Chapter 10 – Serial Connections
We now begin our discussion of data communication between devices.  This could cover any 
number of types of devices: computers, computer peripherals, ATM machines, etc.  In general 
network theory, these are called communicating nodes.  The task of the network is to accept 
and deliver data in a form that is correct and useable.  The nature of the data source and that of 
the data destination has little impact on the requirements for transmission.
Data can be transmitted in one of two forms: serial or parallel.  In serial data communications, 
there is usually one data line carrying one bit at a time.  In parallel data communications, there 
are a number of data lines, each carrying one bit at a time.  Thus, a common byte–parallel link 
would transmit eight data bits at the same time, one each on eight distinct lines.

A simple analysis would favor parallel data connections over serial data connections.  Consider 
a transmission medium with wires that carry 10 Mb/sec (megabits per second).  Remember that 
it is the bit rate that is important, as a single line carries a single bit.  A serial connection with 
this wire would carry 10 Mb/sec.  A parallel connection with 8 wires would carry 80 Mb/sec.
Why would one consider the serial option when the parallel option would seem to be much 
faster, apart from those few applications in which single bit transmission is required?  There 
are a number of answers, listed below in no particular order of importance.


1.
Serial data connections, having only one data wire, are cheaper.  As we shall see, a 


serial cable may have a number of wires (9 for RS232), still less than a parallel cable.

2.
The number of wires in a parallel data connection make the cable stiffer and harder 


to fit into small places.  Technicians do not like to work with cable that is stiff.


3.
Almost imperceptible differences in the multiple wires of a parallel cable can cause 


signals sent simultaneously to be received at different times at the receiving node.  


This problem can be managed by using only short parallel cables or by reducing the 


transmission rate, hence the time during which each signal keeps a given value.


Here is an imaginary scenario with timings that may or may not be typical.  It is the 


simplest parallel connection with two wires.  Suppose that two signals are sent 


simultaneously, but that one is delayed due to condition of its wire.
[image: image29.emf]




In this example, the sample window time is too small to allow for the different signal 


arrival times.  Reducing the data rate would allow for increasing the time duration of the 


sample window to a point where the signals might be properly sampled.
In general, a signal propagates on a data line at about 2/3 of the speed of light, approximately 
20 centimeters per nanosecond.  The precise speed depends on the electrical characteristics of 
the line and the insulation surrounding it.  As each line in a parallel cable will have slightly 
different electrical characteristics, there is always this problem of different signal arrival times.

This chapter will cover a number of topics related to sequential transmission of data.  We begin 
with the problem of encoding data for transmission.  This might be surprising; why not just 
encode everything in ASCII and send it.  There is the minor issue of EBCDIC, used on IBM 
mainframes; that is just another encoding.  The transmission of printable characters (with ASCII 
encodings between 32 and 126 inclusive), this is the complete solution.  The issue arises in the 
transmission of binary data, such as MP3 files or pictures.  Any file, textual or binary, can be 
broken into bytes for transmission one byte at a time.  This is called “serialization”.  
The main difficulty with the transmission of arbitrary binary data relates to the early history of 
serial data transmission, in which one or both of the communicating nodes might be a classical 
ASR33 teletype.  We begin by discussing a simple error detection method.
In the early days of data transmission, many different encoding methods were used to transmit 
textual data.  Given the desire to transmit at least 36 different characters (26 alphabetic and 10 
digits), not to mention punctuation, it was obvious that a 5–bit encoding would not suffice; 
25 = 32, and 5 bits would encode only 32 different symbols.  For some time, 6–bit encodings 
were used.  The desirability of transmitting lower case alphabetic characters and transmission 
control characters quickly made this encoding obsolete.

The next obvious choice was a 7–bit code; 27 = 128, allowing for the encoding of 128 distinct 
characters.  This worked rather well, and persists in the standard 7–bit ASCII.  As 8–bit bytes 
were becoming a popular memory organization, it was decided to add a parity bit to the 7–bit 
code in order to pad it out to 8 bits and allow single–bit error detection.
The parity of an 8–bit datum is based on the count of 1 bits.  If that count is even, the parity is 
said to be even.  If that count is odd, the parity is said to be odd.  The transmission standard will 
be either even parity or odd parity.  The parity bit is set based on the count of 1 bits in the 7–bit 
code.  If the 7–bit ASCII has an even number of 1 bits, the parity bit is set to 1 so that the total 
will be an odd number.  If the 7–bit ASCII has an odd number of 1 bits, the parity bit is set to 0.

Here are some examples, based on upper case alphabetical characters.

	Character
	7–bit ASCII
	Even Parity
	Odd Parity

	‘B’
	100 0010
	0100 0010
	1100 0010

	‘C’
	100 0011
	1100 0011
	0100 0011

	‘D’
	100 0100
	0100 0100
	1100 0100

	‘E’
	100 0101
	0100 0100
	1100 0100


In general, there is little reason to favor one method over the other; just pick one and use it.  
One minor consideration is the encoding of the ASCII NUL (code = 0) for 8–bit transmission; 
in even parity it is “0000 0000”, while in odd parity it is “1000 0000”, at least a single 1 bit.
Here is the second bit of history to consider before moving on to consider data transmission.  
This is due to the heavy use of transmission control characters in the early days.  Here are a few:
	Character
	Keyed As
	7–bit ASCII
	Comment

	EOT
	^D
	000 0100
	Indicates end of transmission.

