hardware as only one part.  As  

an example of a modern computer, your author presents a picture and description of the Acer  

Netbook similar to that he bought for his wife in November 2010.  The figure below was taken  

from the Acer web site (http://us.acer.com/ac/en/US/content/group/netbooks). 

 

While not the point of this chapter, we might as well give the technical specifications of this  

device.  It is approximately 11 inches by 7.5 inches.  When closed it is a bit less than one inch  

thick.  This CPU model was introduced in the second quarter of 2010.  It is made in China. 

Here are more specifications, using language that we will explain as a part of this course. 

Some of the data below is taken from the stickers on the case of the computer.  Other  

information is from the Intel web site [R001]. 

 The CPU is an Intel Core i3–330UM, which operates at 1.2 GHz. 

It is described by Intel as “an Ultra Low Voltage dual–core processor 

for small and light laptops. 

 It has a three–level cache.  Each of the two cores has a L1 (Level 1) cache  

(likely a 32–kilobyte split cache, with 16 KB for instructions and 16 KB for  

data), and a 512 KB L2 cache.  The two cores share a common 3 MB L3 cache. 

 The computer has 2 GB (2,048 MB) of DDR3 memory. 

The maximum memory bandwidth is 12.8 GB/second. 

 The computer has a 256 GB hard disk and two USB ports that can be used  

for USB “flash” drives.  The hard disk is likely a SATA drive. 

 The display is a 1366 by 768 “LED LCD”. 

 The computer has a built–in GSM card for access to the global Internet  

through the AT&T wireless telephone network. 
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The author wishes to congratulate those readers who understood the above description  

completely.  A good part of this textbook will be devoted to explaining those terms.  We now  

turn to the main topic of this chapter.  How should we view a modern computer? 

The best description of this computer as an integrated system relates to the next picture. 

 

This figure shows the GUI (Graphical User Interface) for a beta release of Windows 7.  While  

the final version of Windows 7 probably has a somewhat different appearance, this figure is  

better at illustrating the concept of a computer as an entire system. 

The Virtual Machine Concept 

Another way to grasp this idea of the computer as a system comprising hardware, software,  

networks, and the graphical user interface is to introduce the idea of a virtual machine.  Those  

students who have programmed in the Java programming language should have heard of the  

JVM (Java Virtual Machine).  In this, we imagine that we have a computer that directly  

executes the Java byte code emitted by the Java compiler.  While such a computer could be built,  

and would then be a real machine, the most common approach is to run the JVM as software on  

an existing hardware platform.  This idea of virtual machines translates well into our discussion  

here.  What is the computer doing for you?  Is it an appliance for running a web browser?  If so,  

you might have very little interest in the computer’s ISA (Instruction Set Architecture).  If the  

e–mail works and you can access Facebook, that might be all you are interested in.  OK, maybe  

we need to add some MMOG (Massively Multiplayer Online Games) and Second Life to boot.   

Anyone for “World of Warcraft” (worldofwarcraft.us.battle.net)? 

Another way to look at this “top level” of the computer is to consider the image above.  One  

might think of a computer as a device that does things when one clicks on icons.  It was not  

always that way.  Even after the video display was first used, the menus were old DOS–style text  

menus that were difficult to navigate.  As an example, your author recalls a NASA web site with  

an interface that was text based.  This was rather difficult to use; in the end it was not worth the  

trouble to find anything.  It was basically the same computer then as now (though today’s  

version is a lot faster).  What differs is the software.  
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One view of virtual machines focuses on the programming process.  The basic idea is that there  

is a machine to be programmed in a language appropriate to its logical complexity.  In the usage  

suggested by Tanenbaum [R002], the lowest level of the computer, called “M0”, corresponds to  

the digital logic in the Central Processing Unit.  Its low level language, called “L0”, is hardly a  

language at all.  It is a description of the digital signals that control the CPU and run through the  

datapaths of the CPU to enable the computation.  This course will describe this low level an a bit  

of detail.  A complete study of this level is more properly the subject of a course on Computer  

Architecture, such as CPSC 5155 at Columbus State University. 

The following figure is adapted from Tanenbaum [R002], with addition of an additional level,  

which your author calls “Level 6 – Application”.  We now discuss a bit of this idea and relate it  

to the systems approach to considering computer organization. 

The idea of the virtual machine concept is that  

any computer is profitably studied as having a  

number of levels.  The true computer is found at  

Level 0; it is machine M0 with language L0. 

In this scheme, the lowest level language, L0, is  

easiest to process using standard digital gates.  It  

is also the most difficult for humans to  

understand.  The higher levels are easier for  

humans, but more difficult for machines.  Upon  

occasion, machines have been built that can  

directly execute a Level 5 language in hardware,  

but these are complex and far too rigid for any  

commercial use. 

Conceptually, we have a sequence of machines,  

each with its own language.  In practical terms,  

we have a top to bottom flow, in which an  

instruction in Level (N) is transformed into an  

equivalent sequence of instructions at Level  

(N – 1). 

Note that Level 5 connects to both Level 4 and  

Level 3, reflecting two options for a compiler. 

Note that there are two ways in which a sequence of instructions at one level can be transformed  

into a sequence of instructions at the next lower level.  These are interpretation and  

translation.  In interpretation, software written in the lower level language reads, interprets, and  

carries out each instruction in turn.  The JVM (Java Virtual Machine) is a good example of  

interpretation.  There are two names associated with translation: compilation (when a Level 5  

language is translated) and assembly (when a Level 4 language is translated).  We should note  

that there is some ambiguity in these terms.  We speak of Java source code being compiled into  

Java byte code, which is then interpreted by the JVM.  This is a possibly important distinction  

that has very few practical effects on our discussions. 
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We note the two options for translation of a Level 5 language.  On the IBM mainframes, these  

languages are first converted to IBM Assembler Language and then assembled into binary  

machine language.  This is similar to the .NET architecture, in which a Level 5 language is first  

converted into an intermediate language before being compiled to machine language.  We shall  

return to the two–stage IBM process in just a bit. 

While the flow in the above diagram is obviously top to bottom, it is more easily explained in a  

bottom to top fashion, in which each virtual machine adds functionality to the VM below it. As  

noted above, the machine at level 0 is called “M0”.  It comprises basic digital gates activated by  

control signals.  It is these control signals that make the computer work.  At this level, the focus  

is on individual control signals, individual registers and memory devices, etc. 

Machine M1 operates at the micro–instruction level, translating these into control signals.   

Consider a simple register addition.  The micro–instruction would connect the two source  

registers to the adder, cause it to add, and connect the output to the destination register.  A  

sample micro–instruction is as follows: R1  B1, R2  B2, ADD, B3  R3.  This is read as  

one register loads bus B1 with its contents while another register loads B2, the ALU (Arithmetic  

Logic Unit) adds the contents of busses B1 and B2 and places the sum onto bus B3, from whence  

it is copied into the third register.  At this level, one might focus on the entire register file  

(possibly 8, 16, or 32 general purpose registers), and the data path, over which data flow. 

Machine M2 operates at the binary machine language level.  Roughly speaking, a binary  

machine language statement is a direct 1–to–1 translation of an assembly language statement.   

This is the level that is described in documents such as the “IBM System/360 Principles of  

Operation”.  The language of this level is L2, binary machine language. 

Machine M3 has a language that is almost identical to L2, the language of the level below it.   

The main difference can be seen in the assembly output of an IBM COBOL compiler.  Along  

with many assembly language instructions (and their translation into machine language), one will  

note a large number of calls to operating system utilities.  As mentioned above, one of the main  

functions of an operating system can be stated as creating a machine that is easier to program.   

We might mention the BIOS (Basic Input / Output System) on early Intel machines running  

MS–DOS.  These were routines, commonly stored in ROM (Read Only Memory) that served to  

make the I/O process seem more logical.  This shielded the programmer (assembly language or  

higher level language) from the necessity of understanding the complexities of the I/O hardware. 