	NAK
	^E
	000 0101
	Data not received, or received with errors.

	DC1
	^Q
	001 0001
	XON: Resume transmission.

	DC3
	^S
	001 0011
	XOFF: pause transmission.  The receiver buffer is full; new input data cannot be processed


So say that these design features have been “hardwired into the design” of most transmission 
units is to speak literally.  It is a common design practice to implement functionality in hardware, 
rather than software, if that functionality is frequently needed.  The increase in efficiency of the 
unit more than pays for the increased cost of the hardware.  
Given these two facts, now consider what will happen to a general binary file if it is serialized 
into 8–bit bytes and transmitted on byte at a time.  It is likely that about 50% of the bytes 
arriving at the receiver will be rejected as having the wrong parity.
Suppose the receiver in a two–way connection receives the binary pattern 0001 0011, the 
8–bit odd–parity encoding of the DCE 3 (XOFF) character.  It will promptly cease data 
transmission back to the source until the DCE 1 (XON) character is received, an event that 
is not likely as the sender has stopped transmission.  While this feature is useful in managing 
transfer to and from a video terminal, here it is a real problem.
COMMENT:  Many students taking courses that require access to an IBM mainframe will 
find the code “XMIT BLOCK” displayed on the screen.  One way that might resume data 
transmission is to use the Control–Q option, sending the XON character to the mainframe.

The issue of sending raw binary over a serial link is most often seen in e–mail attachments.  
The MIME (Multipurpose Internet Mail Extension) standard was developed to handle this.  
There are several methods for making raw binary data “safe to transmit”.  All involve packing 
three 8–bit bytes into a 24–bit integer, and then breaking it into four 6–bit transmission units, 
each of which is then expanded into 8 bits with the proper parity.
Note that each 6–bit transmission unit, viewed as an unsigned 6–bit integer, has value in the 
range 0 through 63 inclusive.  The UNIX encoding scheme, discussed here, adds 32 to each 
of these values to generate an integer in the range 32 to 95; ‘ ’ to ‘-’.

Consider the 3–byte sequence

0001 0011  0100 0001  0101 0011.
As a 24–bit integer, this is

000100110100000101010011.

As four 6–bit units, this is

000100 110100 000101 010011.

Represent each of these in 8 bits
00000100 00110100 00000101 00010011.

Add 32 to each


00100000 00100000 00100000 00100000.

Values in range 32 to 95

00100100 01010100 00100101 00110011.

Adjust for odd parity


10100100 01010100 00100101 10110011.

These are the codes for

   $        T        %        7.

The MIME standard calls for a text block describing the encoded content to precede that 
encoded content.  As an example, we use part of figure 10.3 from William’s book [R004].

Content-Type: application/gzip;

 name=“book.pdf.gz”

Content-Transfer-Encoding: base 64

Content-Disposition: inline;

 filename=“book.pdf.gz”
Timing Synchronization: Frequency and Phase
At this moment, we continue with the pretense that the transmitter sends a sequence of 1’s and 
0’s on the communication line, and ignore the actual signaling voltages.  We examine the 
problem associated with the receiver’s sampling of the signal on the line.  Here we assume 
that the line frequency is known and that the transmitter sends out pulses at that frequency.  

Here is an idealized diagram of the situation at the transmitter for pattern 1101001.
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Ideally, the receiver clock is synchronized with the transmitter clock.  The receiver will sample 
the line voltage in the middle of the positive phase of its clock and retrieve the correct value.

[image: image3.emf]


But suppose that the transmitter and receiver clock are not synchronized.  Either they could 
be operating at slightly different frequencies or at the same frequency, but out of phase.  The 
more normal case is a difference in phase where the receiver samples at the wrong time.
[image: image4.emf]


Here the receiver clock is one half cycle out of phase with the transmitter clock.  One full 
cycle is called 360 degrees, so this is a 180 degree phase difference.
All designs call for the transmitter clock and receiver clock to have known frequencies; here 
we assume the same frequency.  While the crystal–locked oscillators in the clocks are quite 
accurate, they are not perfectly so.  For example, as of December 29, 2011, the specifications 
for the GX0–3232 listed a (15 ppm (part per million) frequency accuracy.  Suppose that the 
transmit frequency is supposed to be 100 kilohertz.  The real frequency might vary constantly 
between 99,998.5 and 100,101.5 hertz (cycles per second).  For this accuracy, one might 
expect there to be a problem every (0.5/1.5(10–5) = 33,000 clock pulses.  What happens 
is shown in exaggerated form in the figure below.  The phase of the receiver drifts 
with respect to that of the transmitter.
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The solutions that have been historically adopted have all involved periodic resynchronization 
of the two clocks to prevent this drift in phase due to the very slight frequency differences.  The 
most common solution remains in use today, because it works well and is easy to implement.
The RS232 Standard
We now look into details of a commonly used asynchronous communication protocol, called 
RS–232, as is commonly implemented.  The term “asynchronous” indicates that no clock 
pulses are transmitted, only data bits.  For this reason, it is important to have high quality 
clocks on both the transmitter and receiver.