In the virtual machine conceptualization, the operating system functions mainly to adapt the  

primitive and simplistic low–level machine (the bare hardware) into a logical machine that is  

pleasing and easy to use.  At the lowest levels, the computer must be handled on its own terms;  

the instructions are binary machine language and the data are represented in binary form.  All  

input to the computer involves signals, called “interrupts”, and binary bits transferred either  

serially or in parallel. 

The study of assembly language focuses on the ISA (Instruction Set Architecture) of a specific  

computer.  At this level, still rather low level, the focus must be on writing instructions that are  

adapted to the structure of the CPU itself.  In some ways, the Level 4 machine, M4, is quite  

similar to M2.  At Level 4, however, one finds many more calls to system routines and other  

services provided by the Operating System.  What we have at this level is not just the bare CPU,  

but a fully functional machine capable of providing memory management, sophisticated I/O, etc. 
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As we move to higher levels, the structure of the solution and all of the statements associated  

with that solution tend to focus more on the logic of the problem itself, independent of the  

platform on which the program executes.  Thus, one finds that most (if not all) Java programs  

will run unmodified on any computing platform with a JVM.  It is quite a chore to translate the  

assembly language of one machine (say the IBM S/370) into equivalent language to run on  

another machine (say a Pentium). 

The Level 5 machine, M5, can be considered to execute a high level language directly.  In a  

sense, the JVM is a Level 5 machine, though it does interpret byte code and not source code. 

At the highest level of abstraction, the computer is not programmed at all.  It is just used.   

Consider again the screen shot above.  One just moves the mouse cursor and clicks a mouse  

button in order to execute the program.  It may be working an Excel spreadsheet, connecting to  

the World Wide Web, checking one’s e–mail, or any of a few thousand more tasks.  As has been  

said before, at this level the computer has become an appliance. 

What has enabled the average user to interact with the computer as if it were a well–behaved  

service animal, rather that the brute beast it really is?  The answer again is well–written software.   

Occasionally, the low–level beast breaks through, as when the “blue screen of death” (officially  

the “Stop Error” [R003]) is displayed when the computer crashes and must be manually  

restarted.  Fortunately, this is happening less and less these days. 

The Lessons from RISC 

One of the lessons from the RISC (Reduced Instruction Set Computer) movement again points to  

the idea that the computer is best seen as a hardware/software complete system.  The details of  

the RISC designs are not important at this point; they will be mentioned later in this course and  

studied at some detail in any course on Computer Architecture, such as CPSC 5155 at Columbus  

State University.  The performance of any computer depends on a well–crafted compiler well  

matched to the Instruction Set Architecture of the Central Processing Unit.  One of the ideas  

behind the RISC movement is that the hardware in the CPU be simpler, thus leading to a simpler  

machine language.  The idea is that a well–written compiler can translate a complex high–level  

program into these simple machine language instructions for faster execution on the simpler  

hardware.  Again, the compiler is software.  Even the process of software execution should be  

considered as a mix of software and hardware concerns. 

The Computer as an Information Appliance 

One aspect of the use of a computer that is being seen more and more is that it is seen as an  

information appliance.  Specifically, the user does not program the computer, but uses the  

programs already loaded to access information, most commonly from the global Internet.  This  

leads one to view the computer as a client node in a very large network of information providers.   

We shall discuss the client/server model in some detail later.  For now, we just note that there  

are some computers that are almost always connected to the global Internet.  These devices,  

called servers, accept incoming messages, process them, and return information as requested.   

These are the server nodes.  The client nodes are intermittently connected to the global Internet,  

when they request services from the server nodes.  The period during which a client node is  

linked to a server node is called a session. 
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Were it not for the global Internet, the number of computers in general use would be only a  

fraction of what it is today.  Again, the modern computer must be seen as a complete system.   