This is a standard for transmitting binary information.  The transmitter asserts a voltage 
level on the transmission line to indicate the value of the bit being transmitted.  For the 
RS232 standard, the levels are as follows:


–9 volts
used to transmit a ‘1’ bit.
This is called “mark” in the standard.


+9 volts
used to transmit a ‘0’ bit
This is called “space” in the standard.

In this standard, each character is transmitted independently; thus, transmission of a string 
of characters will lead to a sequence of independent transmissions.  Each transmission begins 
with the line in the idle (mark) state, at –9 volts.  To initiate a character transmission, the line 
is driven to the space state, at +9 volts, for one clock period.  This is the “start bit”.
The character is then transmitted, one bit at a time, with the least significant bit first.  Following 
that, the line must remain idle for a fixed time.  This period is denoted as 1 or more “stop bits”.  
If the line must remain idle for two clock periods before the next transmission, the standard is 
said to call for 2 stop bits.  If the idle time is 1.5 clock periods, the standard is said to use 
1½ stop bits, though there is no half bit sent.  The letter ‘G’, with odd parity, is encoded 
as 11000111, and transmitted in reverse order, LSB first.
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The choice of the two voltages as negatives of each other is due to the desire to have the 
signal average at close to zero volts.  This minimizes the power transmitted across the line.
Error Detection and Correction
Errors can occur in any sort of data that is stored or transmitted, either in analog form or in 
digital form.  One of the benefits of the digital forms is that many such errors can be detected 
and some of them actually corrected.  This observation introduces the topic of error detection 
codes and error correction codes.

Parity, mentioned several times above, is the simplest form of error detection.  While it is easily 
and quickly applied, the parity will detect only single bit errors.  Parity, by itself, provides no 
mechanism by which errors can be corrected.

The parity of a data item is based on the count of 1 bits in the encoding of that item.  If the count 
is an odd number, the item has odd parity.  If the count is even, so is the parity.  The simplest 
example of parity is the augmentation of 7–bit ASCII with a parity bit.  The parity bit is set by 
the need to achieve the required parity.
If the required parity is even, then a parity bit of 1 will be required when the 7–bit ASCII 
contains an odd number of 1 bits, and a parity bit of 0 will be required when the 7–bit ASCII 
contains an even number of 1 bits.

If the required parity is odd, then a parity bit of 0 will be required when the 7–bit ASCII 
contains an odd number of 1 bits, and a parity bit of 1 will be required when the 7–bit ASCII 
contains an even number of 1 bits.

Consider transmission of the 7–bit ASCII code for ‘Q’; it is 101 0001.
Under even parity, this would be transmitted as the 8–bit item 1101 0001.
Under odd parity, this would be transmitted as the 8–bit item 0101 0001.

Suppose a single bit were changed in the transmission under odd parity.  The received value 
might be something like 0101 0011.  The count of 1 bits is now even; there has been an error.  
Note that there is no mechanism for identifying which bit is erroneous.  As there are only two 
options for a bit value, identifying the erroneous bit is equivalent to correcting the error.
Suppose that two bits were changed in the transmission under odd parity.  The received value 
might be something like 0101 1011.  Note that the number of 1 bits is again an odd number; 
this would pass the parity test and be accepted as “[”.  A human, looking at the string “[UEST” 
might reasonably suspect and correct the error, but the parity mechanism is of no help.

Parity is often used in systems, such as main memory for a computer, in which single–bit errors, 
though rare, are much more common than double–bit errors.  Since neither is particularly 
common, it often suffices to detect a byte as containing an error.

SECDED (Single Error Correction, Double Error Detection)

We now move to the next step: identify and correct the single–bit error.  Most algorithms for 
single error correction also allow the detection of double–bit errors.  One of the more common 
is known as a Hamming code, named after Richard Hamming of Bell Labs, who devised the 
original (7, 4)–code in 1950.  In general, an (N, M)–code calls for N–bit entities with M data 
bits and (N – M) parity bits; a (7, 4)–code has 4 data bits and 3 parity bits.  The original 
(7, 4)–code would correct single bit errors, but could not detect double–bit errors.
The ability to detect double–bit errors as well as correct single–bit errors was added to the 
(7, 4)–code by appending a parity bit to extend the encoded word to 8 bits.  Some authors 
call this augmented code an (8, 4)–code.  The functioning of the original (7, 4)–code is 
shown by the following equations and figure.  Let d1, d2, d3, and d4 be the four data bits to 
be transmitted, and let p1, p2, and p3 be the parity bits used to locate any single–bit error.
The parity bits are computed from the four data bits using the exclusive OR function, which is sensitive to the number of data bits set too 1.  Here is a truth table for a 3–input XOR.
	X
	Y
	Z
	X ( Y
	X ( Y ( Z
	Count of 1 bits in X, Y, Z

	0
	0
	0
	0
	0
	Even

	0
	0
	1
	0
	1
	Odd

	0
	1
	0
	1
	1
	Odd

	0
	1
	1
	1
	0
	Even

	1
	0
	0
	1
	1
	Odd

	1
	0
	1
	1
	0
	Even

	1
	1
	0
	0
	0
	Even

	1
	1
	1
	0
	1
	Odd
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Here are the three equations:
p1 = d1 ( d2 ( d4
p2 = d1 ( d3 ( d4
p3 = d2 ( d3 ( d4
The figure and equations differ from the those in the text by 

Williams [R004]. This discussion follows data in several web sites, including Wikipedia 

[R031].  It may be that the newer material reflects a change in naming the bits.
The process of transmission is the standard used for any error detection algorithm.

1.
The data bits are presented, and the parity bits are computed.


2.
The data bits along with the parity bits are transmitted.


3.
When received, the parity bits are identified and new parity values are


computed from the received data bits.  A mismatch between a computed 


parity value and a received parity bit indicates an error in transmission.

While the goal of this exercise is to locate erroneous bits from the calculations at the 
receiving end, it is worth while to examine the effect of a single bit that has become 
corrupted in transmission.  While the argument below is based on the equations above, it 
is seen more easily by considering the Venn diagram.
If d1 is changed in transmission, the parity bits p1 and p2 will compute to bad values.

If d2 is changed in transmission, the parity bits p1 and p3 will compute to bad values.

If d3 is changed in transmission, the parity bits p2 and p3 will compute to bad values.

If d4 is changed in transmission, the parity bits p1, p2, and p3 will all compute to bad values.

Note that any error in transmitting a single data bit will cause two or more parity bits to 
compute with bad values.  If a single parity bit computes as bad, the logical conclusion is 
that the individual parity bit was corrupted in transmission.
The following diagram illustrates two single–bit errors in transmission.
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The algorithm for identifying and correcting errors based on the computation of the parity bits 
p1, p2, and p3 and comparison with the received values is shown in the table below.
	p1
	p2
	p3
	Action

	Good
	Good
	Good
	None required.  No single–bit error in transmission.

	Bad
	Good
	Good
	p1 is bad.  Data bits are good.  Ignore the parity.

	Good
	Bad
	Good
	p2 is bad.  Data bits are good.  Ignore the parity.

	Good
	Good
	Bad
	p3 is bad.  Data bits are good.  Ignore the parity.

	Bad
	Bad
	Good
	d1 is bad.  Flip its value.

	Bad
	Good
	Bad
	d2 is bad.  Flip its value.

	Good
	Bad
	Bad
	d3 is bad.  Flip its value.

	Bad
	Bad
	Bad
	d4 is bad.  Flip its value.


Consider now what happens when there are two bit errors in the transmission.  
The figure below illustrates three of the possibilities.
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In the figure at left,p1 and p2 are bad.  This leads to the conclusion that there has been a single 
bit error in d1, whereas that bit is good and the two parity bits have been corrupted.  In the 
situation in the middle, only the single parity bit p3 seems to be bad, whereas it is two of the data 
bits, d3 and d4, that have been corrupted.  In the situation at right, one data bit, d1, and one parity 
bit, p3, are corrupted.  None of the three parity bits compute correctly, leading to the improper 
correction of data bit d4.
The main problem is that the (7, 4)–code will misidentify a double–bit error as a specific
single–bit error and apply a correction that further corrupts the transmission.  The question is 
that of how to distinguish when to apply the correction indicated in the above table and when to 
declare an uncorrectable double–bit error.  The answer is found in the parity of the 7–bit code.  
Any single–bit error in the transmitted 7 bits will change the parity, while any double–bit error 
will preserve the parity.  The answer is to declare for either even or odd parity, and append an 
appropriate single parity bit to the (7, 4)–code to get an (8, 4)–code.  The corrections above are 
applied only in the case that the overall parity computes incorrectly.
The final question on the (7, 4) Hamming code relates to the strange placement of the 
bits to be transmitted.  The four data bits d1, d2, d3, and d4, and the three parity bits 
p1, p2, and p3 are not placed in obvious positions in the transmission sequence.  Here is a 
table showing the positioning of these bits.  What is the rationale behind this scheme?
	Bit
	7
	6
	5
	4
	3
	2
	1

	Value
	d4
	d3
	d2
	p3
	d1
	p2
	p1


The rationale behind these bit placements can be seen when we consider the table above 
containing the corrective actions required.  We consider only the parity bits (bits 1, 2, 4) and 
restrict our attention to two–bit and three–bit errors.
Bits 1 and 2 are bad
p1 and p2 are bad
d1 in bit 3 is bad.  Note 1 + 2 = 3.
Bits 1 and 4 are bad
p1 and p3 are bad
d2 in bit 5 is bad.  Note 1 + 4 = 5.
Bits 2 and 4 are bad
p2 and p3 are bad
d3 in bit 6 is bad.  Note 2 + 4 = 6.
Bits 1, 2, and 4 are bad
p1 , p2 and p3 are bad
d4 in bit 7 is bad.  Note 1 + 2 + 4 = 7.
The obvious conclusion is that this placement leads to more efficient location of the bad 
data bit; hence more efficient correction of the received data.