As Dr. Rob Williams notes in his textbook [R004] 

“It is clear that computers and networks require both hardware and software in order  

to work.  … we will treat CSA [Computer Systems Architecture] as a study if the  

interaction of hardware and software which determines the performance of  

networked computer systems.” 

Dr. Williams appears to be a fan of football, which we Americans call “soccer”.  What follows  

is a paraphrase of his analogy of the distinction between hardware and software.  As it is not  

exactly a quotation, it is shown without quotation marks. 

The distinction between hardware and software can be likened between the distant  

relationship between the formal photograph of a basketball team, rigidly posed in front  

of the basketball goal, and the exciting unpredictability of the NBA playoff games.   

The static photograph of the players only vaguely hints at the limitless possibilities of  

the dynamic game. 

Developments in Hardware 

As this is a textbook on computer organization, we probably ought to say something about the  

progress in hardware.  The reader should consult any one of a number of excellent textbooks on  

Computer Organization and Architecture for a historical explanation of the evolution of the  

circuit elements used in computers.  The modern computer age can be said to have started with  

the introduction of the IC (Integrated Circuit) in the early 1970’s. 

Prior to integrated circuits, computers were built from discrete parts that were connected by  

wires.  The integrated circuit allowed for the components and the wires connecting them to be  

placed on a single silicon die (the plural of “die” is “dice”; think of the game).  The perfection of  

automated fabrication technologies lead to the development of integrated circuits of ever more  

increasing complexity.  The next figure shows an early integrated circuit.  What appears to be  

long straight lines are in fact traces, which are strips of conductive material placed on the chip to  

serve as wires conducting electrical signals.  Some of the larger components are likely transistors  

directly fabricated on the chip. 
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The early integrated circuit chips were housed in a larger structure in order to allow them to be  

connected on a circuit board.  Here is a picture of a DIP (Dual In–line Pin) chip.  This chip  

appears to have forty pins, twenty on this side and twenty on the opposite side. 

 

One of the main advantages of integrated circuits is seen by comparison with the backplane of a  

computer from 1961.  This is the Z23, developed by Konrad Zuse. 

What the reader should notice here is the entangled sets  

of wires that are connecting the components.  It is  

precisely this wiring problem that gave rise to the  

original integrated circuits.  If the components of a circuit  

and the connecting wires could be etched onto a silicon  

surface, the complexity of the interconnections would be  

greatly decreased.  This would yield an improvement in  

the quality control and a decrease in the cost of  

manufacture. 

It should be no news to anyone that electronic computers have progressed impressively in  

power since they were first introduced about 1950.  One of the causes of this progress has  

been the constant innovation in technology with which to implement the digital circuits.   

The last phase of this progress, beginning about 1972, was the introduction of single–chip  

CPUs.  These were first fabricated with LSI (Large Scale Integrated) circuit technology, and  

then with VLSI (Very Large Scale Integrated) circuitry.  As we trace the later development  

of CPUs, beginning about 1988, we see a phenomenal increase in the number of transistors  

placed on CPU chip, without a corresponding increase in chip area. 

There are a number of factors contributing to the increased computing power of modern  

CPU chips.  All are directly or indirectly due to the increased transistor density found on  

those chips.  Remember that the CPU contains a number of standard circuit elements, each  

of which has a fixed number of transistors.  Thus, an increase in the number of transistors on  

a chip directly translates to an increase in either the number of logic circuits on the chip, or  

the amount of cache memory on a chip, or both.  Specific benefits of this increase include: 

 1. Decreased transmission path lengths, allowing an increase in clock frequency. 

 2. The possibility of incorporating more advanced execution units on the CPU.  For  

  example, a pipelined CPU is much faster, but requires considerable circuitry. 

 3. The use of on–chip caches, which are considerably faster than either off–chip 

  caches or primary DRAM. 
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For VLSI implementations of CPU chips, the increase in transistor count has followed what  

is commonly called “Moore’s Law”.  Named for Gordon Moore, the co–founder of Intel  

Corporation, this is an observation on the number of transistors found on a fixed–sized  

integrated circuit.  While not technically in the form of a law, the statement is so named  

because the terms “Moore’s Observation”, “Moore’s Conjecture” and “Moore’s Lucky  

Guess” lack the pizazz that we expect for the names of popular statements. 