A final observation on the bit placement indicates how this coding method may be extended 
to correct more bits.  In order to see the pattern, we give bit numbers in binary.
p1 in bit 001 is associated with d1, d2, and d4 in bits
011, 101, 111.

p2 in bit 010 is associated with d1, d3, and d4 in bits
011, 110, 111.

p3 in bit 100 is associated with d2, d3, and d4 in bits
101, 110, 111.

Bits associated with p1 are the ones with the 1 bit set: 001, 011, 101, and 111.

Bits associated with p2 are the ones with the 2 bit set: 010, 011, 110, and 111.

Bits associated with p3 are the ones with the 4 bit set: 100, 101, 110, and 111.

This scheme may be extended to any integer number of parity bits.  For p parity bits, the 
Hamming code calls for 2p – 1 bits, with d = (2p – 1) – p data bits.  The parity bits are 
placed at bits numbered with powers of 2.

Consider p = 4.  2p – 1 = 24 – 1 = 16 – 1 = 15, and d = 15 –4 = 11.  This is a (15, 11)–code.

Parity bit p1 is associated with bits 0001, 0011, 0101, 0111, 1001, 1011, 1101, and 1111.

Parity bit p2 is associated with bits 0010, 0011, 0110, 0111, 1010, 1011, 1110, and 1111.

Parity bit p3 is associated with bits 0100, 0101, 0110, 0111, 1100, 1101, 1110, and 1111.

Parity bit p4 is associated with bits 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111.

We who are mathematically inclined might delight in generating entire families of 
Hamming codes.  However, two is enough.

Cyclic Redundancy Check
Check sums are more robust methods for error detection.  This method is an example of those 
commonly used on blocks of data, also called “frames”.  Data being transmitted are divided into 
blocks of some fixed size and a checksum (a computed integer value, usually 16 or 32 bits) is 
appended to the frame for transmission.  The receiver computes this number from the packet data 
and compares it to the received value.  If the two match, we assume no error.  This method will 
reveal the presence of one or more bit errors in a transmission, but will not locate the error.

The CRC (Cyclic Redundancy Check) is a method used by IP (the Internet Protocol) for 
transmitting data on the global Internet.  This discussion will follow examples from the textbook 
by Kurose and Ross [R032].  
The CRC is implemented in hardware using shift registers and the XOR (Exclusive OR) gate.  
The truth table for the Boolean function XOR is as follows

	X
	Y
	X ( Y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0


The manual process of computing the CRC uses something resembling long division, except 
that the XOR replaces subtraction.  The CRC treats any message M as a sequence of bits.  
Denote the number of bits in a message by m.  For IP messages, this may be a large number,
say m ( 12,000.  Append to this message M of length m a check sum R of length r.  The full
frame thus has a length of (m + r) bits.  For IP version 4, r = 32.

Any of the standard CRC algorithms can detect burst errors in transmission that do not 
exceed r bits.  For IP version 4, r = 32, so the CRC can detect burst errors (strings of bad bits) 
of length less than 33.  
The CRC is generated by an (r + 1)–bit pattern, called the generator.  This is denoted by G.  
For IP version 4, this has 33 bits.  The CRC theory is based on the study of polynomials of order 
r over GF(2), the field of binary numbers.  For this reason, many discussions focus on G as a 
polynomial, though it can be represented as a binary string.  This discussion will proceed with 
very little more reference to abstract algebra.
For our example, G is the polynomial X3 + 1, represented as 1001, which stands for 
1(X3 + 0(X2 + 0(X1 + 1.  Note that this is a polynomial of order 3, represented by 4 bits.
In simple terms, the CRC for the message is the remainder from division of the binary number 
M(2r by the binary number G.  In binary, a number is multiplied by 2r by appending r zero bits.

Example:
M = 10111


G = 1001
so r = 3, as G has (r + 1) bits.

M(2r = 10111 000, the message with 3 zeroes appended.

Converted to decimal, M = 23 and M(2r =  M(8 = 184.  This may be interesting, but is of 
little use as the system is based on binary numbers.
The generator G is required to have the leftmost (most significant) bit set to 1.  Here it is the 
leading 1, the coefficient of X3.  In this, the standard follows the standard way of naming 
polynomials.  Consider the polynomial 0(X3 + 1(X2 + 0(X1 + 1.  Some might claim it to be 
a cubic, but almost everybody would say that it is the quadratic X2 + 1.
Begin division, remembering to use the XOR function in place of subtraction.  
10111 000 is being divided by 1001.  
           _____1____
     1001  ) 10111000

             1001
             0010

Here the XOR looks just like subtraction.  1001 is smaller than 1011, so write a 1 in 
the “quotient” and perform the XOR to continue.
           _____10___
     1001  ) 10111000
             1001
               101

We “bring down” the 1 bit and note that 1001 is larger than 101, so write a 0 in the 
quotient field and bring down another.  We next “bring down” the 0 and continue.

           _____101__
     1001  ) 10111000
             1001
               1010
               1001
                 11

Note again, that this is an XOR operation, not binary subtraction.  The result of binary 
subtraction would be 1, not 11.

We complete the “division”, discard the quotient and keep the remainder.

           _____10101
     1001  ) 10111000
             1001
               1010
               1001
                 1100
                 1001
                  101

Here R = 101.  Note that the remainder must be represented as a 3–bit number, so that were it 
equal to 11, it would be shown as 011.
To see the utility of the CRC, we divide (M(2r + R) by G.

Here 
M = 
10111 
M(2r = 
10111000
M(2r + R = 
10111101.
In the division below, we see that the remainder is 0.  This is a necessary and sufficient 
condition for the CRC to determine that the message lacks most common errors.
           _____10101

1001  ) 10111101
             1001
               1011
               1001
                 1001
                 1001
                  000

All of these computations can be done very efficiently in hardware.  Most implementations 
use shift registers and exclusive OR gates.
Shift Registers and the UART
So what is a shift register and what does it have to do with the UART (Universal Asynchronous 
Receiver and Transmitter)?  We shall first describe a common shift register, then show its 
application in computing CRC remainders, and finally show how it functions in a UART.
As noted in Chapter 6 of this text (as well as that by Rob Williams [R004]), a register is just a 
collection of flip–flops.  Data registers provide temporary storage for collections of bits.  In the 
memory system, there is a Memory Buffer Register (MBR).  Suppose that the CPU writes to the 
main memory one byte at a time.  The MBR would then be a collection of eight flip–flops, one 
for each bit to be written.  The CPU deposits the byte in the MBR, which then stores the byte 
until it can be copied into main memory.  The CPU continues with other processing.

A data register holding N bits is a collection of N flip–flops that are essentially independent of 
each other.  An N–bit shift register is a collection of flip–flops connected in a special way.  The 
next figure shows a 4–bit shift register, with the flip–flops numbered in standard fashion.  The 
input to flip–flop 0 is some bit source, such as a transmission line.  Note that the output of each 
flip–flop, except number 3 is fed into the next flip–flop on the clock pulse.  There are a number 
of options for the output of the last flip–flop, depending on the use for the shift register.
[image: image9.emf]


The first step in discussing the shift register is to show what shifts.  Then we discuss a 
number of standard uses; specifically the CRC computation and the UART.

In this discussion, we shall make a reasonable assumption about the timing of the flip–flop.  
The output (Q) does not change instantaneously with the input, but only after a slight delay.  
In terms of the clock input to the flip–flop, we assume that the input is sampled on the rising 
edge of the clock pulse and that the output changes some time around the trailing edge.
[image: image10.emf]


Assume that the shift register has been initialized to all zeroes, and is given the input 1011, 
LSB first: ‘1’, then ‘1’, then ‘0’, and finally 1.  The input is assumed to be synchronized with 
the system clock, so that the first ‘1’ is presented just before the rising edge of the first clock 
pulse, and every other bit is presented just before a rising edge.
Here is the start state of the shift register, just before the first clock pulse.
[image: image11.emf]


Here is the state after the first clock pulse.  The LSB has been shifted into the shift register.
[image: image12.emf]


After another clock pulse, another bit has been accepted by the shift register.
[image: image13.emf]


After the third clock pulse, this is the situation.

[image: image14.emf]


After the fourth clock pulse, all of the serial data have been shifted into the shift register.

[image: image15.emf]


Shift registers are not normally depicted as a collection of flip–flops, but with a 
more compact notation.  Here is a standard depiction of a 4–bit shift register.
[image: image16.emf]


More elaborate shift registers will be depicted with parallel input and output lines (more on that 
when we discuss the UART) and control signals for shift direction.
Here we shall show the use of shift registers and XOR gates to compute the CRC remainder.  
There is a lot of serious mathematics behind this; to be honest, your author barely understands 
this.  The goal of this is to display the simplicity of the circuit.

The mathematics behind the CRC are based on polynomials with coefficients of 0 or 1.  
Here are two polynomials for consideration.
Our example from earlier

X3 + 1
A realistic polynomial


X16 + X12 + X5 + 1

One might ask how the realistic, and useful, polynomials are chosen.  The design goals are 
simple: reduce the probability that a bad block of data will pass muster, and increase the size 
and variety of errors that can be detected successfully.  How the choice of polynomial affects 
these goals is a topic for very advanced study in modern algebra.

The design for the CRC detector computing an N–bit CRC remainder, based on an Nth degree 
polynomial, calls for an N–bit shift register.  Thus the teaching example would call for a 3–bit 
shift register, while the more realistic example, based on a polynomial of degree 16, calls for 
a 16–bit shift register.  Number the flip–flops in the N–bit shift register from 0 through (N – 1).
The number of XOR gates used is one less than the number of terms in the polynomial.  For our
teaching example the circuitry would use 1 XOR gate; the realistic example would use 3.

The placement of the XOR gates are determined by the powers of X in the polynomial.  Recall 
that 1 is X0.  For each power of X, except the highest, an XOR gate is placed just before the 
flip–flop with that number.  For our teaching example, this is before flip–flop 0.  For the more 
realistic example, this is before flip–flops 0, 5, and 12.  Each XOR gate accepts the output of 
the most significant flip–flop and the output of the lower flip–flop.  The XOR gate feeding 
flip–flop 0 accepts the highest–order bit as well as the input line.