In a previous chapter, we have shown a graph of transistor count vs. year that represents one  

statement of Moore’s Law.  Here is a more recent graph from a 2009 paper [R005].  The  

vertical axis (logarithmic scale) represents the transistor count on a typical VLSI circuit. 

 

By itself, Moore’s law has little direct implication for the complexity of CPU chips.  What it  

really says is that this transistor count is available, if one wants to use it.  Indeed, one does  

want to use it.  There are many design strategies, such as variations of CPU pipelining  

(discussed later in this textbook), that require a significant increase in transistor count on the  

CPU chip.  These design strategies yield significant improvements in CPU performance, and  

Moore’s law indicates that the transistor counts can be increased to satisfy those strategies. 

We see an earlier result of Moore’s Law in the next figure, which compares Central Processing  

Units from three implementations of the PDP–11 architecture in the 1980’s.  Each circuit  

implements the same functionality.  The chip at the right is about the same size as one of the five  

chips seen in the right part of the central figure. 
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The utility of Moore’s Law for our discussion is the fact that the hardware development that it  

predicted has given rise to very impressive computing power that we as software developers  

have the opportunity to use.  One of the more obvious examples of this opportunity is the recent  

emergence of GPUs (Graphical Processing Units), which yield high–quality graphics at  

reasonable costs, leading to the emergence of the video game industry. 

The Power Wall 

While the increase in computing power of CPUs was predicted by Moore’s Law and occurred as  

expected, there was an unexpected side–effect that caught the industry by surprise.  This effect  

has been given the name “The Power Wall”.  Central Processing Units became more powerful  

primarily due to an increase in clock speed and an increase in circuit complexity, which allowed  

for more sophisticated logic that could process instructions more quickly. 

What happened is that the power consumed by the CPU began to grow quickly as the designs  

incorporated faster clocks and more execution circuitry.  In the next figure we see the clock  

speeds and power consumptions of a number of CPUs in the Intel product line.  The high point  

in both clock speed and power consumption was the Prescott in 2004.  The following figure  

was taken from the textbook by Patterson and Hennessy [R007]. 

 

So far, so good; the power supplies have never been an issue in computer design.  However, all  

the power input to a CPU chip as electricity must be released as heat.  This is a fundamental law  

of physics.  The real problem is the areal power density; power in watts divided by surface area  

in square centimeters.  More power per square centimeter means that the temperature of the  

surface area (and hence the interior) of the CPU becomes excessive. 

The Prescott was an early model in the architecture that Intel called “NetBurst”, which was  

intended to be scaled up eventually to ten gigahertz.  The heat problems could never be  

handled, and Intel abandoned the architecture.  The Prescott idled at 50 degrees Celsius (122  

degrees Fahrenheit).  Even equipped with the massive Akasa King Copper heat sink , the  

system reached 77 Celsius (171 F) when operating at 3.8 GHz under full load and shut itself  

down. 
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As noted above, increasing the power to a CPU without increasing its area must lead to an  

increase in the power density and hence the operating temperature of the CPU.  Unfortunately,  

this increased the power dissipation of the CPU chip beyond the capacity of inexpensive cooling  

techniques.  Here is a slide from a talk by Katherine Yelick of Lawrence Berkeley National Lab  

[R006] that shows the increase of power density (watts per square centimeter) resulting from the  

increase in clock speed of modern CPUs.  The power density of a P6 approaches that of a shirt  

iron operating on the “cotton” setting.  One does not want to use a CPU to iron a shirt. 

 

Later in the text we shall examine some of the changes in CPU design that have resulted from  

problem of heat dissipation. 