Here is the shift register implementation of the CRC polynomial X3 + 1.

[image: image17.emf]


After the message, with CRC checksum appended, has been processed the 3–bit remainder is 
found in the shift register.  A value of 000 indicates the lack of most errors.
We now show the shift register implementation of the CRC remainder computation for 
the polynomial X16 + X12 + X5 + 1.  This will call for a 16–bit shift register with flip–flops 
numbered 0 through 15.  There will be three XOR gates, with inputs to flip–flops 0, 5, and 12.
Here is the circuitry.  After a successful CRC check, all 16 flip–flops will be set to 0.
[image: image18.emf]


It would require a lot of mathematics to show that the contents of the above shift register will 
contain the CRC remainder for the message.  Any reader interested in this level of study is 
invited to contact the author of these notes.

The UART and Parallel to Serial Conversions
Part of the job of a UART is to convert between the parallel data format used by the computer 
and the serial data format used by the transmission line.  Of course, the UART also handles 
clock sampling rates, start bits, and stop bits.  The conversion between parallel and serial data 
formats is a natural job for a shift register.  For simplicity, we use 4–bit examples.

A slight modification of the first example 4–bit shift register will illustrate the serial to parallel 
format conversions.  The four bits are shifted in, and are available as the flip–flop contents after 
four clock pulses.  The bits are then transferred out in parallel.
[image: image19.emf]


The reverse process is used for parallel to serial format conversion.  The flip–flops are loaded 
in parallel, and the serial output provides the bits in sequence as the register shifts.

[image: image20.emf]


The UART was originally associated with the COM ports on a PC.  While these ports may be 
in the process of being replaced by the USB port, the idea of data format conversion persists.  
As is the case for much in this chapter, we have covered details that are not likely to be used by 
the average programmer.  Your author believes, however, that a student trained in the study of 
computer science should have a passing acquaintance, at least.

The USB (Universal Serial Bus)
A modern computer system comprises a CPU, memory, and a number of peripheral devices, all 
connected by busses of some sort.  As computers evolved, so did the bus designs.  However, the 
number of bus designs lead to a number of incompatible bus protocols, making it difficult to 
design devices for interface to existing systems.  It is worth noting that the success of the original 
PC (by IBM) was in part due to the publication of the bus protocol, allowing manufacturers of 
peripheral devices to design compatible devices.
The USB design was created by a consortium of manufacturers in the early 1990’s as a new 
standard to handle low speed peripherals.  Pre–release versions of the standard were submitted 
for review beginning in November 1994.  Since then there have been 3 official major releases.
	Version
	Released
	Bandwidth

	1.0
	January 1996
	1.5 MB/sec

	2.0
	April 2000
	60 MB/sec

	3.0
	November 2008
	625 MB/sec


As of December 2011, most USB devices are designed to version 2.0 of the protocol.  It appears 
that USB devices are becoming rather popular, displacing many devices designed for other bus 
standards.  In your author’s opinion, this is due to the simplicity of the USB.  The following is 
a brief list of USB devices that the author of this textbook uses regularly.

1.
A mouse device that is connected to the PC through a USB port.


2.
Three USB flash drives, now on the smaller size: 2 GB, 4GB, and 16 GB.  64 GB 


flash drives are commercially available and a 256 GB device has been demonstrated.


3.
An external 500 GB disk drive connected to the computer through a USB drive.


This is used for data backup.

4.
A Nikon D100 digital camera, with a USB connection to download digital pictures 


to a computer.


5.
A cell phone that uses a USB connection just for power.


6.
An IPOD Nano, that uses a USB connection for power, as well as downloading 


pictures and audio files.

The USB 2.0 standard calls for four wires: two for data transmission, one for power (+5 V), 
and one for ground (0 V).  The USB 3.0 standard extends this to ten, including two more 
ground lines, a pair of signal transmission lines and a pair of signal receiving lines.  It appears 
that the primary mode of operation for USB 3.0 will involve the additional two pairs of lines, 
with the original pair retained for USB 2.0 compatibility.  
Questions:
What about these pairs of lines for data?  USB 2.0 has one pair, USB 3.0 has 3.




What is a signal transmission line pair and how does that differ from a 



signal receiving pair?

In order to answer these questions, we need to give a standard description of the data line 
pair on USB 2.0 and then define the terms used in that description.  In standard technical 
parlance, the USB 2.0 data lines use half–duplex differential signaling.
Consider a pair of communicating nodes.  One way to classify the communication between 
them involves the terms simplex, half–duplex, and full–duplex.
A simplex communication is one way only.  One good example is a standard radio.  There is 
a transmitter and a receiver. 

In duplex communication, data can flow either way between the two nodes.  In half–duplex, 
communication is one way at a time.  Think of the walkie–talkies of the 1940’s.  One could 
either transmit or receive, but not both at the same time.  The same is true of some amateur 
radio sets, because the transmission frequency was the same as the receiving frequency.  
In full–duplex, each side of the transmission can transmit at the same time.  Modern cell 
telephones allow this by using two frequencies: one for transmit and one for receive.

So, the USB 2.0 data lines can carry data either way, but only one way at a time.  If either of 
the two devices can assert signals on the line (say, a computer and a flash drive), there must 
be some protocol (on a walkie–talkie, one would say “Over” to terminate a transmission) to 
allow the two devices to share the line.
The data lines form a pair in order to transmit data one way at a time.  More precisely, these 
lines are a differential pair.  We now define that term.  It has nothing to do with calculus.

Differential signaling was developed in response to the problem of noise on a signal line.  
Consider a single transmitter placing a signal on a line.  That signal can become so corrupted 
with electrical noise from outside sources that it is not useable at the receiving end.  There are 
many sources of electrical noise in the environment: electrical motors, arc welders, etc.
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In other words, the signal received at the destination might not be what was actually transmitted.  
The solution to the problem of noise is based on the observation that two links placed in close 
proximity will receive noise signals that are almost identical.  To make use of this observation 
in order to ameliorate the noise, we use differential transmitters to send the signals and 
differential receivers to reconstruct the signals.

In differential transmission, rather than asserting a voltage on a single output line, the transmitter 
asserts two voltages: +V/2 and –V/2.  A +6 volt signal would be asserted as two: +3 volts and –3 
volts.  A –6 volt signal as –3 volts and +3 volts, and a 0 volt signal as 0 volts and 0 volts.
Here are the standard figures for a differential transmitter and differential receiver.  The standard receiver is an analog subtractor, here giving V/2 – (–V/2) = V.

[image: image22.emf]



Differential Transmitter
Differential Receiver

Noise in a Differential Link
We now assume that the lines used to transmit the differential signals are physically close together, so that each line is subject to the same noise signal.
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Here the received signal is the difference of the two voltages input to the differential receiver. The value received is ( V/2 +N(t) ) – ( –V/2 + N(t) ) = V, the desired value.

Ground Offsets in Standard Links

All voltages are measured relative to a standard value, called “ground”.  Here is the complete version of the simple circuit that we want to implement.
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Basically, there is an assumed second connection between the two devices.  This second connection fixes the zero level for the voltage.

There is no necessity for the two devices to have the same ground.  Suppose that the ground for the receiver is offset from the ground of the transmitter.
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The signal sent out as +V(t) will be received as V(t) – VO.  Here again, the subtractor in the differential receiver handles this problem.
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The signal originates as a given voltage, which can be positive, negative, or 0.  The signal is transmitted as the pair (+V/2, –V/2).  Due to the ground offset, the signal is taken in as 
(+V/2 – VO, –V/2 – VO), interpreted as (+V/2 – VO) – (–V/2 – VO) = +V/2 – VO + V/2 + VO = V.

The differential link will correct for both ground offset and line noise at the same time.

So far, we have shown that the USB 2.0 standard calls for a half–duplex differential channel.
The link is one way at a time, and differential signaling is used to reduce the problem of noise.
What about the signal transmission lines and signal receiving lines mentioned in the USB 3.0 
standard.  Each of these is a pair of lines that uses half–duplex differential signaling.  The two 
are paired up in much the same way that many cities facilitate two–way traffic flow by having 
parallel pairs of one–way streets.  In the terminology of the PCI Express bus, these four wires 
form what is called a lane.
A lane, in PCI Express terminology, is pair of point–to–point serial links, in other words the lane 
is a full–duplex link, able to communicate in two directions simultaneously.  Each of the serial 
links in the pair handles one of the two directions.  Technically, each of these is a simplex link.  
Again, the standard implementation calls for differential signaling, so that each of these two 
serial links would have two wires; a total of four wires for the lane.
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Modems
We close this chapter on a historical note by discussing the modem – modulator/demodulator.  
This device allowed computers to communicate over standard telephone lines.  The device has 
been made obsolete by the Internet, which provides a more convenient communication medium.

The first acoustic modems were developed around 1966 by John Van Geen at Stanford Research 
Institute.  At that time, Bell Telephone was a regulated monopoly and legally able to block any 
direct connection of non–standard equipment to the telephone line.  The modem operated by 
converting digital signals into modulated tones for transmission over standard telephone lines.  
It would receive modulated tones and demodulate them into digital signals for processing.  

The biggest restriction on this technology was that the telephone lines were optimized for 
passing human voice; the bandwidth was about 3000 Hz.  Even music transmitted over the 
telephone sounded bad.  Direct digital signaling was impossible.

[image: image28.emf]

The early modems were acoustic and connected 
directly to the handset of a telephone.  The modem 
had acoustic insulation around both the mouthpiece 
and earpiece of the handset to reduce outside noise.

The modem had a special speaker that generated the 
tones for the telephone mouthpiece, and a special 
microphone that detected the tones from the earpiece.

The brown device is called an “acoustic coupler”.

Later versions of the modem allowed direct connection to the telephone lines, without the 
need for an acoustic coupler.  Sometimes the modem connection would allow for a telephone 
headset, so that the line could double as a standard land line as well as a data line.
The use of modems for distant connection to computing devices seems to have been replaced 
by the global Internet.
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