Overview of CPU Organization 

The modern computer is a part of a classification called either a von Neumann machine or a  

stored program computer.  The two terms are synonyms.  The idea is that the computer is a  

general purpose machine that executes a program that has been read into its memory.  There are  

special purpose computers, which execute a fixed program only.  While these are commercially  

quite significant, we shall not mention them to any great extent in this course. 

Stored program computers have four major components: the CPU (Central Processing Unit), the  

memory, I/O devices, and one or more bus structures to allow the other three components to  

communicate.  The figure below illustrates the logical organization. 

 
Figure: Top-Level Structure of a Computer 
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The functions of the three top-level components of a computer seem to be obvious.  The I/O  

devices allow for communication of data to other devices and the users.  The memory stores both  

executable code in the form of binary machine language and data.  The CPU comprises  

components that execute the machine language of the computer.  Within the CPU, it is the  

function of the control unit to interpret the machine language and cause the CPU to execute the  

instructions as written.  The Arithmetic Logic Unit (ALU) is that component of the CPU that  

does the arithmetic operations and the logical comparisons that are necessary for program  

execution.  The ALU uses a number of local storage units, called registers, to hold results of  

its operations.  The set of registers is sometimes called the register file. 

Fetch-Execute Cycle 

As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program  

computer.  The CPU fetches each instruction from the memory unit, then executes that  

instruction, and fetches the next instruction.  An exception to the “fetch next instruction” rule  

comes when the equivalent of a Jump or Go To instruction is executed, in which case the  

instruction at the indicated address is fetched and executed. 

Registers vs. Memory 

Registers and memory are similar in that both store data.  The difference between the two is  

somewhat an artifact of the history of computation, which has become solidified in all current  

architectures.  The basic difference between devices used as registers and devices used for  

memory storage is that registers are usually faster and more expensive (see below for a  

discussion of registers and Level–1 Cache). 

The origin of the register vs. memory distinction can be traced to two computers, each of which  

was built in the 1940’s: the ENIAC (Electronic Numerical Integrator and Calculator – becoming  

operational in 1945) and the EDSAC (Electronic Delay Storage Automatic Calculator –  

becoming operational in 1949).  Each of the two computers could have been built with registers  

and memory implemented with vacuum tubes – a technology current and well-understood in the  

1940’s.  The difficulty is that such a design would require a very large number of vacuum tubes,  

with the associated cost and reliability problems.  The ENIAC solution was to use vacuum tubes  

in design of the registers (each of which required 550 vacuum tubes) and not to have a memory  

at all.  The EDSAC solution was to use vacuum tubes in the design of the registers and mercury  

delay lines for the memory unit. 

In modern computers, the CPU is usually implemented on a single chip.  Within this context, the  

difference between registers and memory is that the registers are on the CPU chip while most  

memory is on a different chip.  Now that L1 (level 1) caches are appearing on CPU chips (all  

Pentium™ computers have a 32 KB L1 cache), the main difference between the two is the  

method used by the assembly language to access each.  Memory is accessed by address as if it  

were in the main memory that is not on the chip and the memory management unit will map the  

access to the cache memory as appropriate.  Register memory is accessed directly by specific  

instructions.  One of the current issues in computer design is dividing the CPU chip space  

between registers and L1 cache: do we have more registers or more L1 cache?  The current  

answer is that it does not seem to make a difference. 
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The C/C++ Programming Language 

A good part of the course for which this text is written will concern itself with the internal  

representations of data and instructions in a computer when running a program.  Items of interest  

include the hexadecimal representations of the following: the machine language instructions, the  

values in the registers, the values in various memory locations, the addressing mechanisms used  

to associate variables with memory locations, and the status of the call stack.  The best way to do  

this is to run a program and look at these values using a debugger that shows hexadecimal  

values.  Following the lead of Dr. Rob Williams, your author has chosen to use the Microsoft  

Visual Studio 8 development environment, and use the language that might be called “C/C++”. 

The C programming language was developed between 1969 and 1973 by Dennis Ritchie at the  

Bell Laboratories for use with the Unix operating system.  This is a very powerful programming  

language, which is full of surprises for the inexperienced programmer.  The C++ language was  

developed by Bjarne Stroustrup, also of Bell laboratories, beginning in 1979.  It was envisioned  

as an improved version of the C language, and originally called “C with Classes”.  It was  

renamed C++ in 1983. 

Your author’s non–standard name “C/C++” reflects the use we shall make of the programs  

written as examples.  For the most part the program will be standard C code, compiled by a  

C++ compiler.  For this course, it is sufficient to have “C++ without classes”. 

The major difference between our C/C++ and the standard C language is that the old printf  

routine is not used, being replaced by the C++ cout (say “See–out”) output stream.  This  

is seen in comparing two versions of the standard Hello World program. 

Here is the program, as written in standard C. 

#include <stdio.h> 

   main( ) { 

       printf("Hello, world! \n"); 

       return 0; 

       } 

Here is the program, as written in standard C++. 

#include <iostream> 

using namespace std;  // Allows standard operators to be used. 

   main( ) { 

       cout << "Hello, world!” << endl; 

       return 0; 

       } 

Another notable difference is found in the handling of subprograms.  In Java, it is common to  

call these “methods”, whether or not they return a value.  In both C and C++, these are called  

“functions”.  What some would call a subroutine, each of these languages calls a “function  

returning void”.   

Another issue of interest is the syntax for declaring and calling functions with arguments called  

by reference.  The standard example of this is the swap or flip function, which swaps the  

values of its arguments.  We shall discuss a function to swap the values of integer variables. 
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The C approach is dictated by the fact that all arguments are passed by value.  The value to  

be passed here is not that of the variable but its address.  The value of the address can then be  

used to reference and change the value of the variable. 

flip(int *x, int *y)  // Pointers 

  { 

    int temp; 

    temp = *x;   // Get value pointed to by *x 

    *x = *y; 

    *y = temp; 

   } 

This function is called as follows. 
       flip (&a, &b);  // Passes pointers to a and b 

The C++ approach is somewhat different.  Here is the function again, seen within a complete  

program.  The screen shot shows the compiled C++ code that your author was able to run.  Line  

23 shows an apparently useless input operation; the input value is never used.  The reason for  

this is to freeze the output screen so that it can be viewed.  Lines 4 and 15 were created  

automatically by the IDE. 

 

The standard C code at the top of this page is shown just for comment.  The C++ code, seen in  

the screen shot, is more typical of the types of programs that will be required for the course for  

which this text was written.  The focus will be on running small programs and using the  

debugger to observe the internal structures. 
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Setting Up for Debugging 

The appendix, MS Visual Studio 8, Express Edition, in the book by Dr. Rob Williams has  

some valuable suggestions for configuring the IDE to give valuable debug information.  Here  

are some more hints.  All that your author can claim here is that these worked for him. 

1. Create the project and enter the source code, saving everything as appropriate. 

2. Right mouse click on the menu bar just below the close [X] button. 

 Select the Debug, Standard, and Text Edit windows. 

3. Go to the Debug menu item and select “Options and Settings”. 

 Go to the General options and check the box “Enable address–level debugging” 

4 Go to the Tools menu item and select “Customize”.  Select the Debug toolbar  

 and anything else you want. 

5. Place the mouse cursor on the left of one of the line numbers in the code listing. 

 Left click to highlight the line. 

6. Go to the Debug menu item and click “Toggle Breakpoint”. 

 Function key [F9] will do the same thing. 

7. Start the debugger.  Wait for the program to build and begin execution. 

8. After the program has stopped at the breakpoint, go to the Debug menu item,  

 select “Windows” and select the following window (some will be already selected): 

 Breakpoints, Output, Autos, Locals, Call Stack, Memory, Disassembly, and Registers. 

9. Select a tab from the bottom left window and view the contents.  Your author’s IDE shows  

 these tabs: Autos, Locals, Memory 1, Memory 2, Registers, Threads, and a few more. 

10. Notice the command prompt on the bottom bar of Windows.  Click on this 

 to see where the output will go. 
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